Color and Image Statistics

Today's Plan

- First part: Recap Last Lecture
 - how positions in the image relate to 3-d positions in the world.

- Second part:
 - how image intensities relate to surface and lighting properties in the world.

- Third part: Color and Image Statistics
 - Object Detection using color models

Last Time

- Pinhole camera models the geometry of perspective projection
- Lenses make it work in practice
 - Refraction: Snell's law
 - Thin Lens Law
 - Image creation and changes in:
 - Focal length
 - Aperture
 - Focus distance ...
- Projections
 - Perspective Projection
 - Non-linear projection
 - Pinhole, Camera
 - Weak Perspective Projection – linear
 - Orthographic – models telephoto lens

Lenses

- gather more light!
- But need to be focused

Pinhole camera model

- Pinhole model:
 - Captures pencil of rays – all rays through a single point
 - The point is called Center of Projection (COP)
 - The image is formed on the Image Plane
 - Effective focal length \(f \) is distance from COP to Image Plane

The Thin Lens Law

\[
\frac{1}{z} + \frac{1}{Z} = \frac{1}{f}
\]
Dimensionality Reduction Machine (3D to 2D)

3D world

2D image

Point of observation

- What have we lost?
 - Angles
 - Distances (lengths)

Funny things happen...

Parallel lines aren’t...

...but humans adopt!

Müller-Lyer Illusion

We don’t make measurements in the image plane

http://www.michaelbach.de/ot/sze_muelue/index.html

Perspective projection

- Abstract camera model - box with a small hole in it
- In an ideal pinhole camera everything is in focus

The equation of projection

Perspective Projection

Similar triangles

\[x = -X \frac{f}{Z} \]
The equation of projection

- **Cartesian coordinates:**
 - We have, by similar triangles, that
 \[
 \begin{bmatrix}
 X \\
 Y \\
 Z
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 fX/Z \\
 fY/Z
 \end{bmatrix}
 \]

 - Ignore the third coordinate, and get
 \[
 \begin{bmatrix}
 X \\
 Y
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 fX/Z \\
 fY/Z
 \end{bmatrix}
 \]

Homogeneous coordinates

- **Is this a linear transformation?**
 - no—division by z is nonlinear
- **Trick:** add one more coordinate:
 - Converting from homogeneous coordinates
 - Homogeneous image coordinates
 - Homogeneous scene coordinates
 \[
 \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 \Rightarrow
 \begin{bmatrix}
 x/w \\
 y/w \\
 z/w
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 \Rightarrow
 \begin{bmatrix}
 x/w \\
 y/w \\
 z/w
 \end{bmatrix}
 \]

The camera matrix

- Turn previous expression into homogeneous coordinates
 - HC’s for 3D point are \((X,Y,Z,1)\)
 - HC’s for point in image are \((u,v,w)\)
 \[
 \begin{bmatrix}
 u \\
 v \\
 w
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1/f & 0
 \end{bmatrix}
 \begin{bmatrix}
 X \\
 Y \\
 Z
 \end{bmatrix}
 \]

- Position of the point in the image from HC
 \[
 \begin{bmatrix}
 u \\
 v \\
 w
 \end{bmatrix}
 =
 \begin{bmatrix}
 u \\
 v \\
 1/w
 \end{bmatrix}
 =
 \begin{bmatrix}
 X \\
 Y \\
 fX/Z
 \end{bmatrix}
 \]

Weak perspective

- **Issue**
 - perspective effects, but not over the scale of individual objects
 - collect points into a group at about the same depth, then divide each point by the depth of its group
 - Adv: easy
 - Disadv: wrong

Orthographic Projection

Telescope projection can be modeled by orthographic projection

\[
\begin{bmatrix}
X \\
Y
\end{bmatrix}
= \text{const} \cdot X
\]

Marc Pollefeys

Marc Pollefeys

Marc Pollefeys
Orthographic Projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite
- Also called “parallel projection”
- What’s the projection matrix?

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\Rightarrow (x, y)
\]

Projection Summary:

1. Perspective
 \[x = X \frac{f}{Z} \quad y = Y \frac{f}{Z}\]
2. Weak perspective
 \[x = \text{const} \quad X \quad y = \text{const} \quad Y\]
3. Orthographic
 \[x = X \quad y = Y\]

Today’s Plan

- First part:
 - how positions in the image relate to 3-d positions in the world.
- Second part:
 - how image intensities relate to surface and lighting properties in the world.
- Third part:
 - Color Spaces
 - Object Detection using color models

Radiometry

- Relationship between the world and its image
- Scene Radiance
 - Amount of light radiating from a surface point
- Image Irradiance
 - Amount of light incident at an image point

Radiance, \(L \)

- Amount of light radiated from a surface into a given solid angle per unit area (watts per square meter per steradian).
- Note: the area is the foreshortened area, as seen from the direction that the light is being emitted.
- Informally, radiance tells you the “brightness”.

