
1

Image Filtering
&

Edge Detection
Reading:

Chapter 7 and 8, F&P

What is image filtering?

Modify the pixels in an image based on
some function of a local neighborhood of
the pixels.

Some function

Linear Functions
Simplest: linear filtering.

Replace each pixel by a linear combination of its
neighbors.

The prescription for the linear combination is
called the “convolution kernel”.

Let I be the image and g be the kernel. The
output of convolving I with g is denoted

Convolution

∑ −−=∗=
lk

lklnkmnm
,

],[],[],[gIgIf

I

g∗I

Key properties
Linearity:

filter(I1 + I2) = filter(I1) + filter(I2)
Shift invariance:

same behavior regardless of pixel location
filter(shift(I)) = shift(filter(I))

Theoretical result:
Any linear shift-invariant operator can be
represented as a convolution

2

Properties in more detail
Commutative: a * b = b * a

Conceptually no difference between filter and signal
Associative: a * (b * c) = (a * b) * c

Often apply several filters one after another: (((a * b1) * b2) * b3)
This is equivalent to applying one filter: a * (b1 * b2 * b3)

Distributes over addition: a * (b + c) = (a * b) + (a * c)
Scalars factor out: ka * b = a * kb = k (a * b)
Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],
a * e = a

3

Yucky details
What is the size of the output?
MATLAB: filter2(g, I, shape)

shape = ‘full’: output size is sum of sizes of I and g
shape = ‘same’: output size is same as I
shape = ‘valid’:output size is of difference sizes for I & g

I

gg

gg

I

gg

gg

I

gg

gg

full same valid

Implementation details
What about near the edge?

the filter window falls off the edge of the image
need to extrapolate
methods:

clip filter (black)
wrap around
copy edge
reflect across edge

Source: S. Marschner

Implementation details
What about near the edge?

the filter window falls off the edge of the image
need to extrapolate
methods (MATLAB):

clip filter (black): imfilter(f, g, 0)
wrap around: imfilter(f, g, ‘circular’)
copy edge: imfilter(f, g, ‘replicate’)
reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

4

Linear filtering (warm-up slide)

original
0

Pixel offset

co
ef

fic
ie

nt

1.0 ?

Linear filtering (warm-up slide)

original
0

Pixel offset

co
ef

fic
ie

nt

1.0

Filtered
(no change)

000
010
000

Linear filtering

0
Pixel offset

co
ef

fic
ie

nt

original

1.0

?

Shift

0
Pixel offset

co
ef

fic
ie

nt

original

1.0

shifted

000
100
000

Linear filtering

0
Pixel offset

co
ef

fic
ie

nt

original

0.3 ?

Blurring

0
Pixel offset

co
ef

fic
ie

nt

original

0.3

Blurred (filter
applied in both
dimensions).

111
111
111

Box filter:

5

0
Pixel offset

co
ef

fic
ie

nt
0.3

original

8

filtered

2.4

impulse

Blur examples Blur examples

0
Pixel offset

co
ef

fic
ie

nt

0.3

original

8

filtered

4
8

4

impulse

edge

0
Pixel offset

co
ef

fic
ie

nt

0.3

original

8

filtered

2.4

Smoothing with box filter revisited
Smoothing with an average actually doesn’t
compare at all well with a defocused lens
Most obvious difference is that a single point of
light viewed in a defocused lens looks like a fuzzy
blob; but the averaging process would give a little
square

Source: D. Forsyth

Smoothing with box filter revisited
Smoothing with an average actually doesn’t compare at
all well with a defocused lens
Most obvious difference is that a single point of light
viewed in a defocused lens looks like a fuzzy blob; but
the averaging process would give a little square
Better idea: to eliminate edge effects, weight
contribution of neighborhood pixels according to their
closeness to the center, like so:

“fuzzy blob”

Gaussian Kernel

Constant factor at front makes volume sum to 1 (can be
ignored, as we should re-normalize weights to sum to 1
in any case)

