Statistical Linear Models: PCA

Reading: Eigenfaces – online paper FP pgs. 505-512

Last Time

- Radiometry Radiance and Irradiance
- Color Spaces
 - RGB, nRGB
 - B HSV/I/L
 - YCrCb
- Pixel Statistics
 - Color Models
 - Non-parametric Histogram Table Look-up
 - Parametric Gaussian Model
 - Classification
 - Maximum Likelihood
 - Skin Color Models

PART I: 2D Vision Appearance-Based Methods Statistical Linear Models: PCA ICA, FLD Non-negative Matrix Factorization, Sparse Matrix Factorization Statistical Tensor Models: Multilinear PCA, Multilinear ICA Person and Activity Recognition

Statistical Modeling

- Statistics: the science of collecting, organizing, and interpreting *data*.
 - Data collection.
 - Data analysis organize & summarize data to bring out main features and clarify their underlying structure.
 - Inference and decision theory extract relevant info from collected data and use it as
 - a guide for further action.

Data Collection

- **Population:** the entire group of individuals that we want information about.
- Sample: a *representative* part of the population that we actually examine in order to gather information.
- Sample size: number of observations/individuals in a sample.
- Statistical inference: to make an inference about a population based on the information contained in a sample.

Definitions

- Individuals (people or things) -- objects described by data.
- Individuals on which an experiment is being performed are known as experimental units, subjects.
- Variables--describe characteristics of an individual.
 - Categorical variable places an individual into a category such as male/female.
 - Quantitative variable measures some characteristic of the individual, such as height, or pixel values in an image.

Data Analysis

- Experimental Units: images
- Observed Data: pixel values in images are directly measurable but rarely of direct interest
- Data Analysis: extracts the relevant information bring out main features and clarify their underlying structure.

Variables

- **Response Variables** are directly measurable, they measure the outcome of a study.
- Pixels are response variables that are directly measurable from an image.
- Explanatory Variables, Factors explain or cause changes in the response variable.
 - Pixel values change with scene geometry, illumination location, camera location which are known as the explanatory variables

Response vs. Explanatory Variables

 Pixels (response variables, directly measurable from data) change with changes in view and illumination, the explanatory variables (not directly measurable but of actual interest).

Explaining Association An association between two variables x and y can reflect many types of relationships $\underbrace{association}_{x} \underbrace{causality}_{y} \underbrace{causality}_$

The question of causation

- A strong relationship between two variables does not always mean that changes in one variable causes changes in the other.
- The relationship between two variables is often influenced by other variables which are lurking in the background.
- The best evidence for causation comes from randomized comparative experiments.
- The observed relationship between two variables may be due to direct causation, common response or confounding.
- Common response refers to the possibility that a change in a lurking variable is causing changes in both our explanatory variable and our response variable
- Confounding refers to the possibility that either the change in our explanatory variable is causing changes in the response variable OR that a change in a lurking variable is causing changes in the response variable.

Apperance Based Models

Models based on the appearance of 3D objects in ordinary images.

Linear Models

- PCA Eigenfaces, EigenImages
- FLD Fisher Linear Discriminant Analysis
- ICA images are a linear combination of multiliple sources
- Multilinear Models
 - Relevant Tensor Math
 - MPCA TensorFaces
 - MICA

Principal Component Analysis: Eigenfaces

 Employs second order statistics to compute in a principled way a new basis matrix

The Principle Behind Principal Component Analysis¹

- Also called: Hotteling Transform² or the - Karhunen-Loeve Method ³.
- Find an orthogonal coordinate system such that data is approximated best and the correlation between different axis is minimized.
- I.T.Jolliffe; Principle Component Analysis; 1986
- R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987 K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946
- M.M.Loeve; Probability Theory; 1955

The Sample Covariance Matrix

 Define the covariance (scatter) matrix of the input samples:

$$\mathbf{S}_{T} = \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{i}_{n} - \boldsymbol{\mu}) (\mathbf{i}_{n} - \boldsymbol{\mu})^{\mathrm{T}}$$

