Color and Image
Statistics

Today’s Plan

= First part: Recap Last Lecture

o how positions in the image relate to 3-d positions in
the world.

= Second part:

o how image intensities relate to surface and lighting
properties in the world.

= Third part: Color and Image Statistics
o Object Detection using color models

Last Time

= Pinhole camera models the geometry of
perspective projection
= Lenses make it work in practice
o Refraction: Snell’'s law
o Thin Lens Law
o Image creation and chages in:
= Focal length
= Aperture
= Focus distance ...
= Projections
o Perspective Projection
= Non-linear projection
= Pinhole, Camera
o Weak Perspective Projection — linear
o Orthographic — models telephoto lens

Pinhole camera model
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= Pinhole model:
o Captures pencil of rays — all rays through a single point
o The point is called Center of Projection (COP)
o The image is formed on the Image Plane

o Effective focal length fis distance from COP to Image Plane
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Lenses

= gather more
light!

= But need to be
focused

The Thin Lens Law

From Photoy vraEhz, London et al.
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Dimensionality Reduction Machine
(3D to 2D)

3D world 2D image

Point of observation

= What have we lost?
o Angles
o Distances (lengths)

Figures © Stephen E. Palmer, 2002

Funny things happen...

Parallel lines aren’t...

...but humans adopt!
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Mdller-Lyer lllusion

We don’t make measurements in the image plane

http://www.michaelbach.de/ot/sze_muelue/index.html

Perspective projection

= Abstract camera model - box with a small hole in it
= In an ideal pinhole camera everything is in focus
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The equation of projection
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The equation of projection

= Cartesian coordinates:

o We have, by similar triangles, that X f?
Y
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o Ignore the third coordinate, and get
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The camera matrix

= Turn previous expression into homogeneous coordinates
0 HC’s for 3D point are (X,Y,Z,t)
0 HC’s for point in image are (u,v,w)

u 10 0 O
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W Vol
Position of the point in the image from HC
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normalize by w
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Homogeneous coordinates
= Is this a linear transformation?
o no—division by z is nonlinear
= Trick: add one more coordinate:
(x.y)= |y (z,y,2) = .
1 z
) 1
homogeneous image homogeneous scene
coordinates coordinates
= Converting from homogeneous
coordinates
z &
Y } = (#/w.y/w) sz = (z/w,y/w, z/w)
w w
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Weak perspective
= Issue
= perspective effects, but not over the scale of individual
objects

= collect points into a group at about the same depth, then
divide each point by the depth of its group

= Adv: easy

= Disadv: wrong
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Orthographic Projection

Telescope projection can be modeled by orthographic projection
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Orthographic Projection

= Special case of perspective projection
o Distance from the COP to the PP is infinite

Image

o Also called “parallel projection”
o What's the projection matrix?
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Projection Summary:
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Perspective
x =X L y =Y L
VA VA
2 Weak perspective
x = const X y =const ¥

Orthographic
x =X y =Y

X,y = image coordinates
X ,Y,Z = world coordinates
Z =depth
f = focal length of the camera

Today’s Plan

= First part:

o how positions in the image relate to 3-d positions in
the world.

= Second part:

o how image intensities relate to surface and lighting
properties in the world.

= Third part:
o Color Spaces
o Object Detection using color models

Radiometry

= Relationship between the world and its image
= Scene Radiance
o Amount of light radiating from a surface point

= Image Irradiance
o Amount of light incident at an image point

light

Radiance, L

surface

« Amount of light radiated from a surface into
a given solid angle per unit area (watts per
square meter per steradian).

+ Note: the area is the foreshortened area, as
seen from the direction that the light is
being emitted.

+ Informally, radiance tells you the
“brightness”.

light

Irradiance, E

surface

+ Light power per unit area (watts per square
meter) incident on a surface.

+ The units tell you what to integrate over to
find the energy impinging on a given area.

+ E times pixel area, times exposure time
gives the pixel intensity out (for linear
Sensor response)




Image irradiance/scene radiance
relationship

* The definition of scene radiance 1s
constructed so that image irradiance 1s
proportional to scene radiance.