Irradiance, \(E \)

- Light power per unit area (watts per square meter) incident on a surface.
- The units tell you what to integrate over to find the energy impinging on a given area.
- \(E \) times pixel area, times exposure time gives the pixel intensity out (for linear sensor response)
Image irradiance/scene radiance relationship

- The definition of scene radiance is constructed so that image irradiance is proportional to scene radiance.

\[
E = \frac{L \pi (d/4)^2}{\cos^4(\alpha)}
\]

Derivation

\[
\frac{\delta P}{\delta I} = L \cos^2(\alpha) \left(\frac{n}{f \cos(\alpha)} \right) \frac{\pi (d/2)^2}{\cos^4(\alpha)}
\]

\[
= \frac{L \pi}{4} \cos^4(\alpha) \left(\frac{d}{f} \right)^2
\]

Color Spaces

Different choices for color spaces
- RGB
- Normalized RGB
- HIS, HSV, HSL
 - Fleck HSV
- TSL
- YCrCb
- Perceptually uniform colors
 - CIELAB, CIELUV
- Others
 - YES, YUV, YIQ, CIE-xyz

RGB – Red, Green, Blue
- Most common color space used to represent images.
- Was developed with CRT as an additive color space
- [1] – Rehg and Jones used this color space to study the separability of the color space
Normalized RGB – rg space

\[r = \frac{R}{R+G+B}, \quad g = \frac{G}{R+G+B}, \quad b = \frac{B}{R+G+B} \]

- 2D color space as ‘b’ component is redundant
 \[r + g + b = 1 \]
- For matte surfaces (ignoring ambient light):
 - Normalized RGB is invariant to changes of surface orientation relatively to the light source
 [Skarbek and Koschan 1994]

HSV, HSI, HSL
(hue, saturation, value/intensity/luminance)

\[H = \frac{1}{\pi} \arcsin \left(\frac{\sqrt{(R-G)^2 + (G-B)^2}}{\sqrt{4R G + 4G B + 4B R}} \right) \]
\[S = 1 - \frac{\max(R, G, B)}{R + G + B} \]
\[V = \frac{1}{3} (R + G + B) \]

- High cost of conversion
- Based on intuitive values
- Invariant to highlight at white light sources
- Pixel with large and small intensities are discarded as HS becomes unstable.
- Can be 2D by removing the illumination component

Y Cr Cb

\[Y = 0.299R + 0.587G + 0.114B \]
\[C_r = R - Y \]
\[C_b = B - Y \]

- YCrCb is an encoded nonlinear RGB signal, commonly used by European television studios and for image compression work.
- Y – Luminance component,
- C – Chrominance

Color Models for Object Detection

- Example: Skin Color Tracker

Skin color detection

- Are Skin and Non-skin colors separable?
 - Illumination changes over time.
 - Skin tones vary dramatically within and identical image across individuals.
 - Different cameras have different output for the
 - Movement of objects cause blurring of colors.
 - Ambient light, shadows change the apparent color of the image.
- What color space should we use?
- How should the color distribution be modelled?

Color Models

- Desired Properties:
 - Increased separability between skin and non skin classes
 - Decreased separability among skin tones
 - Stability of color space (at extreme values)
 - Cost of conversion for real time applications
- Multiple choices for color spaces:
 - Stability of color space (at extreme values)
 - Keeping the Illumination component – 2D color space vs. 3D color space
- Multiple choices of color distribution model
Perceptually uniform colors

- "skin color" is not a physical property of an object, rather a perceptual phenomenon and therefore a subjective human concept.
- Color representation similar to the color sensitivity of human vision system should
- Complex transformation functions from and to RGB space, demanding far more computation than most other color spaces

General Color Model

Observations:
1. Most colors fall on or near the gray line;
2. Black and white are by far the most frequent colors, with white occurring slightly more frequently;
3. There is a marked skew in the distribution toward the red corner of the color cube.

