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Statistical Linear Models:
PCA

Reading: Eigenfaces – online paper
FP pgs. 505-512

Last Time
Radiometry – Radiance and Irradiance
Color Spaces

RGB, nRGB
HSV/I/L
YCrCb

Pixel Statistics
Color Models

Non-parametric – Histogram Table Look-up
Parametric – Gaussian Model

Classification
Maximum Likelihood

Skin Color Models

PART I: 2D Vision
Appearance-Based Methods

Statistical Linear Models:
PCA
ICA, FLD
Non-negative Matrix Factorization, Sparse Matrix Factorization

Statistical Tensor Models:
Multilinear PCA,
Multilinear ICA

Person and Activity Recognition

Today 

Statistical Modeling
Statistics: the science of collecting, organizing, 
and interpreting data.

Data collection.
Data analysis - organize & summarize data to bring 
out main features and clarify their underlying 
structure.
Inference and decision theory – extract relevant info 
from collected data and use it as 
a guide for further action.
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Data Collection
Population: the entire group of individuals 
that we want information about.
Sample: a representative part of the 
population that we actually examine in order to 
gather information.
Sample size: number of 
observations/individuals in a sample.
Statistical inference: to make an inference 
about a population based on the information 
contained in a sample.

Definitions
Individuals (people or things) -- objects 
described by data. 
Individuals on which an experiment is being 
performed are known as experimental units, 
subjects.
Variables--describe characteristics of an 
individual.

Categorical variable – places an individual into a 
category such as male/female.

Quantitative variable – measures some characteristic 
of the individual, such as height, or pixel values in an 
image.
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Data Analysis
Experimental Units: images
Observed Data: pixel values in images are directly 
measurable but rarely of direct interest
Data Analysis: extracts the relevant information
bring out main features and clarify their underlying 
structure.

Variables
Response Variables – are directly measurable, 
they measure the outcome of a study. 

Pixels are response variables that are directly 
measurable from an image.

Explanatory Variables, Factors – explain or 
cause changes in the response variable. 

Pixel values change with scene geometry, 
illumination location, camera location which are 
known as the explanatory variables 

Response vs. Explanatory Variables
Pixels (response variables, directly measurable from 
data) change with changes in view and illumination, 
the explanatory variables (not directly measurable but 
of actual interest).

Explaining Association

An association between two variables x and y can reflect many 
types of relationships

association causality

The question of causation
A strong relationship between two variables does not always 
mean that changes in one variable causes changes in the 
other.
The relationship between two variables is often influenced by 
other variables which are lurking in the background.
The best evidence for causation comes from randomized 
comparative experiments.

The observed relationship between two variables may be due 
to direct causation, common response or confounding. 
Common response refers to the possibility that a change in 
a lurking variable is causing changes in both our explanatory 
variable and our response variable 
Confounding refers to the possibility that either the change in 
our explanatory variable is causing changes in the response 
variable OR that a change in a lurking variable is causing 
changes in the response variable.

Apperance Based Models
Models based on the appearance of  3D objects in 
ordinary images.

Linear Models
PCA – Eigenfaces, EigenImages
FLD – Fisher Linear Discriminant Analysis
ICA – images are a linear combination of multiliple sources

Multilinear Models 
Relevant Tensor Math
MPCA – TensorFaces
MICA

© 2002 by M. Alex O. Vasilescu
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Statistical Linear Models
Generative Models:

Second-order methods
faithful/accurate data representation - minimal 
reconstruction (mean-square) error 

covariance
PCA – Principal Component Analysis
Factor Analysis

Higher Order Methods
meaningful representation

higher order statistics
ICA – Independent Component Analysis

Descriminant Models:
FLD – Fisher Linear Descriminant Analysis

Linear Models

1×ℜ∈ kri

An image is a point in               dimensional space

Images

1 ×ℜ kr

rkI ×ℜ∈ pixel 1
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Image – experimental unit, multivariate function
Pixel – response variable

Image Representation
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pixel value axis representing pixel 1

Image Representation

..
..

















































=

kri

i

i

M
OM

L
2

1

10

10

001

Basis Matrix, B 

vector of coefficients, c
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Representation
Find a new basis matrix that results in a 
compact representation useful for face 
detection/recognition
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Toy Example - Representation Heuristic
Consider a set of images of N people under the same viewpoint and 
lighting
Each image is made up of 3 pixels and pixel 1 has the same value as 
pixel 3 for all images

pixel 1

pixel 3
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Toy Example - Representation Heuristic
Consider a set of images of N people under the same viewpoint and 
lighting
Each image is made up of 3 pixels and pixel 1 has the same value as 
pixel 3 for all images
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Basis Matrix, B 

