What is image filtering?

= Modify the pixels in an image based on

. . some function of a local neighborhood of
Image Filtering the pixels. 9

&
Edge Detection -

513 Some function H_H
al5 |1 — z
Reading: —

uChapter 7 and 8, F&P Loecal image data Modified image

Linear Functions

= Simplest: linear filtering.

o Replace each pixel by a linear combination of its T—
neighbors.
= The prescription for the linear combination is convolution mask "
called the “convolution kernel”. \ / e
1053 |
4/5 1 7
117
Local image data Modified image data rap= " gu
gu
Convolution Key properties
= Let | be the image and g be the kernel. The = Linearity:
output of convolving I with g is denoted I*g o filter(l; + 1,) = filter(/;) + filter(/,)
= Shift invariance:
fimn]=I*g= Zl[m —k,n-l]g[k,l] o same behavior regardless of pixel location
! o filter(shift(/)) = shift(filter(/))

= Theoretical result:

o Any linear shift-invariant operator can be
represented as a convolution

Properties in more detail

= Commutative:a*b=b*a

o Conceptually no difference between filter and signal
Associative:a* (b*c)=(a*b)*c

o Often apply several filters one after another: (((a * b;) * b,) * bs)
o This is equivalent to applying one filter: a * (b, * b, * by)
Distributes over addition: a* (b+c)=(a*b)+(a*c)
Scalars factor out: ka *b=a *kb =k (a™* b)

Identity: unit impulse e =1..., 0,0, 1,0, 0, ...],

a*e=a

{eoisrtesy of Christopher Rasmussen)

{eoirbtosy of Christapher Basmussen)

ristopher Rosmussen)

{eoirbtosy of Christapher Basmussen)

{eoisrtesy of Christopher Rasmussen)

{eoirtasy of istapher Dosmussen)

Final Result

Why is I large in some places and small in others? |

(eourtes: ristopher Rasmussen)

Yucky details
= What is the size of the output?
= MATLAB: filter2(g, I, shape)
o shape = ‘full’: output size is sum of sizes of l and g
o shape = ‘same’: output size is same as |
o shape = ‘valid’:output size is of difference sizes for | & g

same valid

Implementation details

= What about near the edge?
o the filter window falls off the edge of the image

o need to extrapolate

o methods:
= clip filter (black)
= wrap around p
= copy edge
= reflect across edge

Source: S. Marschner

Implementation details

= What about near the edge?
o the filter window falls off the edge of the image
o need to extrapolate
o methods (MATLAB):
= clip filter (black): imfilter(f, g, 0)
= wrap around: imfilter(f, g, ‘circular’)
= copy edge: imfilter(f, g, ‘replicate’)
= reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

Linear filtering (warm-up slide)

coefficient
3_ =
-~

0
Pixel offset

original

Linear filtering (warm-up slide)

Linear filtering

Ju—
(=]

coefficient
-~

0
Pixel offset
original

Linear filtering

coefficient
%.o
{98)
-~

0
Pixel offset
original

é 1.0
Q
il
0
. Pixel offset
original Filtered
0|00 (no change)
0/1/0
0/0|0
Shift
% 1.0
S
b=
Q
gl_Y_Y_Y_rY_Y_I_V
0
Pixel offset
original shifted
0|0
0]/0]1
0/0|0
Blurring
=
5 0.3
(T
Pixelooffset
original Blurred (filter
1 11111 applied in both
Box filter: s 11111 dimensions).
11111

Blur examples

8 k:
]
impulse %
3 0.3
original Pixel offset

Blur examples

8 5 2.4
2
impulse =
g 03 | ' |
original Pixelooffset filtered
8 5
edge 4 E 03
S
original Pixel offset

Smoothing with box filter revisited

= Smoothing with an average actually doesn’t
compare at all well with a defocused lens

= Most obvious difference is that a single point of
light viewed in a defocused lens looks like a fuzzy
blob; but the averaging process would give a little
square

D! Forsyth

Smoothing with box filter revisited

= Smoothing with an average actually doesn’t compare at
all well with a defocused lens

= Most obvious difference is that a single point of light
viewed in a defocused lens looks like a fuzzy blob; but
the averaging process would give a little square

= Better idea: to eliminate edge effects, weight
contribution of neighborhood pixels according to their
closeness to the center, like so:

“fuzzy blob”

Gaussian Kernel

1 _E24D
Ga. = e 202
202
A 0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013

- LY 0.022 0.097 0.159 0.097 0.022
. : 0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5,0=1

