Statistical Linear Models:

 PCAReading: Eigenfaces - online paper
FP pgs. 505-512

Last Time

- Radiometry - Radiance and Irradiance
- Color Spaces
- RGB, nRGB
- HSVII/L
- YCrCb
- Pixel Statistics
- Color Models
- Non-parametric - Histogram Table Look-up
- Parametric - Gaussian Model
- Classification
- Maximum Likelihood
- Skin Color Models

PART I: 2D Vision

- Appearance-Based Methods
- Statistical Linear Models:

Today $\rightarrow \square$ PCA

- ICA, FLD
- Non-negative Matrix Factorization, Sparse Matrix Factorization
- Statistical Tensor Models:
- Multilinear PCA,
- Multilinear ICA
- Person and Activity Recognition

Statistical Modeling

- Statistics: the science of collecting, organizing, and interpreting data.
- Data collection.
- Data analysis - organize \& summarize data to bring out main features and clarify their underlying structure.
- Inference and decision theory - extract relevant info from collected data and use it as a guide for further action.

Definitions

- Individuals (people or things) -- objects described by data.
- Individuals on which an experiment is being performed are known as experimental units, subjects.
- Variables--describe characteristics of an individual.
- Categorical variable - places an individual into a category such as male/female.
- Quantitative variable - measures some characteristic of the individual, such as height, or pixel values in an image.

Data Analysis

- Experimental Units: images
- Observed Data: pixel values in images are directly measurable but rarely of direct interest
- Data Analysis: extracts the relevant information bring out main features and clarify their underlying structure.

Variables

- Response Variables - are directly measurable, they measure the outcome of a study.
- Pixels are response variables that are directly measurable from an image.
- Explanatory Variables, Factors - explain or cause changes in the response variable.
- Pixel values change with scene geometry, illumination location, camera location which are known as the explanatory variables

Explaining Association

An association between two variables x and y can reflect many types of relationships

The question of causation

- A strong relationship between two variables does not always mean that changes in one variable causes changes in the other.
- The relationship between two variables is often influenced by other variables which are lurking in the background.
- The best evidence for causation comes from randomized comparative experiments.
- The observed relationship between two variables may be due to direct causation, common response or confounding.
- Common response refers to the possibility that a change in a lurking variable is causing changes in both our explanatory variable and our response variable
- Confounding refers to the possibility that either the change in our explanatory variable is causing changes in the response variable OR that a change in a lurking variable is causing changes in the response variable.

Apperance Based Models

Models based on the appearance of 3D objects in ordinary images.

- Linear Models
- PCA - Eigenfaces, EigenImages
- FLD - Fisher Linear Discriminant Analysis
- ICA - images are a linear combination of multiliple sources
- Multilinear Models
- Relevant Tensor Math
- MPCA - TensorFaces
- MICA

Statistical Linear Models

- Generative Models:
- Second-order methods
- faithful/accurate data representation - minimal reconstruction (mean-square) error - covariance
- PCA - Principal Component Analysis
- Factor Analysis
- Higher Order Methods
- meaningful representation - higher order statistics
- ICA - Independent Component Analysis
- Descriminant Models:
- FLD - Fisher Linear Descriminant Analysis

Linear Models

Image Representation

Representation

- Find a new basis matrix that results in a compact representation useful for face detection/recognition

Toy Example - Representation Heuristic

- Consider a set of images of N people under the same viewpoint and lighting
- Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 for all images

O2002 by M. Alex O. Vasilescu

Toy Example - Representation Heuristic

- Consider a set of images of N people under the same viewpoint and lighting
- Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 for all images

$\mathbf{i}_{n}=\left[\begin{array}{l}i_{1 n} \\ i_{2 n} \\ i_{3 n}\end{array}\right] \quad$ s.t. $\quad i_{1 n}=i_{3 n}$ and $1 \leq \mathrm{n} \leq \mathrm{N}$
$\mathbf{i}_{n}=i_{1 n}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+i_{2 n}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+i_{3 n}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}i_{1 n} \\ i_{2 n} \\ i_{3 n}\end{array}\right]$
Basis Matrix, B

Toy Example - Representation Heuristic

Consider a set of images of N people under the same viewpoint and lighting
Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 for all images
$\mathbf{i}_{n}=\left[\begin{array}{l}i_{1 n} \\ i_{2 n} \\ i_{3 n}\end{array}\right] \quad$ s.t. $\quad i_{1 n}=i_{3 n}$ and $1 \leq \mathrm{n} \leq \mathrm{N}$

new basis
pixel 1

O 2002 by M. Alex O. Vasilescu

Toy Example-Recognition

- Highly correlated variables were combined
- The new basis (the new axis) are uncorrelated