Toy Example - Representation Heuristic
Consider a set of images of N people under the same viewpoint and 
lighting
Each image is made up of 3 pixels and pixel 1 has the same value as 
pixel 3 for all images
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New Basis Matrix, B 

new basis

Old Basis

Highly correlated variables were combined
The new basis (the new axis) are uncorrelated

Toy Example-Recognition
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Toy Example-Recognition
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D,  data  matrix C, coefficient matrix

• Next, compare           a reduced dimensionality 
representation of           against all coefficient 
vectors                              

•One possible classifier: nearest-neighbor classifier

newc
newi
Nnn ≤≤1   c

Solve for and store the coefficient matrix C:

Given a new image, inew :

Nearest Neighbor Classifier
Given an input image representation y (input is also 
called a probe; representation may be the image itself, 
i, or some transformation of the image, ex. c), the NN 
classifier will assign to y the label associated with the 
closest image in the training set. 
So if, it happens to be closest to another face it will be 
assigned L=1 (face), otherwise it will be assigned L=0 
(nonface) 
Euclidean distance:

( )2
1

2

cLcL yyd
N

c
−= ∑−=

=
yy
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Principal Component Analysis:
Eigenfaces

• Employs second order statistics to 
compute in a principled way a new basis 
matrix

The Principle Behind 
Principal Component Analysis1

Also called: - Hotteling Transform2 or the             
- Karhunen-Loeve Method 3.

Find an orthogonal coordinate system such that 
data is approximated best and the correlation 
between different axis is minimized.

1 I.T.Jolliffe; Principle Component Analysis; 1986
2 R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987
3 K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946

M.M.Loeve; Probability Theory; 1955

PCA: Theory

Define a new origin as the mean of the data set

Find the direction of maximum variance in the samples (e1) and align it with 
the first axis , 

Continue this process with orthogonal directions of decreasing variance, 
aligning each with the next axis 

Thus, we have a rotation which minimizes the covariance

x1

x2

x1

x2

e2

e2

PCA: Goal - Formally Stated
Problem formulation

Input: points in d-dimensional space
Solve for: B dxm basis matrix (m≤d)

:

...             
and correlation is minimized 

(or cov. is diagonalized)
Recall:

Correlation:

Sample Covariance:
( )( )Txx

N

iN
µxµxyx, −−

−
= ∑

=11
1)cov(

yx

yx,yx,
σσ

)cov()(cor =

[ ] [ ]NT
N xxBccC LL 11 ==

[ ]NxxX L1=

The Sample Covariance MatrixThe Sample Covariance Matrix
Define the covariance (scatter) matrix of the input 
samples:

(where µ is the sample mean)
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PCA: Some Properties of the 
Covariance/Scatter Matrix
PCA: Some Properties of the 
Covariance/Scatter Matrix

The covariance matrix ST is symmetric

The diagonal contains the variance of each parameter 
(i.e. element ST,ii is the variance in the i’th direction).

Each element ST,ij is the co-variance between the two 
directions i and j, represents the level of correlation 
(i.e. a value of zero indicates that the two dimensions are 
uncorrelated).
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PCA: Goal Revisited
Look for: B
Such that:

correlation is minimized         cov(C) is diagonal

Note that Cov(C) can be expressed via Cov(D) and B :

BSB
BMDMDBCC

T
T

TTT ))((
=

−−=

[ ] [ ]µiµiBcc −−= N
T

N LL 11

Algebraic definition of PCs
Given a sample of N observations on a vector of d
variables

Define the kth principal coefficient of the sample by the 
linear transformation

where the vector

Chosen such that                        is maximal

Subject to                                          and to

[ ]TNxx L1=x

∑
=

==
d

i
iik

T
kk xbc

1
xb

[ ]Tdkkk bb L1=b

[ ]kcvar

[ ] 1,0,cov ≥>= lkcc lk 1=k
T
kbb

Algebraic Derivation of b1

1=k
T
kbbTo find b1 maximize var[c1] subject to

Maximize objective function:

Differentiate and set to 0:

Therefore,

( )11111 −−= bbSbb TTL λ

011
1

=−=
∂
∂ bSb
b

λL ( ) 01 =−⇒ bIS λ

is an eigenvector of

corresponding to eigenvalue
1b S

1λλ =

Algebraic Derivation of b1

We have maximized

So,       is the largest eigenvalue of S   

[ ] 1111111var λλ === bbSbb TTc

1λ

To find the next principal direction maximize 
var[c2] subject to cov[c2,c1]=0  and 
Maximize objective function:

Differentiate and set to 0:

Algebraic Derivation of b2

122 =bbT

( ) ( )01 122222 −−−−= bbbbSbb TTTL δλ

0122
2

=−−=
∂
∂ bbSb
b

δλL

Data Loss
Sample points can be projected via the new m×d
projection matrix Bopt and can still be 
reconstructed, but some information will be lost.

x1

x2

2D data 1D data

x1Bopt
T(xi - µ)

x1

x2

2D data

Bci + µ
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Data Loss (cont.)