= Constant factor at front makes volume sum to 1 (can be
ignored, as we should re-normalize weights to sum to 1
in any case)

Choosing kernel width

Source: C. Rasmussen

= Gaussian filters have infinite support, but
discrete filters use finite kernels

0o 0 a
o= 5with 10x10 kernel o =5 with 30x30 kernel

Source: K. Grauman

Gaussian filtering

= A Gaussian kernel gives less weight to pixels further
from the center of the window

1 11211
16121412
11211
H[u, v]

£ [, y]

= This kernel is an approximation of a Gaussian function:

h(u,v) =

27152

Mean vs. Gaussian filtering

Separability example

5]
)
w
w

2D convolution 2 |4 |2
(center location only)

@
[
[

[
Y
r
@

The filter factors 1121 L * nn
intoaproductof 1D |2 |4 |2 | =] 2
filters: T ERE 1
_ I E 1"
Perform convolytlon []]2 [1] G115 = %
along rows:
4 |4 16 bl

Followed by convolution
along the remaining column:

Source: K. Grauman

Example: Smoothing with a

Gaussian

Separability of the Gaussian filter

L exp 20
T

G,(x.y)

2702
x2 1 y?
- “5.2
= | —— exp 20 —— exp 20
Vano P V2ro P

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe

Gaussian filters

= Remove “high-frequency” components from the image
(low-pass filter)
= Convolution with self is another Gaussian

o So can smooth with small-width kernel, repeat, and get same
result as larger-width kernel would have

o Convolving two times with Gaussian kernel of width o is same
as convolving once with kernel of width sqrt(2) o
= Separable kernel
o Factors into product of two 1D Gaussians
o Useful: can convolve all rows, then all columns

o How does this change the computational complexity?
= Linear vs. quadratic in mask size

Source: K. Grauman

Review: Linear filtering

= What are the defining mathematical properties
of a convolution?

= What is the difference between blurring with a
box filter and blurring with a Gaussian?

= What happens when we convolve a Gaussian
with another Gaussian?

= What is separability?

= How does separability affect computational
complexity?

= Salt and pepper
noise: contains
random occurrences
of black and white
pixels

{ = Impulse noise:

Original contains random
occurrences of white
pixels

= Gaussian noise:
variations in intensity
drawn from a
Gaussian normal
distribution

Impulse noise
Source: S. Seitz

Gaussian noise

Reducing Gaussian noise

= Mathematical model: sum of many independent
factors

= Good for small standard deviations

Iestkmsge Meise procass Gaussien £3.4. {"wnite™) ncise:
flryr= fizny} + Mzl gir g} ~ Nije 71 Source: K. Grauman

anl pixel

=2 pinels

Smoothing with larger standard deviations suppresses noise,
but also blurs the image

Reducing salt-and-pepper noise

Alternative idea: Median filtering

3x3 5x5 <7

= What's wrong with the results?

= A median filter operates over a window by
selecting the median intensity in the window

10]15]20
2319027
- " Sort
Median value 33[31]30 l

10 |5hm 0 31 33 90

10f15]20 | Replace
3|27]|27
33|31 (30
= |s median filtering linear?

o No. €=>Not a convolution Source: K. Grauman

2

w3 |

Median filter

= What advantage does median filtering have
over Gaussian filtering?
o Robustness to outliers

filters have width 5 :

........ o INPUT
......... o MEDIAN
MEAN

Source: K. Grauman

Median filter

= MATLAB: medfilt2(image, [h w])

Source: K. Grauman

Median vs. Gaussian filtering

3x3 5x5 <7

Gaussian

Median & 7

Linear filtering (warm-up slide)

2.0

original

Linear filtering (no change)

2.0
| 1.0
0 0

original Filtered
(no change)

il |

Linear filtering

2.0

0.33

original

(Remember blurring)

Sharpening

2.0
- 0.33
0 0
original Sh@lfpened
original
Sharpening example
- 11.2
8 5 8
2
=)
Q
V_VJ_I—I—I_I_I_V 8
-0.25
original ' Sharpened

(differences are
accentuated; constant
areas are left untouched).

% 0.3
5
Pixelooffset
original Blurred (filter
applied in both
dimensions).
Sharpening
1.7
E
=
g
o
original -0.3 Sh.al.'pcncd
original
Sharpening
0/0]0 111(1
ol2[o| = S[1[1]1 ?
0/0]0 11111

(Note that filter sums to 1)
Original

Source: D. Lowe

Sharpening

o[olo] [N
0[2[0] = t[A[1[1
0/0]0 11101
Original Sharpening filter

- Accentuates differences
with local average

Source: D. Lowe

Sharpening

before after

Unsharp mask filter

I+a(l-1+g)=(1+a)[-al+*g=I*{1+a)e—g)

image blurred unit impulse
image (identity)

<>

unit impulse

Gaussian Laplacian of Gaussian

Sharpening Revisited

= What does blurring take away?