(where μ is the sample mean)

$$\mathbf{S}_{T} = \frac{1}{N-1} (\mathbf{D} - \mathbf{M}) (\mathbf{D} - \mathbf{M})^{\mathrm{T}} \text{ where } \mathbf{M} = \begin{bmatrix} \boldsymbol{\mu} & \cdots & \boldsymbol{\mu} \end{bmatrix}$$
$$\mathbf{S}_{T} = \frac{1}{N-1} \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{i}_{1} - \boldsymbol{\mu} & \mathbf{i}_{2} - \boldsymbol{\mu} & \cdots & \mathbf{i}_{N} - \boldsymbol{\mu} \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} \leftarrow & \mathbf{i}_{1} - \boldsymbol{\mu} & \rightarrow \\ \leftarrow & \mathbf{i}_{2} - \boldsymbol{\mu} & \rightarrow \\ \vdots \\ \leftarrow & \mathbf{i}_{N} - \boldsymbol{\mu} & \rightarrow \end{bmatrix}$$

PCA: Some Properties of the Covariance/Scatter Matrix

- The covariance matrix S_T is symmetric
- The diagonal contains the variance of each parameter (i.e. element S_{T,ii} is the variance in the i'th direction).
- Each element S_{T,ij} is the co-variance between the two directions i and j, represents the level of correlation
 (i.e. a value of zero indicates that the two dimensions are uncorrelated).

PCA: Goal Revisited • Look for: B • Such that: $[\mathbf{c}_1 \ \cdots \ \mathbf{c}_N] = \mathbf{B}^T [\mathbf{i}_1 - \mathbf{\mu} \ \cdots \ \mathbf{i}_N - \mathbf{\mu}]$ • correlation is minimized $\longrightarrow \operatorname{cov}(\mathbf{C})$ is diagonal Note that Cov(C) can be expressed via Cov(D) and B : $\mathbf{CC}^T = \mathbf{B}^T (\mathbf{D} - \mathbf{M}) (\mathbf{D} - \mathbf{M})^T \mathbf{B}$ $= \mathbf{B}^T \mathbf{S}_T \mathbf{B}$

Algebraic Derivation of b ₁
To find b1 maximize var[c1] subject to $\mathbf{b}_k^T \mathbf{b}_k = 1$
Maximize objective function:
$L = \mathbf{b}_1^T \mathbf{S} \mathbf{b}_1 - \lambda \left(\mathbf{b}_1^T \mathbf{b}_1 - 1 \right)$
Differentiate and set to 0:
$\frac{\partial L}{\partial \mathbf{b}_1} = \mathbf{S}\mathbf{b}_1 - \lambda \mathbf{b}_1 = 0 \qquad \Rightarrow (\mathbf{S} - \lambda \mathbf{I})\mathbf{b}_1 = 0$
• Therefore, \mathbf{b}_1 is an eigenvector of \mathbf{S}
corresponding to eigenvalue $\lambda = \lambda_1$

Algebraic Derivation of b₂

- To find the next principal direction maximize $var[c_2]$ subject to $cov[c_2, c_1]=0$ and $\mathbf{b}_2^T \mathbf{b}_2 = 1$
- Maximize objective function:

$$L = \mathbf{b}_2^T \mathbf{S} \mathbf{b}_2 - \lambda (\mathbf{b}_2^T \mathbf{b}_2 - 1) - \delta (\mathbf{b}_2^T \mathbf{b}_1 - 0)$$

Differentiate and set to 0:

$$\frac{\partial L}{\partial \mathbf{b}_2} = \mathbf{S}\mathbf{b}_2 - \lambda \mathbf{b}_2 - \delta \mathbf{b}_1 = 0$$

PCA : Conclusion

- A multi-variant analysis method.
- Finds a more "natural" coordinate system for the sample data.
- Allows for data to be removed with minimum loss in reconstruction ability.

Distance to Face Subspace:

 $d_f(\mathbf{y}) = \left\| \mathbf{y} - \mathbf{U}_f \mathbf{U}_f^T \mathbf{y} \right\|^2$

- Likelihood ratio (LR) test to classify a probe y as face or nonface. Intuitively, we expect d_n (y) > d_f (y) to suggest that y is a face.
- The LR for PCA is defined as:

Face Localization

· Scan and classify using image windows at different positions and scales

Cluster detections in the space-scale space
Assign cluster size to the detection confidence