Toy Example-Recognition

Nearest Neighbor Classifier

- Given an input image representation y (input is also called a probe; representation may be the image itself, \mathbf{i}, or some transformation of the image, ex. c), the NN classifier will assign to y the label associated with the closest image in the training set.
- So if, it happens to be closest to another face it will be assigned $L=1$ (face), otherwise it will be assigned $L=0$ (nonface)
- Euclidean distance:

$$
d=\left\|\mathbf{y}_{L}-\mathbf{y}\right\|^{2}=\sum_{c=1}^{N}\left(y_{L c}-y_{c}\right)^{2}
$$

Principal Component Analysis: Eigenfaces

- Employs second order statistics to compute in a principled way a new basis matrix

PCA: Theory

- Define a new origin as the mean of the data set
- Find the direction of maximum variance in the samples $\left(\mathrm{e}_{1}\right)$ and align it with the first axis ,
- Continue this process with orthogonal directions of decreasing variance, aligning each with the next axis
- Thus, we have a rotation which minimizes the covariance

The Principle Behind

Principal Component Analysis ${ }^{1}$

- Also called: - Hotteling Transform ${ }^{2}$ or the - Karhunen-Loeve Method ${ }^{3}$.
- Find an orthogonal coordinate system such that data is approximated best and the correlation between different axis is minimized.
I.T.Jolliffe; Principle Component Analysis; 1986
R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987
K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946 M.M.Loeve; Probability Theory; 1955

PCA: Goal - Formally Stated

Problem formulation

- Input: $\quad \mathbf{X}=\left[\begin{array}{lll}\mathbf{x}_{1} & \cdots & \mathbf{x}_{N}\end{array}\right]$ points in d-dimensional space
- Solve for: \mathbf{B} dxm basis matrix ($\mathrm{m} \leq \mathrm{d}$)
$\mathbf{C}=\left[\begin{array}{lll}\mathbf{c}_{1} & \cdots & \mathbf{c}_{N}\end{array}\right]=\mathbf{B}^{T}\left[\begin{array}{lll}\mathbf{x}_{1} & \cdots & \mathbf{x}_{N}\end{array}\right]$
and correlation is minimized
(or cov. is diagonalized)
Recall:
- Correlation:

$$
\operatorname{cor}(\mathbf{x}, \mathbf{y})=\frac{\operatorname{cov}(\mathbf{x}, \mathbf{y})}{\sigma_{\mathbf{x}} \sigma_{\mathbf{y}}}
$$

- Sample Covariance:

$$
\operatorname{cov}(\mathbf{x}, \mathbf{y})=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)^{T}
$$

The Sample Covariance Matrix

- Define the covariance (scatter) matrix of the input samples:

$$
\mathbf{S}_{T}=\frac{1}{N-1} \sum_{n=1}^{N}\left(\mathbf{i}_{n}-\boldsymbol{\mu}\right)\left(\mathbf{i}_{n}-\boldsymbol{\mu}\right)^{\mathrm{T}}
$$

(where μ is the sample mean)

$$
\begin{aligned}
& \mathbf{S}_{T}=\frac{1}{N-1}(\mathbf{D}-\mathbf{M})(\mathbf{D}-\mathbf{M})^{\mathrm{T}} \quad \text { where } \quad \mathbf{M}=\left[\begin{array}{lll}
\boldsymbol{\mu} & \cdots & \boldsymbol{\mu}
\end{array}\right] \\
& \mathbf{S}_{T}=\frac{1}{N-1}\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\mathbf{i}_{1}-\mu & \mathbf{i}_{2}-\mu & \cdots & \mathbf{i}_{N}-\mu \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]\left[\begin{array}{ccc}
\leftarrow & \mathbf{i}_{1}-\boldsymbol{\mu} & \rightarrow \\
\leftarrow & \mathbf{i}_{2}-\mu & \rightarrow \\
\vdots \\
\leftarrow & \mathbf{i}_{N}-\mu & \rightarrow
\end{array}\right]
\end{aligned}
$$

PCA: Some Properties of the Covariance/Scatter Matrix

- The covariance matrix \mathbf{S}_{T} is symmetric
- The diagonal contains the variance of each parameter (i.e. element $\mathbf{S}_{\mathbf{T}, \mathrm{i}}$ is the variance in the i'th direction).
- Each element $S_{T, i j}$ is the co-variance between the two directions i and j, represents the level of correlation (i.e. a value of zero indicates that the two dimensions are uncorrelated).