Edge detection

= Goal: Identify sudden

changes (discontinuities)

in an image

o Intuitively, most semantic
and shape information from
the image can be encoded in
the edges

o More compact than pixels

= Ideal: artist’s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe

surface normal discontinuity

a—s— depth discontinuity

surface color discontinuity

illumination discontinuity

= Edges are caused by a variety of factors

Source: Steve Seitz

Characterizing edges

= An edge is a place of rapid change in the image
intensity function

intensity function

image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

Differentiation and convolution

Image gradient
= The gradient of an image: V= [ﬂ ﬂ] = Recall, for 2D = We COL_"d .
— [0z’ Jy function, f(x,y): approximate this as
= The gradient points in the direction of most rapid change in intensity of (f'(x+£) flx y)) o fxp)-f(x,.»)
2 —1lim|) > PCARPORAR i 1. LAV A Nt | LA
. Ox &0 & & ox Ax
|_Vf -0 ! " L =44
vi=l[o3 = This is linear and shift = (which is obviously a
= The gradient direction is given by: invariant, so must be COI’1V0|UtI0n)
g =tan—1 (2,91 the result of a
(55/) convolution. a1

a how does this relate to the direction of the edge? perpendicular
The edge strength is given by the gradient magnitude

P 2 ; 2
IVrl=yGEDH™+&h

Source: D. Forsyth, D. Lowe

Finite difference filters

Finite differences: example

: = Other approximations of derivative filters exist:

-ljo)l 1 1 1

Prewitt: M, = [-1]o]1 ;oM = ol o] o

-Ljofl 1[-1 1

1|1of1 1 2 1

Sobel: M, = [Z]0]2 yOM, = Ol 0f] 0

-1{o]1 -1 [-2 1

Roberts: M, = b

{IRA I T\
= Which one is the gradient in the x-direction
(resp. y-direction)?

Source: K. Grauman

Effects of noise Effects of noise
= Consider a single row or column of the image = Finite difference filters respond strongly to noise
o Image noise results in pixels that look very different

from their neighbors
o Generally, the larger the noise the stronger the

signal
f(z)y | |
i | { response
= What is to be done?

!
L Pl R A PN

0 1200 1400 1600 1RO 2000

o Plotting intensity as a function of position gives a

o w0 40 w0 o

How to compute a derivative?

W0 e 140 1800 Thm 20
Source: D. Forsyth

™o 0 e B0

= Where is the edge?

Effects of noise

= Finite difference filters respond strongly to noise
o Image noise results in pixels that look very different
from their neighbors
o Generally, the larger the noise the stronger the
response
= What is to be done?
o Smoothing the image should help, by forcing pixels
different to their neighbors (=noise pixels?) to look
more like neighbors

Source: D. Forsyth

Solution: smooth first

Sigma =50
. =
f H /
L] 200 ‘00 m ﬂoﬂ 10)0 lm l‘lﬂo 16»'00 13‘00 2000
k]
hood /\
LN
L] 200 400 600 BOO 1000 1200 1400 1600 1800 2000
. o _
hxf Fri : /
I B
L] 200 400 600 800 1000 1200 1400 1600 1800 2000
: :
a g
ﬁ(h* f) i N\
o

200 400 600 800 1000 1200 1400 1600 1800 2000

=

« Where is the edge? = Look for peaks in 755 (/2 * f)

Derivative theorem of convolution
= Differentiation is convolution, and convolution is
associative: d d
—(f*xo)=f*—
dx(f 2=/ R

= This saves us one operation:

W0 M0 600 B0 000 00 T 1800 1800 2000

dx S S S N S S
e Vo e v e e o

@ Source: 8. Seitz

Derivative of Gaussian filter

,/IO
‘//I
‘,W/I' 0 ‘

*[1-1]=

IO (N
"’o‘t‘o’o"“\‘““}}**

Derivative of Gaussian filter

x-direction y-direction

= Which one finds horizontal/vertical edges?

