Color and Image Statistics

Today's Plan

- First part: Recap Last Lecture
 - how positions in the image relate to 3-d positions in the world.

Second part:

- how image intensities relate to surface and lighting properties in the world.
- Third part: Color and Image Statistics
 - Object Detection using color models

Last Time

 Pinhole camera models the geometry of perspective projection

Lenses make it work in practice

- Refraction: Snell's law
- Thin Lens Law
- Image creation and chages in:
 - Focal length
 - Aperture
 - Focus distance …

Projections

- Perspective Projection
 - Non-linear projection
 - Pinhole, Camera
- Weak Perspective Projection linear
- Orthographic models telephoto lens

Today's Plan

First part:

 how positions in the image relate to 3-d positions in the world.

Second part:

 how image *intensities* relate to surface and lighting properties in the world.

Third part:

- Color Spaces
- Object Detection using color models

Radiometry

- Relationship between the world and its image
- Scene Radiance
 - Amount of light radiating from a surface point
- Image Irradiance
 - Amount of light incident at an image point

Different choices for color spaces

- RGB
- Normalized RGB
- HIS, HSV, HSL
 Fleck HSV
- TSL
- YcrCb
- Perceptually uniform colors
 CIELAB, CIELUV
- Others
 - YES, YUV, YIQ, CIE-xyz

RGB – Red, Green, Blue

- Most common color space used to represent images.
- Was developed with CRT as an additive color space
- [1] Rehg and Jones used this color space to study the separability of the color space

Can be 2D by removing the illumination component

Y Cr Cb

Y = 0.299R + 0.587G + 0.114B $C_r = R - Y$ $C_b = B - Y$

- YCrCb is an encoded nonlinear RGB signal, commonly used by European television studios and for image compression work.
- Y Luminance component,
- C Chrominance

Color Models for Object Detection

Example: Skin Color Tracker

Skin color detection

- Are Skin and Non-skin colors separable?
 - Illumination changes over time.
 - Skin tones vary dramatically within and identical image. across individuals.
 - Different cameras have different output for the
 - Movement of objects cause blurring of colors.
 - Ambient light, shadows change the apparent color of the image.
- What color space should we use?
- How should the color distribution be modelled?

Color Models

- Desired Properties:
 - Increased separability between skin and non skin classes
 - Decreased separability among skin tones
 - Stability of color space (at extreme values)
 Cost of conversion for real time applications
- Multiple choices for color spaces:
 - Stability of color space (at extreme values)
 - Keeping the Illumination component 2D color space vs. 3D color space
- Multiple choices of color distribution model

Perceptually uniform colors

- "skin color" is not a physical property of an object, rather a perceptual phenomenon and therefore a subjective human concept.
- Color representation similar to the color sensitivity of human vision system should
- Complex transformation functions from and to RGB space, demanding far more computation than most other color spaces

 There is a marked skew in the distribution toward the red corner of the color cube.

Modeling the color distribution

- Non parametric Estimate skin color distribution from skin training data without deriving an explicit model of the skin.
 Look up table or Histogram Model
- **Parametric** Deriving a parametric model from skin training set
 - Gaussian Model

Histogram Color Models

Images are organized in two sets:

- Generic Training Set;
 - Used to compute a general histogram density;
- Classifier Training Set;
 - Used to build the skin and non-skin models;
 - Manually separated into subsets containing skin and not containing skin;
 - Skin pixels are manually labeled;

Each bin stores the number of times a particular RGB color,
 x, occurred in the training skin samples

Non-Skin Nomalized Histogram Likelihood that the RGB color, x, will correspond to skin normalizing the histogram counts P(x|-skin) = value of the histogram bin, corresponding to color vector x sum of all histogram bin values p(x| ¬skin) - a probability of observing color x, knowing that we see a non-skin pixel. Probability of encountering non-skin pixels P(-skin) = total number of nonskin pixels total number of pixels

Skin Detection Using Color Models

- Given skin and non-skin histogram models, we can construct a skin pixel classifier
- Classifiers:
 - Maximum Likelihood Classifier
 - Bayes Classifier
- Skin classifier is useful in:
 - Detection and recognition of faces and figures;
 - Image indexing and retrieval

Histogram-based Skin Classifier

- Qualitative observations:
 - $\theta = 0.4;$
 - The classifier does a good job of detecting skin in most examples;
 - In particular, the skin labels form dense sets whose shape often resembles that of the true skin pixels;
 - The detector tends to fail on highly saturated or shadowed skin;
 - The performance of the skin classifier is surprisingly good considering the unconstrained nature of Web images;