PCA: Goal Revisited

- Look for: B
- Such that:
$\left[\begin{array}{lll}\mathbf{c}_{1} & \cdots & \mathbf{c}_{N}\end{array}\right]=\mathbf{B}^{T}\left[\begin{array}{lll}\mathbf{i}_{1}-\boldsymbol{\mu} & \cdots & \mathbf{i}_{N}-\boldsymbol{\mu}\end{array}\right]$
- correlation is minimized $\longrightarrow \operatorname{cov}(\mathbf{C})$ is diagonal Note that $\operatorname{Cov}(\mathbf{C})$ can be expressed via $\operatorname{Cov}(\mathbf{D})$ and B :

$$
\begin{aligned}
\mathbf{C C}^{\mathrm{T}} & =\mathbf{B}^{\mathrm{T}}(\mathbf{D}-\mathbf{M})(\mathbf{D}-\mathbf{M})^{\mathrm{T}} \mathbf{B} \\
& =\mathbf{B}^{\mathrm{T}} \mathbf{S}_{T} \mathbf{B}
\end{aligned}
$$

Algebraic Derivation of b_{1}

To find b1 maximize var[c1] subject to $\mathbf{b}_{k}^{T} \mathbf{b}_{k}=1$

- Maximize objective function:

$$
L=\mathbf{b}_{1}^{T} \mathbf{S} \mathbf{b}_{1}-\lambda\left(\mathbf{b}_{1}^{T} \mathbf{b}_{1}-1\right)
$$

- Differentiate and set to 0 :

$$
\frac{\partial L}{\partial \mathbf{b}_{1}}=\mathbf{S} \mathbf{b}_{1}-\lambda \mathbf{b}_{1}=0 \quad \Rightarrow \quad(\mathbf{S}-\lambda \mathbf{I}) \mathbf{b}_{1}=0
$$

- Therefore, $\quad \mathbf{b}_{1}$ is an eigenvector of \mathbf{S}

$$
\text { corresponding to eigenvalue } \lambda=\lambda_{1}
$$

Algebraic Derivation of b_{2}

To find the next principal direction maximize $\operatorname{var}\left[c_{2}\right]$ subject to $\operatorname{cov}\left[c_{2}, c_{1}\right]=0$ and $\mathbf{b}_{2}^{T} \mathbf{b}_{2}=1$

- Maximize objective function:

$$
L=\mathbf{b}_{2}^{T} \mathbf{S} \mathbf{b}_{2}-\lambda\left(\mathbf{b}_{2}^{T} \mathbf{b}_{2}-1\right)-\delta\left(\mathbf{b}_{2}^{T} \mathbf{b}_{1}-0\right)
$$

- Differentiate and set to 0 :

$$
\frac{\partial L}{\partial \mathbf{b}_{2}}=\mathbf{S} \mathbf{b}_{2}-\lambda \mathbf{b}_{2}-\delta \mathbf{b}_{1}=0
$$

Algebraic definition of PCs

- Given a sample of N observations on a vector of d variables

$$
\mathbf{x}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{N}
\end{array}\right]^{T}
$$

- Define the $k^{\text {th }}$ principal coefficient of the sample by the linear transformation

$$
c_{k}=\mathbf{b}_{k}^{T} \mathbf{x}=\sum_{i=1}^{d} b_{i k} x_{i}
$$

- where the vector $\mathbf{b}_{k}=\left[b_{1 k}\right.$ $\left.\cdots \quad b_{d k}\right]^{T}$
- Chosen such that $\operatorname{var}\left[c_{k}\right]$ is maximal
- Subject to $\operatorname{cov}\left[c_{k}, c_{l}\right]=0, k>l \geq 1$ and to $\mathbf{b}_{k}^{T} \mathbf{b}_{k}=1$

Algebraic Derivation of b_{1}

- We have maximized

$$
\operatorname{var}\left[c_{1}\right]=\mathbf{b}_{1}^{T} \mathbf{S} \mathbf{b}_{1}=\mathbf{b}_{1}^{T} \lambda_{1} \mathbf{b}_{1}=\lambda_{1}
$$

- So, λ_{1} is the largest eigenvalue of S

Data Loss

- Sample points can be projected via the new $m \times d$ projection matrix $\mathbf{B}_{\text {opt }}$ and can still be reconstructed, but some information will be lost.

Data Loss (cont.)

