CSE 527: Intro. to Computer Vision

www.cs.sunysb.edu/~cse527

Instructor: Prof. M. Alex O. Vasilescu Email: maov@cs.sunysb.edu Phone: 631 632-8457

Office: 1421

Vision

- What does it mean, to see?
 - "to know what is where by looking".
- How to discover from images
 - what is present in the world,
 - where things are,
 - what actions are taking place.

from Marr, 1982

Vision Problems

- Recognize objects
 - people we know
 - things we own
- Locate objects in space
 - u to pick them up
- Track objects in motion
 - catching a baseball
 - $\ensuremath{\,\scriptscriptstyle\square}$ avoiding collisions with cars on the road auto navigation
- Recognize actions
 - walking, running, pushing

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
- building representations of the 3D world from pictures
- automated surveillance (who's doing what)
 - face finding
- movie post-processing
- □ HCI
- Various deep and attractive scientific mysteries
 - how does object recognition work?
- Greater understanding of human vision

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - face finding
 - movie post-processing
 - HCI
- Various deep and attractive scientific mysteries
 - how does object recognition work?
- Greater understanding of human vision

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - face finding
 - movie post-processing
 - HCI
- Various deep and attractive scientific mysteries
 - how does object recognition work?
- Greater understanding of human vision

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - face finding
 - movie post-processing
 - HCI
- Various deep and attractive scientific mysteries
 - how does object recognition work?
- Greater understanding of human vision

http://www.ri.cmu.edu/projects/project_271.html

http://www.ri.cmu.edu/projects/project_320.html

Nintendo Game Boy Camer

 Several million sold (most of any digital camera). Imaging chip is Mitsubishi Electric's "Artificial Retina" CMOS detector.

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - face finding
 - movie post-processing
 - □ HC
- Various deep and attractive scientific mysteries
 - how does object recognition work?
- Greater understanding of human vision

Detect ground plane in video and introduce pictures on them

Insert new objects

Video example: http://break.com/index/ufo-lands-on-guys-desk.html

Video Summary

Black or White

- Face Detection
- Face Localization
- Segmentation
- Face Tracking
- Facial features localization
- Facial features tracking
- Morphing

www.youtube.com/watch?v=ZI9OYMRwN1Q

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - face finding
 - movie post-processing
 - □ HCI
- Various deep and attractive scientific mysteries
 - how does object recognition work?
- Greater understanding of human vision

Game: Decathlete

Decathlete 100m hurdles

Course Outline

- Introduction and Math Review
 - What is Computer Vision?
 - Tutorial on Linear Algebra and Matlab
- PART I: 2D Vision
 - Image Formation
 - Appearance-Based Methods
 - Feature Extraction
 - 2D Shape Models
- PART II: 3D Vision
 - 3D Shape Estimation from Shading, from Motion
 - Surface Reconstruction

PART I: 2D Vision

- Image Formation
 - Cameras, Lenses, and Sensors
 - Color and Image Statistics

PART I: 2D Vision

Appearance-Based Methods

- Statistical Linear Models: PCA, ICA, FLD
- Non-negative Matrix Factorization, Sparse Matrix Factorization
- Statistical Tensor Models: Multilinear PCA, Multilinear ICA
- Person and Activity Recognition

PART I: 2D Vision

- Feature extraction (corners and blobs)
- Representations: Gaussian Pyramids, Laplacian Pyramids, Steerable Pyramids
- Application: face detection

Oriented, multi-scale representation

PART I: 2D Vision

 Active Contours (Snakes) - energy minimization, regularization www.youtube.com/watch?v=5se69vcbqxA

- Statistical Shape Models
- Active Shape Models
- Active Appearance Models
- Kalman Filters
- Particle Filters
- Mean Shift

PART II: 3D Vision

- Estimation of 3D Geometry:
 - Camera calibration, Epipolar Geometry
 - □ Stereo, Multi-View Geometry
 - Shape from Shading
 - Structure from Motion, Optical Flow
 - Surface Reconstruction energy minimization, regularization

General Comments

- Prerequisites:
 - Linear Algebra!!!
 - Some image processing, signal processing is useful, but not required
- Emphasis on programming projects!
 - Building something from scratch (Matlab!)
- Textbooks and Reading material:
 - Computer Vision: A Modern Approach, David Forsyth and Jean Ponce., Prentice Hall, 2003.
 - Robot Vision, Berthold Horn
 - Selected journal articles

Grading

Problem Sets (~6) with lab exercises in Matlab. Problem sets may be discussed, but all written work and coding must be done individually.	40%	60%
One take-home exam.	20%	0%
(Take-home exams may not be discussed.)		
Class Participation	10%	10%
Final Project:	30%	30%
□An original implementation of a new or published idea		
□A detailed empirical evaluation of an existing implementation		
of one or more methods		
□5-10 page report		
Project proposal not longer than two pages must be submitted and approved before the end of March.		

Administrative Stuff

- Late Policy
 - Seven late days total, to be spent wisely
- Cheating
 - Let's not embarrass ourselves
 - All resources must be acknowledged
- Software
 - MATLAB!!!

Internet Resources

- Matlab:
 - University of Colorado Matlab Tutorials
 - A decent collection of Matlab tutorials, including one focusing on image processing.
 - Matlab Image Processing Tutorial
 - A short introduction to the manipulation of images in Matlab, including an introduction to principal components analysis via eigenfaces.
- Computer Vision:
 - Computer Vision Homepage
 - Face Recognition Homepage
 - Face Detection Homepage

Introductions

- Name, year, supervisor
- Why do you want to take this class?
- What are you hoping to learn?