Histogram-based Skin Classifier
 More qualitative observations: The example photos also show the performance of the detector on non-skin pixels.
 In photos such as the house (lower right) or flowers (upper right) the false detections are sparse and scattered.
 More problematic are images with wood or copper-colored metal such as the kitchen scene (upper left) or railroad tracks (lower left).
 These photos contain colors which often occur in the skin model and are difficult to discriminate reliably.
This results in fairly dense sets of false postives

Histograms for object recognition

Remarkable success of recognition methods using histograms of local image measurements:

- [Swain & Ballard 1991] Color histograms
- [Schiele & Crowley 1996] Receptive field histograms
- [Lowe 1999] localized orientation histograms (SIFT)
- [Schneiderman & Kanade 2000] localized histograms of wavelet coef.
- [Leung & Malik 2001] Texton histograms
- Belongie et.al. 2002] Shape context
- [Dalal & Triggs 2005] Dense orientation histograms
- Likely explanation: Histograms are robust to image variations such as limited geometric transformations and object class variability.

Histogram-based Skin Classifier

More quantitative observations:

- The performance of the skin classifier is surprisingly good considering the unconstrained nature of Web images;
- The best classifier (size 32) can detect roughly 80% of skin pixels with a false positive rate of 8.5%, or 90% correct detections with 14.2% false positives;
- Its equal error rate is 88%.

Non-Parametric Models

- Advantages of non-parametric methods:
 - they are fast in training and usage:
 - use of the histogram model results in a fast classifier since only two table lookups are required to compute the probability of skin.
 - they are theoretically independent to the shape the color skin distribution
- Disadvantages:
 - Iarge storage space required and
 - inability to interpolate or generalize the training data
 - performance directly depends on the representativeness of the training images set.

Parametric Models

- Compact skin model representation
- Can generalize and interpolate the training data
- Models:
 - Single Gaussian Model for Skin
 - Mixture of Gaussians

Gaussian Model

 Two separate gaussian models (or mixtures of gaussians) can be trained for the skin and non-skin classes;

 $\mathbf{D} = \begin{bmatrix} \mathbf{x}_1 - \boldsymbol{\mu} & \cdots & \mathbf{x}_N - \boldsymbol{\mu} \end{bmatrix}$

Gaussian Model:

 $\mathbf{x} =$

$$\begin{bmatrix} r \\ g \\ b \end{bmatrix}$$
 mean $\boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$
covariance $\sum = \frac{1}{N-1} \mathbf{D} \mathbf{D}^T$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

Classification

 Bayes Rule Classification – Maximum A Posteriori

$$p(skin|\mathbf{x}) = \frac{p(\mathbf{x}|skin) p(skin)}{p(\mathbf{x}|skin) p(skin) + p(\mathbf{x}|\neg skin) p(\neg skin)}$$

Maximum Likelihood

$$\frac{p(skin|\mathbf{x})}{p(-skin|\mathbf{x})} = \frac{p(\mathbf{x} \mid skin)}{p(\mathbf{x} \mid -skin)} \ge \Theta$$

Mixture of Gaussian Model

 Skin/Non-skin pixel color of have complicated distributions that are not easily described by a single gaussian each

Gaussian Models

Advantages:

- One advantage of gaussian model (or mixture models) is that they can be made to generalize well on small amounts of training data;
- From the standpoint of storage space, the gaussian (mixture of gaussian) model is a much more compact representation of the data.

Gaussian Models

Disadvantages:

- The mixture of Gaussian model is significantly more expensive to train than the histogram models;
- It took 24 hours to train both skin and non-skin mixture of gaussian models using 10 Alpha workstations in parallel. In contrast, the histogram models could be constructed in a matter of minutes on a single workstation;
- The mixture model is also slower to use during classification since all of the Gaussians must be evaluated in computing the probability of a single color value;

Conclusions

- Color distributions for skin and non-skin pixel classes learned from web images can be used as an accurate pixel-wise skin detector;
- The key is the use of a very large labeled dataset to capture the effects of the unconstrained imaging environment represented by web photos;
- Visualization studies show a surprising degree of separability in the skin and non-skin color distributions;
- They also reveal that the general distribution of color in web images is strongly biased by the presence of skin pixels.

Conclusions

- One possible advantage of using a large dataset is that simple learning rules may give good performance;
- A pixel-wise skin detector can be used to detect images containing naked people, which tend to produce large connected regions of skin;
- It is shown that a detection rate of 88% can be achieved with a false alarm rate of 11.3%, using a seven element feature vector and a neural network classifier;
- This performance is comparable to systems which use more elaborate and slower spatial image analysis;
- The results suggest that skin color is a very powerful cue for detecting people in unconstrained imagery.