Scene radiance
r(dY i
E=L—t— cos (a)
S

. lmage irradiance
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Derivation
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Different choices for color spaces

= RGB
= Normalized RGB

= HIS, HSV, HSL
o Fleck HSV

= TSL
= YcrCb

= Perceptually uniform colors
o CIELAB, CIELUV

= Others
a YES, YUV, YIQ, CIE-xyz

Derivation

0P = power captured
by lens from the

surface patch

0i = area of image patch
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Color Spaces

RGB - Red, Green, Blue

= Most common color space used to represent
images.

= Was developed with CRT as an additive
color space

= [1] — Rehg and Jones used this color space
to study the separability of the color space
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Normalized RGB - rg space

__R G B
“R+G+iB° R:GiB RiG+B
=l-r-g

= 2D color space as ‘b’ component is
redundant
art+tgt+tb=1

= For matte surfaces (ignoring ambient light):

o Normalized RGB is invariant to changes of surface
orientation relatively to the light source
[Skarbek and Koschan 1994]

HSV, HSI, HSL

(hue, saturation, value/intensity/luminance)

H(R-G)+iR- B

H arccos _

VIR GFR+(R B)IG R
§ _ g 3mnRGE)

R+G+B
v %[R LG+ B)

High cost of conversion
Based on intuitive values
Invariant to highlight at white light sources

Pixel with large and small intensities are discarded as HS becomes
unstable.

Can be 2D by removing the illumination component

0O 0 oo

[u]

Y CrCb
¥ =0.2998 +0.587G+0.114B
C,=R-¥
C,=B-Y

= YCrCb is an encoded nonlinear RGB signal,
commonly used by European television
studios and for image compression work.

= Y — Luminance component,
s C — Chrominance

Color Models for Object
Detection

= Example: Skin Color Tracker

Skin color detection

= Are Skin and Non-skin colors separable?
o lllumination changes over time.

o Skin tones vary dramatically within and identical image.
across individuals.

o Different cameras have different output for the
o Movement of objects cause blurring of colors.
o Ambient light, shadows change the apparent color of the
image.
= What color space should we use?
= How should the color distribution be modelled?

Color Models

= Desired Properties:

o Increased separability between skin and non skin
classes

o Decreased separability among skin tones
o Stability of color space (at extreme values)
= Cost of conversion for real time applications
= Multiple choices for color spaces:
o Stability of color space (at extreme values)

o Keeping the lllumination component — 2D color
space vs. 3D color space

= Multiple choices of color distribution model




Perceptually uniform colors

General Color Model

= “skin color” is not a physical property of an
object, rather a perceptual phenomenon and
therefore a subjective human concept.

= Color representation similar to the color
sensitivity of human vision system should

= Complex transformation functions from and
to RGB space, demanding far more
computation than most other color spaces

Fial Cobor Model, Green-Magera kus Marpng

Observations:

-

. Most colors fall on or near the gray line;

2. Black and white are by far the most frequent colors, with white occuring slightly
more frequently;

3. There is a marked skew in the distribution toward the red corner of the color

cube.

Non-Skin Pixel Distribution

Skin Pixel Distribution
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Skin and Non-skin Color Distribution

Results from Rehg & Jones
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Observations:

1. Non-skin model is the general model without skin pixels (10% of pixels);
2. There is a significant degree of separation between the skin and non-skin
models;

= Used 18,696 images to build a general color model.

= Density is concentrated around the gray line and is
more sharply peaked at white than black.

Most colors fall on or near the gray line.

Black and white are by far the most frequent colors,
with white occurring slightly more frequently.

= There is a marked skew in the distribution toward the
red corner of the color cube.

77% of the possible 24 bit RGB colors are never
encountered (i.e. the histogram is mostly empty).

52% of web images have people in them.




Modeling the color distribution

Histogram Color Models

= Non parametric — Estimate skin color
distribution from skin training data without
deriving an explicit model of the skin.
o Look up table or Histogram Model

= Parametric — Deriving a parametric model
from skin training set
o Gaussian Model

= Images are organized in two sets:

o Generic Training Set;
= Used to compute a general histogram density;

o Classifier Training Set;
= Used to build the skin and non-skin models;
= Manually separated into subsets containing skin and not
containing skin;
= Skin pixels are manually labeled;

Histogram/Look-Up Table

= Color space is quantized into a number of bins, where each bin
corresponds to a color range

= Bins, forming a 3D histogram are referred to as the lookup
table (LUT).