Non-Skin Pixel Distribution

Skin Pixel Distribution

Skin and Non-skin Color Distribution

Results from Rehg & Jones

- Used 18,696 images to build a general color model.
- Density is concentrated around the gray line and is more sharply peaked at white than black.
- Most colors fall on or near the gray line.
- Black and white are by far the most frequent colors, with white occurring slightly more frequently.
- There is a marked skew in the distribution toward the red corner of the color cube.
- 77% of the possible 24 bit RGB colors are never encountered (i.e. the histogram is mostly empty).
- 52% of web images have people in them.
Modeling the color distribution

- **Non parametric** – Estimate skin color distribution from skin training data without deriving an explicit model of the skin.
 - Look up table or Histogram Model
- **Parametric** – Deriving a parametric model from skin training set
 - Gaussian Model

Histogram Color Models

- Images are organized in two sets:
 - Generic Training Set:
 - Used to compute a general histogram density;
 - Classifier Training Set:
 - Used to build the skin and non-skin models;
 - Manually separated into subsets containing skin and not containing skin;
 - Skin pixels are manually labeled;

Histogram/Look-Up Table

- Color space is quantized into a number of bins, where each bin corresponds to a color range
- Bins, forming a 3D histogram are referred to as the lookup table (LUT).
- Each bin stores the number of times a particular RGB color, \(x \), occurred in the training skin samples

Skin Nomalized Histogram/Look-Up Table

- Likelihood that the RGB color, \(x \), will correspond to skin
 - normalizing the histogram counts
 \[p(\{\text{skin}\}) = \frac{\text{value of the histogram bin corresponding to color vector } x}{\text{sum of all histogram bin values}} \]
 - a probability of observing color \(x \), knowing that we see a skin pixel.
- Probability of encountering skin pixels
 \[p(\text{skin}) = \frac{\text{total number of skin pixels}}{\text{total number of pixels}} \]

Non-Skin Nomalized Histogram

- Likelihood that the RGB color, \(x \), will correspond to skin
 - normalizing the histogram counts
 \[p(\{\neg \text{skin}\}) = \frac{\text{value of the histogram bin corresponding to color vector } x}{\text{sum of all histogram bin values}} \]
 - a probability of observing color \(x \), knowing that we see a non-skin pixel.
- Probability of encountering non-skin pixels
 \[p(\neg \text{skin}) = \frac{\text{total number of non-skin pixels}}{\text{total number of pixels}} \]

Skin Detection Using Color Models

- Given skin and non-skin histogram models, we can construct a skin pixel classifier
- Classifiers:
 - Maximum Likelihood Classifier
 - Bayes Classifier
- Skin classifier is useful in:
 - Detection and recognition of faces and figures;
 - Image indexing and retrieval
Bayesian Rule Classification
- Given: \(p(x|\text{skin}) \) and \(p(x|\text{non-skin}) \)
- Interested in finding the probability that a particular pixel belongs to skin class given its RGB value, \(x \)
- Probability of skin given a pixel’s RGB value, \(x \):

\[
p(x|\text{skin}) = \frac{p(x|\text{skin})p(\text{skin})}{p(x|\text{skin})p(\text{skin}) + p(x|\text{non-skin})p(\text{non-skin})} > 5
\]

Maximum Likelihood Classification
- A skin pixel classifier is derived through the standard likelihood ratio approach:

\[
\frac{P(x|\text{skin})}{P(x|\text{non-skin})} \geq \Theta
\]

Deriving ML from MAP
(max. likelihood from max. a posteriori)
\[
p(x|\text{skin}) = \frac{p(x|\text{skin})p(\text{skin})}{p(x|\text{skin})p(\text{skin}) + p(x|\text{non-skin})p(\text{non-skin})}
\]
\[
p(x|\text{non-skin}) = \frac{p(x|\text{non-skin})p(\text{non-skin})}{p(x|\text{skin})p(\text{skin}) + p(x|\text{non-skin})p(\text{non-skin})}
\]
\[
p(x|\text{skin}) > \Theta, \quad \Theta = \frac{1}{1 + \frac{p(x|\text{non-skin})}{p(x|\text{skin})}}
\]

Histogram-based Skin Classifier
- Qualitative observations:
 - \(\Theta = 0.4 \):
 - The classifier does a good job of detecting skin in most examples;
 - In particular, the skin labels form dense sets whose shape often resembles that of the true skin pixels;
 - The detector tends to fail on highly saturated or shadowed skin;
 - The performance of the skin classifier is surprisingly good considering the unconstrained nature of Web images;

- More qualitative observations:
 - The example photos also show the performance of the detector on non-skin pixels.
 - In photos such as the house (lower right) or flowers (upper right) the false detections are sparse and scattered.
 - More problematic are images with wood or copper-colored metal such as the kitchen scene (upper left) or railroad tracks (lower left).
 - These photos contain colors which often occur in the skin model and are difficult to discriminate reliably.
 - This results in fairly dense sets of false positives.
Remarkable success of recognition methods using histograms of local image measurements:
- [Swain & Ballard 1991] - Color histograms
- [Schiele & Crowley 1996] - Receptive field histograms
- [Lowe 1999] - Localized orientation histograms (SIFT)
- [Leung & Malik 2001] - Texton histograms
- [Belongie et al. 2002] - Shape context
- [Dalal & Triggs 2005] - Dense orientation histograms

Likely explanation: Histograms are robust to image variations such as limited geometric transformations and object class variability.

