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Color and Image 
Statistics

Today’s Plan
First part: Recap Last Lecture

how positions in the image relate to 3-d positions in 
the world.

Second part: 
how image intensities relate to surface and lighting 
properties in the world.

Third part: Color and Image Statistics
Object Detection using color models

Last Time
Pinhole camera models the geometry of 
perspective projection
Lenses make it work in practice

Refraction: Snell’s law
Thin Lens Law
Image creation and chages in:

Focal length
Aperture
Focus distance …

Projections
Perspective Projection 

Non-linear projection
Pinhole, Camera

Weak Perspective Projection – linear
Orthographic – models telephoto lens

Pinhole camera model

Pinhole model:
Captures pencil of rays – all rays through a single point
The point is called Center of Projection (COP)
The image is formed on the Image Plane
Effective focal length f is distance from COP to Image Plane

Slide by Steve Seitz

Lenses 
gather more 
light!
But need to be 
focused

From Photography, London et al. 

The Thin Lens Law
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Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine 
(3D to 2D)

3D world 2D image

What have we lost?
Angles
Distances (lengths)

Funny things happen…

Parallel lines aren’t…

…but humans adopt!

http://www.michaelbach.de/ot/sze_muelue/index.html

Müller-Lyer Illusion

We don’t make measurements in the image plane

Perspective projection
Abstract camera model - box with a small hole in it
In an ideal pinhole camera everything is in focus

Forsyth&Ponce

The equation of projection

3D world2D image

Perspective Projection
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The equation of projection
Cartesian coordinates:

We have, by similar triangles, that                       

Ignore the third coordinate, and get
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Homogeneous coordinates
Is this a linear transformation?

Trick:  add one more coordinate:

homogeneous image 
coordinates

homogeneous scene 
coordinates

Converting from homogeneous 
coordinates

no—division by z is nonlinear

Slide by Steve Seitz

The camera matrix
Turn previous expression into homogeneous coordinates 

HC’s for 3D point are (X,Y,Z,t)
HC’s for point in image are (u,v,w)

Position of the point in the image from HC
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Weak perspective
Issue

perspective effects, but not over the scale of individual 
objects
collect points into a group at about the same depth, then 
divide  each point by the depth of its group
Adv: easy
Disadv: wrong

Weak Perspective Projection
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(roughly constant) distance
from the scene, take m=1.

Marc Pollefeys

Telescope projection can be modeled by orthographic projection

Orthographic Projection



4

Orthographic Projection
Special case of perspective projection

Distance from the COP to the PP is infinite

Also called “parallel projection”
What’s the projection matrix?

Image World

Slide by Steve Seitz

1. Perspective

2. Weak perspective

3. Orthographic

camera  theoflength  focal
depth

scoordinate world,,
scoordinate image,

=
=
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Projection Summary:

YconstyXconstx ==

Z
fYy

Z
fXx ==

YyXx ==

Today’s Plan
First part:

how positions in the image relate to 3-d positions in 
the world.

Second part: 
how image intensities relate to surface and lighting 
properties in the world.

Third part: 
Color Spaces
Object Detection using color models

Radiometry
Relationship between the world and its image
Scene Radiance

Amount of light radiating from a surface point
Image Irradiance

Amount of light incident at an image point
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Derivation
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Color SpacesColor Spaces

Different choices for color spaces
RGB
Normalized RGB
HIS, HSV, HSL

Fleck HSV

TSL
YcrCb
Perceptually uniform colors

CIELAB, CIELUV

Others 
YES, YUV, YIQ, CIE-xyz

Most common color space used to represent 
images.
Was developed with CRT as an additive 
color space
[1] – Rehg and Jones used this color space 
to study the separability of the color space

RGB – Red, Green, Blue
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Normalized RGB – rg space

2D color space as ‘b’ component is 
redundant 

r + g + b = 1

For matte surfaces (ignoring ambient light):
Normalized RGB is invariant to changes of surface 
orientation relatively to the light source 
[Skarbek and Koschan 1994]

= 1 – r – g

HSV, HSI, HSL
(hue, saturation, value/intensity/luminance)

High cost of conversion
Based on intuitive values
Invariant to highlight at white light sources
Pixel with large and small intensities are discarded as HS becomes 
unstable.
Can be 2D by removing the illumination component

Y Cr Cb

YCrCb is an encoded nonlinear RGB signal, 
commonly used by European television 
studios and for image compression work.
Y – Luminance component, 
C – Chrominance

Color Models for Object 
Detection

Color Models for Object 
Detection

Example: Skin Color Tracker

Skin color detection
Are Skin and Non-skin colors separable?