It can be shown that the mean square error 
between xi and its reconstruction using only m 
principle eigenvectors is given by the expression 
:

∑∑∑
+===

=−
N

mj
j

m

j
j

N

j
j

111

λλλ

Data Reduction: Theory

Each eigenvalue represents the the total 
variance in its dimension.

Throwing away the least significant eigenvectors 
in Bopt means throwing away the least significant 
variance information

where                     is non-square

Singular Value Decomposition

For a square matrix 

( )( ) TT
x DDµXµXC ≡−−=

T
yx UUCC =

T
y VCUD ~

=

NdIR ×∈D

Remember that: 

then:

SVD: definition
Any real            matrix
Can be decomposed: 
where 

and

The     ‘s   are called singular values 

Nd ×D
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Data Reduction and SVD
Set to 0 redundant singular values

Given the data dimension is       we can solve 
for the first     vectors of     

(No need to find all of them)
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PCA : Conclusion
A multi-variant analysis method.
Finds a more “natural” coordinate system for the 
sample data.
Allows for data to be removed with minimum 
loss in reconstruction ability.
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PCA-Dimensionality Reduction
Consider a set of images, & each image is made up of 3 pixels and pixel 1 has the same 
value as pixel 3 for all images

PCA chooses axis in the direction of highest variability of the data, maximum scatter

pixel 1

pixel 3

pi
xe

l 2

1st axis

2nd axis

[ ] Nn1   and .s.t 31321 ≤≤== nn
T

nnnn iiiiii

• Each image       is now represented by a  vector of 
coefficients          in a reduced dimensionality space.
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• B minimize the following function

PCA for Recognition

Consider the set of images

PCA chooses axis in the direction of highest variability of the data

Given a new image,          ,  compute the vector of coefficients           
associated with the new basis, B

T
new

T
new BBiBc == −1

[ ] Nn1   and .s.t 31321 ≤≤== nn
T

nnnn iiiiii

pixel 1

pixel 3

pi
xe

l 2

1st axis

2nd axis
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newi

• Next, compare           a reduced dimensionality 
representation of           against all coefficient 
vectors                              

•One possible classifier: nearest-neighbor 
classifier

newc
newi
Nnn ≤≤1   c
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newc

Data and Eigenfaces

Each image below is a column vector in the basis 
matrix B

• Data is composed of 28 faces photographed under same 
lighting and viewing conditions

© 2002 by M. Alex O. Vasilescu
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Principal components (eigenvectors) of image 
ensemble

Eigenvectors are typically computed using the Singular 
Value Decomposition (SVD) algorithm

Eigenimages
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Linear Representation:Linear Representation:
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Running Sum: 1 term 3 terms 9 terms 28 terms
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.



9

The Covariance Matrix

Define the covariance (scatter) matrix of the input 
samples:

(where µ is the sample mean)∑
=

−−
−

=
N

n
nnT N 1

T

1
1 µ)µ)(i(iS

+ +

PIE Database (Weizmann)

EigenImages-Basis Vectors

Each image bellow is a column vector in the basis matrix 
B
PCA encodes encodes the variability across
images without distinguishing between variability in 
people, viewpoints and illumination

© 2002 by M. Alex O. Vasilescu

PCA Classifier
Distance to Face Subspace:

Likelihood ratio (LR) test to classify a probe y as face 
or nonface.  Intuitively, we expect  dn (y) > df (y) to 
suggest that y is a face.  
The LR for PCA is defined as:

2
)( yUUyy T

fffd −=

η
<
=

>
=

=∆
0

1

)(
)(

L

L

f

n
d d

d

y

y

PCA for Recognition - EigenImages
Consider a set of images of 2 people under fixed viewpoint  & N lighting condition 
Each image is made up of 2 pixels

1st axis

2nd axis

1st axis

2nd axis

• Reduce dimensionality by throwing away the axis along which the data varies the least
• The coefficient vector associated with the 1st basis vector is used for classifiction
• Possible classifier: Mahalanobis distance
• Each image is represented by one coefficient vector
• Each person is displayed in N images and therefore has N coefficient vectors
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Face Detection/Recognition

location and scale in an image
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• Scan and classify using image windows at different positions and scales

• Cluster detections in the space-scale space
• Assign cluster size to the detection confidence 

Conf.=5

Face Localization Face Detection and Localization

Face examples

Non-face examples

Off-line
training for
multiple scales

Feature Extraction

Classifier