More quantitative observations:
- The performance of the skin classifier is surprisingly good considering the unconstrained nature of Web images;
- The best classifier (size 32) can detect roughly 80% of skin pixels with a false positive rate of 8.5%, or 90% correct detections with 14.2% false positives;
- Its equal error rate is 88%.

Non-Parametric Models

- Advantages of non-parametric methods:
 - they are fast in training and usage:
 - use of the histogram model results in a fast classifier since only two table lookups are required to compute the probability of skin.
 - they are theoretically independent to the shape the color skin distribution
- Disadvantages:
 - large storage space required and
 - inability to interpolate or generalize the training data
 - performance directly depends on the representativeness of the training images set.

Parametric Models

- Compact skin model representation
- Can generalize and interpolate the training data
- Models:
 - Single Gaussian Model for Skin
 - Mixture of Gaussians

Gaussian Model

Two separate gaussian models (or mixtures of gaussians) can be trained for the skin and non-skin classes;

- Gaussian Model:
 \[x = \begin{bmatrix} r \\ g \\ b \end{bmatrix}, \text{ mean } \mu = \frac{1}{N} \sum_{i=1}^{N} x_i, \text{ covariance } \Sigma = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T, \text{ D} = \begin{bmatrix} x_1 - \mu & \cdots & x_N - \mu \end{bmatrix} \]

\[p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)} \]

Skin & Non-skin Color Gaussian Model

Skin Model:
- Conditional Density:
 \[p(x | \text{skin}) = \frac{1}{(2\pi)^{d/2} |\Sigma_{\text{skin}}|^{1/2}} e^{-\frac{1}{2} (x - \mu_{\text{skin}})^T \Sigma_{\text{skin}}^{-1} (x - \mu_{\text{skin}})} \]

Non-skin Model:
- Conditional Density:
 \[p(x | \text{non-skin}) = \frac{1}{(2\pi)^{d/2} |\Sigma_{\text{non-skin}}|^{1/2}} e^{-\frac{1}{2} (x - \mu_{\text{non-skin}})^T \Sigma_{\text{non-skin}}^{-1} (x - \mu_{\text{non-skin}})} \]
Classification

- **Bayes Rule Classification – Maximum A Posteriori**
 \[
 p(\text{skin}|x) = \frac{p(x|\text{skin}) p(\text{skin})}{p(x|\text{skin}) p(\text{skin}) + p(x|\text{non-skin}) p(\text{non-skin})}
 \]

- **Maximum Likelihood**
 \[
 \frac{p(\text{skin}|x)}{p(\text{non-skin}|x)} = \frac{p(x|\text{skin})}{p(x|\text{non-skin})} \geq \Theta
 \]

Mixture of Gaussian Model

Skin/Non-skin pixel color of have complicated distributions that are not easily described by a single gaussian each.

Gaussian Models

Advantages:
- One advantage of gaussian model (or mixture models) is that they can be made to generalize well on small amounts of training data;
- From the standpoint of storage space, the gaussian (mixture of gaussian) model is a much more compact representation of the data.

Disadvantages:
- The mixture of Gaussian model is significantly more expensive to train than the histogram models;
- It took 24 hours to train both skin and non-skin mixture of gaussian models using 10 Alpha workstations in parallel. In contrast, the histogram models could be constructed in a matter of minutes on a single workstation;
- The mixture model is also slower to use during classification since all of the Gaussians must be evaluated in computing the probability of a single color value;
Conclusions

- Color distributions for skin and non-skin pixel classes learned from web images can be used as an accurate pixel-wise skin detector;
- The key is the use of a very large labeled dataset to capture the effects of the unconstrained imaging environment represented by web photos;
- Visualization studies show a surprising degree of separability in the skin and non-skin color distributions;
- They also reveal that the general distribution of color in web images is strongly biased by the presence of skin pixels.

Conclusions

- One possible advantage of using a large dataset is that simple learning rules may give good performance;
- A pixel-wise skin detector can be used to detect images containing naked people, which tend to produce large connected regions of skin;
- It is shown that a detection rate of 88% can be achieved with a false alarm rate of 11.3%, using a seven element feature vector and a neural network classifier;
- This performance is comparable to systems which use more elaborate and slower spatial image analysis;
- The results suggest that skin color is a very powerful cue for detecting people in unconstrained imagery.