= Each bin stores the number of times a particular RGB color,
X, occurred in the training skin samples

Skin Nomalized Histogram/Look-Up Table

= Likelihood that the RGB color, x, will correspond
to skin

e =

it e
o r(‘g&. o normalizing the histogram counts
%...
g _ value of the histogram bin, corresponding to color vector x

* P(x‘skin) =

sum of all histogram bin values

p(x|skin) - a probability of observing color x, knowing
that we see a skin pixel.

= Probability of encountering skin pixels

total number of skin pixels

P(skin)=
( ) total number of pixels

Non-Skin Nomalized Histogram

= Likelihood that the RGB color, x, will correspond

v F 3 to skin
W lfice . )
20 Q‘Q— o normalizing the histogram counts
%' L
..
Y . . .
. P(x‘—skin): value of the histogram bin, corresponding to color vector x

sum of all histogram bin values

p(x| ~skin) - a probability of observing color x, knowing
that we see a non-skin pixel.

= Probability of encountering non-skin pixels

_ total number of nonskin pixels

P(—skin
( ) total number of pixels

Skin Detection Using Color Models

= Given skin and non-skin histogram models, we
can construct a skin pixel classifier

= Classifiers:
o Maximum Likelihood Classifier
o Bayes Classifier

= Skin classifier is useful in:
o Detection and recognition of faces and figures;
o Image indexing and retrieval




Bayesian Rule Classification

Deriving ML from MAP

= Given: p(x|skin) and p(x|non-skin)

= Interested in finding the probability that a particular
pixel belongs to skin class given its RGB value, x

= Probability of skin given a pixel's RGB value, x:

(skin‘x) _ p(x‘skin) p(skin)
P p(x‘skin) p(skin)+ p(x‘—mkin) p(—skin)

> 5

(max. likelihood from max. a posteriori)

(skin‘x) _ p(x‘skin) p(skin)
i p(x‘skin)p(skin) + p(x‘ﬂskin)p(—\skin)
p(—\skin‘x) _ p(x‘—hckin) p(—skin)

p(x‘skin) p(skin)+ p(x‘ﬁskin) p(—skin)

p(skin‘x) B p(x‘skm) p(skin)
p(ﬁskin‘x) - p(x‘ﬁskin) p(—skin)

P("‘Sk"”) -0 o= g 1= pskin)

pix‘ﬂskin ' p(skin)

p(skin)+ p(—skin) =1

Maximum Likelihood Classification

Histogram-based Skin Classifier

= a skin pixel classifier is derived through the
standard likelihood ratio approach:

’
P(x| skin) S x=|g
P(x | —skin) b
P(x)
P(x| skin)
X decision rgb

boundary

- Qualitative observations:

- 6=04;

- The classifier does a good job of detecting skin in most
examples;

- In particular, the skin labels form dense sets whose shape
often resembles that of the true skin pixels;

- The detector tends to fail on highly saturated or shadowed
skin;

- The performance of the skin classifier is surprisingly good
considering the unconstrained nature of Web images;

Histogram-based Skin Classifier

Histogram-based Skin Classifier

= More qualitative observations:
o The example photos also show the performance of the
detector on non-skin pixels.
o In photos such as the house (lower right) or flowers (upper
right) the false detections are sparse and scattered.

More problematic are images with wood or copper-colored
metal such as the kitchen scene (upper left) or railroad tracks
(lower left).

These photos contain colors which often occur in the skin
model and are difficult to discriminate reliably.

This results in fairly dense sets of false postives.

o

o

o




Histograms for object recognition

Histogram-based Skin Classifier

= Remarkable success of recognition methods using
histograms of local image measurements:

= [Swain & Ballard 1991] - Color histograms
= [Schiele & Crowley 1996] - Receptive field histograms
= [Lowe 1999] - localized orientation histograms (SIFT)

= [Schneiderman & Kanade 2000] - localized histograms of wavelet
coef.

= [Leung & Malik 2001] - Texton histograms
= [Belongie et.al. 2002] - Shape context
= [Dalal & Triggs 2005] - Dense orientation histograms

= Likely explanation: Histograms are robust to image
variations such as limited geometric transformations
and object class variability.