Data Reduction: Theory

- It can be shown that the mean square error between \mathbf{x}_{i} and its reconstruction using only m principle eigenvectors is given by the expression

$$
\sum_{j=1}^{N} \lambda_{j}-\sum_{j=1}^{m} \lambda_{j}=\sum_{j=m+1}^{N} \lambda_{j}
$$

- Each eigenvalue represents the the total variance in its dimension.
- Throwing away the least significant eigenvectors in $B_{\text {opt }}$ means throwing away the least significant variance information

Singular Value Decomposition

- For a square matrix

$$
\mathbf{C}_{x}=\mathbf{U C}_{y} \mathbf{U T}^{\top}
$$

- Remember that:

$$
\mathbf{C}_{x}=(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T} \equiv \mathbf{D D}^{T}
$$

- then:

$$
\mathrm{D}=\mathbf{U} \tilde{\mathbf{c}}_{y} \mathbf{V}^{\top}
$$

- where $\mathbf{D} \in \mathbb{R}^{d \times N}$ is non-square

SVD: definition

Any real D matrix $d \times N$
Can be decomposed:
$\mathbf{D}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$
where

$$
\mathbf{U}^{\top} \mathbf{U}=\mathbf{V} \mathbf{V}^{\top}=\mathbf{I}
$$

and

$$
\boldsymbol{\Sigma}=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{q}
\end{array}\right]_{q \times q} \quad q=\min (N, \boldsymbol{d})
$$

The λ ' s are called singular values

Data Reduction and SVD

- Set to 0 redundant singular values

- Given the data dimension is m we can solve for the first \boldsymbol{m} vectors of \mathbf{U}
(No need to find all of them)

PCA : Conclusion

- A multi-variant analysis method.

Finds a more "natural" coordinate system for the sample data.

- Allows for data to be removed with minimum loss in reconstruction ability.

PCA for Recognition

Consider the set of images $\mathbf{i}_{n}=\left[\begin{array}{lll}i_{1 n} & i_{2 n} & i_{3 n}\end{array}\right]^{T} \quad$ s.t. $i_{1 n}=i_{3 n}$ and $1 \leq \mathrm{n} \leq \mathrm{N}$
PCA chooses axis in the direction of highest variability of the data
Given a new image, $\mathbf{i}_{\text {new }}$, compute the vector of coefficiente ${ }_{\text {new }}$ associated with the new basis, B

$$
\mathbf{c}_{\text {new }}=\mathbf{B}^{T} \mathbf{i}_{\text {new }} \quad \mathbf{B}^{-1}=\mathbf{B}^{T}
$$

- Next, compare $\mathbf{c}_{\text {new }}$ a reduced dimensionality representation of $i_{\text {new }}$ against all coefficient vectors $\mathbf{c}_{n} 1 \leq n \leq N$
- One possible classifier: nearest-neighbor classifier
pixel 1
2002 by M. Alex O. Vasilescu

PCA-Dimensionality Reduction

Data and Eigenfaces

- Data is composed of 28 faces photographed under same lighting and viewing conditions

- Each image below is a column vector in the basis matrix B

The Covariance Matrix

- Define the covariance (scatter) matrix of the input samples:

$$
\mathbf{S}_{T}=\frac{1}{N-1} \sum_{n=1}^{N}\left(\mathbf{i}_{n}-\boldsymbol{\mu}\right)\left(\mathbf{i}_{n}-\boldsymbol{\mu}\right)^{\mathrm{T}}
$$

(where μ is the sample mean)

EigenImages-Basis Vectors

$0000000000000 ต$

- Each image bellow is a column vector in the basis matrix B
- PCA encodes encodes the variability across images without distinguishing between variability in people, viewpoints and illumination

Face Detection/Recognition

location and scale in an image

PIE Database (Weizmann)

PCA Classifier

- Distance to Face Subspace:

$$
d_{f}(\mathbf{y})=\left\|\mathbf{y}-\mathbf{U}_{f} \mathbf{U}_{f}^{T} \mathbf{y}\right\|^{2}
$$

- Likelihood ratio (LR) test to classify a probe y as face or nonface. Intuitively, we expect $d_{n}(\mathbf{y})>d_{f}(\mathbf{y})$ to suggest that \mathbf{y} is a face.
- The LR for PCA is defined as:

$$
\Delta_{d}=\frac{d_{n}(\mathbf{y})}{d_{f}(\mathbf{y})} \stackrel{L=1}{\stackrel{L=1}{<}} \eta
$$

Face Localization

- Scan and classify using image windows at different positions and scales

- Cluster detections in the space-scale space
- Assign cluster size to the detection confidence

Face Detection and Localization