Illumination changes over time.
Skin tones vary dramatically within and identical image. 
across individuals.
Different cameras have different output for the 
Movement of objects cause blurring of colors.
Ambient light, shadows change the apparent color of the 
image.

What color space should we use?
How should the color distribution be modelled?

Color Models
Desired Properties:

Increased separability between skin and non skin 
classes
Decreased separability among skin tones
Stability of color space (at extreme values)

Cost of conversion for real time applications
Multiple choices for color spaces:

Stability of color space (at extreme values)
Keeping the Illumination component – 2D color 
space vs. 3D color space

Multiple choices of color distribution model
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Perceptually uniform colors
“skin color” is not a physical property of an 
object, rather a perceptual phenomenon and 
therefore a subjective human concept.
Color representation similar to the color 
sensitivity of human vision system should
Complex transformation functions from and 
to RGB space, demanding far more 
computation than most other color spaces

General Color Model

Observations:

1. Most colors fall on or near the gray line;
2. Black and white are by far the most frequent colors, with white occuring slightly 

more frequently;
3. There is a marked skew in the distribution toward the red corner of the color 

cube.

Non-Skin Pixel Distribution Skin Pixel Distribution

Skin and Non-skin Color Distribution

Observations:

1. Non-skin model is the general model without skin pixels (10% of pixels);
2. There is a significant degree of separation between the skin and non-skin 

models; 

Results from Rehg & Jones
Used 18,696 images to build a general color model.
Density is concentrated around the gray line and is 
more sharply peaked at white than black.
Most colors fall on or near the gray line.
Black and white are by far the most frequent colors, 
with white occurring slightly more frequently.
There is a marked skew in the distribution toward the 
red corner of the color cube.
77% of the possible 24 bit RGB colors are never 
encountered (i.e. the histogram is mostly empty).
52% of web images have people in them.
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Modeling the color distribution

Non parametric – Estimate skin color
distribution from skin training data without 
deriving an explicit model of the skin.

Look up table or Histogram Model

Parametric – Deriving a parametric model 
from skin training set

Gaussian Model

Histogram Color Models
Images are organized in two sets:

Generic Training Set;
Used to compute a general histogram density;

Classifier Training Set;
Used to build the skin and non-skin models;
Manually separated into subsets containing skin and not 
containing skin;
Skin pixels are manually labeled;

Histogram/Look-Up Table
Color space is quantized into a number of bins, where each bin 
corresponds to a color range

Bins, forming a 3D histogram are referred to as the lookup 
table (LUT).

Each bin stores the number of times a particular RGB color, 
x, occurred in the training skin samples

51
102

153
204

255

51
102

153
204

255

255

Skin Nomalized Histogram/Look-Up Table

Likelihood that the RGB color, x, will correspond 
to skin

normalizing the histogram counts

p(x|skin) - a probability of observing color x, knowing               
that we see a skin pixel.

Probability of encountering skin pixels

( )
bin values histogram all of sum

or xcolor vect  toingcorrespond bin, histogram  theof valueskin =xP

( )
pixels ofnumber  total

pixelsskin  ofnumber  totalskin =P

Non-Skin Nomalized Histogram

Likelihood that the RGB color, x, will correspond 
to skin

normalizing the histogram counts

p(x| ¬skin) - a probability of observing color x, knowing               
that we see a non-skin pixel.

Probability of encountering non-skin pixels

( )
bin values histogram all of sum

or xcolor vect  toingcorrespond bin, histogram  theof valueskin =¬xP

( )
pixels ofnumber  total

pixelsnonskin  ofnumber  totalskin =¬P

Skin Detection Using Color Models
Given skin and non-skin histogram models, we 
can construct a skin pixel classifier

Classifiers:
Maximum Likelihood Classifier
Bayes Classifier

Skin classifier is useful in:
Detection and recognition of faces and figures;
Image indexing and retrieval
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Bayesian Rule Classification

Given: p(x|skin) and p(x|non-skin)

Interested in finding the probability that a particular 
pixel belongs to skin class given its RGB value, x

Probability of skin given a pixel’s RGB value, x:
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Maximum Likelihood Classification
a skin pixel classifier is derived through the 
standard likelihood ratio approach:
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Histogram-based Skin Classifier
• Qualitative observations:

– θ = 0.4;
– The classifier does a good job of detecting skin in most 

examples;
– In particular, the skin labels form dense sets whose shape 

often resembles that of the true skin pixels; 
– The detector tends to fail on highly saturated or shadowed 

skin;
– The performance of the skin classifier is surprisingly good 

considering the unconstrained nature of Web images; 

Histogram-based Skin Classifier Histogram-based Skin Classifier
More qualitative observations:

The example photos also show the performance of the 
detector on non-skin pixels. 
In photos such as the house (lower right) or flowers (upper 
right) the false detections are sparse and scattered. 
More problematic are images with wood or copper-colored 
metal such as the kitchen scene (upper left) or railroad tracks 
(lower left). 
These photos contain colors which often occur in the skin 
model and are difficult to discriminate reliably.
This results in fairly dense sets of false postives.
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Remarkable success of recognition methods using 
histograms of  local image measurements:

[Swain & Ballard 1991]  - Color histograms
[Schiele & Crowley 1996] - Receptive field histograms 
[Lowe 1999] - localized orientation histograms (SIFT)
[Schneiderman & Kanade 2000] - localized histograms of wavelet 

coef.
[Leung & Malik 2001] - Texton histograms
[Belongie et.al. 2002] - Shape context
[Dalal & Triggs 2005] - Dense orientation histograms

Likely explanation: Histograms are robust to image 
variations such as limited geometric transformations 
and object class variability.

Histograms for object recognition Histogram-based Skin Classifier
More quantitative observations:

The performance of the skin classifier is surprisingly good 
considering the unconstrained nature of Web images; 
The best classifier (size 32) can detect roughly 80% of skin 
pixels with a false positive rate of 8.5%, or 90% correct 
detections with 14.2% false positives; 
Its equal error rate is 88%.

Non-Parametric Models
Advantages of non-parametric methods:

they are fast in training and usage:
use of the histogram model results in a fast classifier since 
only two table lookups are required to compute the 
probability of skin.

they are theoretically independent to the shape the 
color skin distribution

Disadvantages:
large storage space required and 
inability to interpolate or generalize the training data
performance directly depends on the 
representativeness of the training images set.

Parametric Models
Compact skin model representation 
Can generalize and interpolate the training data
Models:

Single Gaussian Model for Skin
Mixture of Gaussians

Gaussian Model
Two separate gaussian models (or mixtures of 
gaussians) can be trained for the skin and non-skin 
classes; 
Gaussian Model:
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Skin & Non-skin Color Gaussian Model
Skin Model:

Conditional Density:
prob of RGB value, x, given a skin sample
(d is the dimensionality of x)

Non-skin Model
Conditional Density:

prob of RGB value, x, given a non-skin sample
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Classification
Bayes Rule Classification – Maximum A 
Posteriori

Maximum Likelihood
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Mixture of Gaussian Model
Skin/Non-skin pixel color of have complicated 
distributions that are not easily described by a 
single gaussian each

Mixture of Gaussian Model

Skin and Non-Skin
Color Distribution:

Mixture of 
Gaussians:

Mixture Model Classification
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Classification:
Maximum Likelihood
Bayes Rule Classification

Skin Mixture Model: Non-Skin Mixture Model:

Gaussian Models

Advantages:
One advantage of gaussian model (or mixture 
models) is that they can be made to generalize well 
on small amounts of training data;

.From the standpoint of storage space, the gaussian
(mixture of gaussian)  model is a much more 
compact representation of the data. 

Gaussian Models
Disadvantages:

The mixture of Gaussian model is significantly more 
expensive to train than the histogram models;

It took 24 hours to train both skin and non-skin 
mixture of gaussian models using 10 Alpha 
workstations in parallel. In contrast, the histogram 
models could be constructed in a matter of minutes 
on a single workstation; 

The mixture model is also slower to use during 
classification since all of the Gaussians must be 
evaluated in computing the probability of a single 
color value; 
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Adult Image Detector “Funny Mirrors”

ALIVE

http://vismod.www.media.mit.edu/cgi-bin/tr_pagemaker (TR 257)

ALIVE

Conclusions
Color distributions for skin and non-skin pixel classes 
learned from web images can be used as an accurate 
pixel-wise skin detector;

The key is the use of a very large labeled dataset to 
capture the effects of the unconstrained imaging 
environment represented by web photos; 

Visualization studies show a surprising degree of 
separability in the skin and non-skin color distributions;

They also reveal that the general distribution of color 
in web images is strongly biased by the presence of 
skin pixels.

Conclusions
One possible advantage of using a large dataset is that 
simple learning rules may give good performance;

A pixel-wise skin detector can be used to detect images 
containing naked people, which tend to produce large 
connected regions of skin; 

It is shown that a detection rate of 88% can be achieved 
with a false alarm rate of 11.3%, using a seven element 
feature vector and a neural network classifier;

This performance is comparable to systems which use 
more elaborate and slower spatial image analysis;

The results suggest that skin color is a very powerful cue 
for detecting people in unconstrained imagery.