Summary: Filter mask properties

= Filters act as templates
o Highest response for regions that “look the most like
the filter”
o Dot product as correlation

= Smoothing masks
o Values positive
o Sum to 1 — constant regions are unchanged
o Amount of smoothing proportional to mask size

Derivative masks

o Opposite signs used to get high response in regions of
high contrast

o Sum to 0 — no response in constant regions

o High absolute value at points of high contrast

Source: K. Grauman

Tradeoff between smoothing and

localization

1 pixel 3 pixels 7 pixels

= Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: D. Forsyth

Implementation issues

= The gradient magnitude is large along a thick
“trail” or “ridge,” so how do we identify the
actual edge points?

= How do we link the edge points to form curves?

Source: D. Forsyth

Laplacian of Gaussian

= Consider %(h *1)

Sigma= 50
f } J
|
T e R ot v AN MM P a0t (oA
[+] 200 00 &0 BOO 1000 1300 400 1800 800 2000
52 7 ,/\-1 N ! 2
h H o Laplacian of Gaussian
92 = 1 operator

- A I S ke i -
O 200 400 8O0 BO0 1000 1200 1400 1600 1AO0 2000

AT
// \
\
]/
o 00 400 800 BOO 1000 1200 1400 1600 1800 2000

Canvokon

(oh) «

= Where is the edge? = Zero-crossings of bottom graph

2D edge detection filters

Laplacian of Gaussian

N
Gaussian derivative of Gaussian &
2.2 P i
1 et o if
hig(u.v) = e 202 —ho(u.v) V2o () il
2ro? bz i

|

W
vV? isthe Laplacian operator:

a2 a2
Vi =Gt

MATLAB demo

g = fspecial (' gaussi an', 15, 2);

i magesc(Q)

surfl(g)

gcl own = conv2(clown, g, "' sane');

i mgesc(conv2(clown,[-1 1], 'sane'));
i mgesc(conv2(gclown,[-1 1],"'sane'));
dx = conv2(g,[-1 1],"'sane');

i mgesc(conv2(cl own, dx, ' sane'));

Ig = fspecial ('log', 15, 2);

I clowmn = conv2(clown,lg,'sane');

i magesc(| cl own)

i mgesc(clown + .2*| cl own)

Edge finding

We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the
curve (non-maximum suppression). These points should form a curve.
There are then two algorithmic issues: at which point is the maximum,

and where is the next one?
Source: D. Forsyth

Non-maximum suppression

At q, we have a
maximum if the
P value is larger
than those at
. . . both p and at .
i q Interpolate to
Gradient / get these

values.

Source: D. Forsyth

Designing an edge detector

= Criteria for an “optimal” edge detector:

o Good detection: the optimal detector must
minimize the probability of false positives (detecting
spurious edges caused by noise), as well as that of
false negatives (missing real edges)

o Good localization: the edges detected must be as
close as possible to the true edges

o Singl o o o ' .‘. 10ne
point g o m BN Minimize
theni M | o B eedge

n 5 NN

8] | E HEN

Tru Poor robusiness Poor Too many
o noese localization fESpanses

Source: L. Fei-Fei

Predicting the next edge point

Assume the marked
point is an edge point.
Then we construct the

T tangent to the edge
curve (which is normal
to the gradient at that
point) and use this to
predict the next points
(here either r or s).

[]] (8]
Gradien%

8

a

Source: D. Forsyth

Canny edge detector

= This is probably the most widely used edge
detector in computer vision

= Theoretical model: step-edges corrupted by
additive Gaussian noise

= Canny has shown that the first derivative of the
Gaussian closely approximates the operator
that optimizes the product of signal-to-noise
ratio and localization

J. Canny, A Computational Approach To Edge Detection, |EEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

Canny edge detector

1. Filter image with derivative of Gaussian
Find magnitude and orientation of gradient
3. Non-maximum suppression:
o Thin multi-pixel wide “ridges” down to single pixel
width
4. Linking and thresholding (hysteresis):
o Define two thresholds: low and high

o Use the high threshold to start edge curves and the
low threshold to continue them

N

= MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei

The Canny edge detector

W

= original image (Lena)

The Canny edge detector

norm of the gradient

The Canny edge detector

thinning

(non-maximum suppression)

Effect of o (Gaussian kernel spread/size)

original Canny with 0 = 1 Canny with 0 = 2

The choice of ¢ depends on desired behavior
o large o detects large scale edges
o small o detects fine features

Source: S. Seitz

The Canny edge detector

thresholding

Hysteresis thresholding
Nlusul

original image

joE =

:

high threshold low threshold
(strong edges) (weak edges)

hysteresis threshold

Source: L. Fei-Fei

Edge detection is just the beginning...

image human segmentation gradient magnitude

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbe
nch/