= More quantitative observations:
o The performance of the skin classifier is surprisingly good
considering the unconstrained nature of Web images;

o The best classifier (size 32) can detect roughly 80% of skin
pixels with a false positive rate of 8.5%, or 90% correct
detections with 14.2% false positives;

o lts equal error rate is 88%.

Non-Parametric Models

Parametric Models

= Advantages of non-parametric methods:

o they are fast in training and usage:

= use of the histogram model results in a fast classifier since
only two table lookups are required to compute the
probability of skin.

o they are theoretically independent to the shape the
color skin distribution
= Disadvantages:
o large storage space required and
o inability to interpolate or generalize the training data

u performance directly depends on the
representativeness of the training images set.

= Compact skin model representation
= Can generalize and interpolate the training data
= Models:

o Single Gaussian Model for Skin

o Mixture of Gaussians

Gaussian Model

Skin & Non-skin Color Gaussian Model

= Two separate gaussian models (or mixtures of
gaussians) can be trained for the skin and non-skin
classes;

= Gaussian Model:

N
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= Skin Model:
= Conditional Density:
0 prob of RGB value, x, given a skin sample

(d is the dimensionality of x)

plx|skin)= P ‘12 ; et 2 )
skin

= Non-skin Model
= Conditional Density:
0 prob of RGB value, x, given a non-skin sample

p(xlnon -skin)= 1 P )

(2”>%‘zuowskm F




Classification

= Bayes Rule Classification — Maximum A
Posteriori

(skin‘x) _ p(x‘skin) p(skin)
r p(x‘skin) p(skin)+ p(x‘—\skin) p(—skin)

= Maximum Likelihood

plskinx) _ p(x|skin) _
p(ﬁskin‘x) " p(x| —skin)

Mixture of Gaussian Model

= Skin/Non-skin pixel color of have complicated
distributions that are not easily described by a
single gaussian each
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Mixture of Gaussian Model
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Skin and Non-Skin
Color Distribution:

Mixture of
Gaussians:

Mixture Model Classification

Skin Mixture Model: Non-Skin Mixture Model:

G, G,
p(x|skin) = Z w, D, (x|skin) Pp(X|—skin) = Z W, D, (X|—skin)
&=l g,=1

= Classification:
o Maximum Likelihood
o Bayes Rule Classification

Gaussian Models

Advantages:

o One advantage of gaussian model (or mixture
models) is that they can be made to generalize well
on small amounts of training data;

o .From the standpoint of storage space, the gaussian
(mixture of gaussian) model is a much more
compact representation of the data.

Gaussian Models

Disadvantages:

o The mixture of Gaussian model is significantly more
expensive to train than the histogram models;

o It took 24 hours to train both skin and non-skin
mixture of gaussian models using 10 Alpha
workstations in parallel. In contrast, the histogram
models could be constructed in a matter of minutes
on a single workstation;

o The mixture model is also slower to use during
classification since all of the Gaussians must be
evaluated in computing the probability of a single
color value;




Adult Image Detector

“Funny Mirrors”

(a) Examples of images cortectly classified by (b) Example of an
our detector. Both images were classified as image misclassified
adult images as adult by our de-

tector.

ALIVE

http://vismod.www.media.mit.edu/cgi-bin/tr_pagemaker (TR 257)

* Real sensing for virtual world
= Tightly coupled sensing-behavior-action
* \Vision routines: body/head/hand tracking

Usar  Agents

[ Blumberg, Darrell, Maes, Pentland, Wren, ...

Conclusions

Conclusions

= Color distributions for skin and non-skin pixel classes
learned from web images can be used as an accurate
pixel-wise skin detector;

= The key is the use of a very large labeled dataset to
capture the effects of the unconstrained imaging
environment represented by web photos;

= Visualization studies show a surprising degree of
separability in the skin and non-skin color distributions;

= They also reveal that the general distribution of color
in web images is strongly biased by the presence of
skin pixels.

= One possible advantage of using a large dataset is that
simple learning rules may give good performance;

= A pixel-wise skin detector can be used to detect images
containing naked people, which tend to produce large
connected regions of skin;

= Itis shown that a detection rate of 88% can be achieved
with a false alarm rate of 11.3%, using a seven element
feature vector and a neural network classifier;

= This performance is comparable to systems which use
more elaborate and slower spatial image analysis;

= The results suggest that skin color is a very powerful cue
for detecting people in unconstrained imagery.




