CSE 527
 

 

 

STONY BROOK UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 


 
 
Home
 
Awards
 
Research
 
Students
 
Courses

Stony Brook University (SUNY):

   Computer Vision - CSE 527
News
 
Media Coverage
 
Downloads
  

CSE 527: INTRODUCTION TO COMPUTER VISION

Syllabus -- Spring 2009


Legend:
  • FP - Forsyth and Ponce's book
  • H   - Horn's book
  • TV - Trucco and Verri's book

  • #

    Date

    Description

    Readings

    Assignments

    1

    1/28

    Course Introduction (slides)

     

     

    2

    1/30

    Linear Algebra Review and Matlab Tutorial (slides)

    Optional:
  • Eero Simoncelli "A Geometric View of Linear Algebra"
  • Michael Jordan slightly more in depth linear algebra review
  • Jim Hefferon online Introductory Linear Algebra Book
  •  

    3

    2/5

    Image formation, Lenses and Cameras
    (slides)

    Req: FP 1
    Opt: H 2.1, 2.3

    PS #1 - Assigned

    4 2/5

    Color and Image Statistics
    (slides)

  • FP 6.3

  •  
  • Michael J. Jones, James Rehg, "Statistical color models with application to skin detection", International Journal of Computer Vision, 1999
     

  • "A Survey on Pixel-Based Skin Color Detection Techniques" Vladimir Vezhnevets, Vassili Sazonov, Alla Andreeva
  •  
    5 2/10

    Statistical linear models: PCA (Eigenfaces) (slides)

  • Turk, M. & Pentland, A. (1991). "Eigenfaces for recognition" Journal of Cognitive Neuroscience, 3, 71-86.
     
  • FP pgs. 505-512
  • PS #1 - Due

     

    6 2/12

    Statistical Linear Models: ICA and FLD (slides)

    Handout: Moghaddam ;
                      ICA Tutorial;
                      Belhumer etal.
    Opt: FP 22

     
    7 2/17 Statistical Multilinear Models:

    TensorFaces / Multilinear PCA: - slides I
                                                            - code and data

    Handout:
      TensorFaces: Vasilescu and Terzopoulos
    ;
     
    Opt: FP 22

    PS #2 - Assigned
    8 2/19 Statistical Multilinear Models: (slides)
    Multilinear (Tensor) ICA,
    Multilinear Projection
    Handouts:
  • Multilinear (Tensor) ICA: - Vasilescu and Terzopoulos;
  • Multilinear Projection - Vasilescu and Terzopoulos
  •  
    9 2/24 Multilinear Projection (continued)    
    10 2/26 Image Filtering, Edge Detection (slides) FP 7 & 8  
    11 3/3 Fourier Transforms & Image Representations: Pyramids (slides) FP 9.2  
    12 3/5 Feature Extraction: Corners & Blobs    
    13 3/10 Physically-Based Models: Mass-Spring Systems    
    14 3/12 Active Contours (snakes)   PS #2 - Due
    15 3/17 Active Shape Models   PS #3 - Assigned
    16 3/19 Active Appearance Models    
    17 3/24 Tracking: Kalman Filters    
    18 3/26 Tracking: Particle Filters, Tracking Humans    
    19 3/31 Mean Shift Algorithm    
    20 4/2 Project Proposal Presentations   Proposals – Due
  • 2 pg. description
  • 3-5 slides
  •   4/6-11

    SPRING BREAK

    21 4/14 Camera Calibration, Epipolar Geometry    
    22 4/16 Stereo    
    23 4/21 Optical Flow, Structure from Motion    
    24 4/23 Shape from Shading    
    25 4/28 Surface Reconstruction  
    26 4/30      

    27

    5/5

    Project Show and Tell

     

    Projects Due
    Submit 10-15 Slides