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Source: C. Rasmussen

Choosing kernel width
Gaussian filters have infinite support, but
discrete filters use finite kernels

Source: K. Grauman

6

Gaussian filtering
A Gaussian kernel gives less weight to pixels further
from the center of the window

This kernel is an approximation of a Gaussian function:

0000000000
00000009000
0000000000
009090909090000
00909090090000
009090909090000
009090909090000
009090909090000
0000000000
0000000000

121
242
121

Example: Smoothing with a
Gaussian

Mean vs. Gaussian filtering Separability of the Gaussian filter

Source: D. Lowe

Separability example

*

*

=

=

2D convolution
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:

Gaussian filters
Remove “high-frequency” components from the image
(low-pass filter)
Convolution with self is another Gaussian

So can smooth with small-width kernel, repeat, and get same
result as larger-width kernel would have
Convolving two times with Gaussian kernel of width σ is same
as convolving once with kernel of width sqrt(2) σ

Separable kernel
Factors into product of two 1D Gaussians
Useful: can convolve all rows, then all columns
How does this change the computational complexity?

Linear vs. quadratic in mask size

Source: K. Grauman

7

Review: Linear filtering
What are the defining mathematical properties
of a convolution?
What is the difference between blurring with a
box filter and blurring with a Gaussian?
What happens when we convolve a Gaussian
with another Gaussian?
What is separability?
How does separability affect computational
complexity?

Noise
Salt and pepper
noise: contains
random occurrences
of black and white
pixels
Impulse noise:
contains random
occurrences of white
pixels
Gaussian noise:
variations in intensity
drawn from a
Gaussian normal
distribution

Original

Gaussian noise

Salt and pepper noise

Impulse noise

Source: S. Seitz

Gaussian noise
Mathematical model: sum of many independent
factors
Good for small standard deviations
Assumption: independent, zero-mean noise

Source: K. Grauman

Smoothing with larger standard deviations suppresses noise,
but also blurs the image

Reducing Gaussian noise

Reducing salt-and-pepper noise

What’s wrong with the results?

3x3 5x5 7x7

Alternative idea: Median filtering
A median filter operates over a window by
selecting the median intensity in the window

Source: K. Grauman

Is median filtering linear?
No. Not a convolution

8

Median filter
What advantage does median filtering have
over Gaussian filtering?

Robustness to outliers

Source: K. Grauman

Median filter
Salt-and-pepper noise Median filtered

Source: K. Grauman

MATLAB: medfilt2(image, [h w])

Median vs. Gaussian filtering
3x3 5x5 7x7

Gaussian

Median

Linear filtering (warm-up slide)

original

0

2.0

?
0

1.0

original

0

2.0

0

1.0

Filtered
(no change)

Linear filtering (no change)

original

0

2.0

0

0.33 ?

Linear filtering

9

(Remember blurring)

0
Pixel offset

co
ef

fic
ie

nt

original

0.3

Blurred (filter
applied in both
dimensions).

Sharpening

original

0

2.0

0

0.33

Sharpened
original

Sharpening Sharpening example

co
ef

fic
ie

nt
-0.3

original

8

Sharpened
(differences are

accentuated; constant
areas are left untouched).

11.2
1.7

-0.25

8

Original

111
111
111

000
020
000 - ?

(Note that filter sums to 1)

Source: D. Lowe

Sharpening

Original

111
111
111

000
020
000 -

Sharpening filter
- Accentuates differences
with local average

Source: D. Lowe

Sharpening

10

Sharpening

before after

Unsharp mask filter

Gaussian
unit impulse

Laplacian of Gaussian

))(()()(geIgIIgIII −+∗=∗−+=∗−+ αααα 11

image blurred
image

unit impulse
(identity)

Sharpening Revisited
What does blurring take away?

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ α

Edge detection

Goal: Identify sudden
changes (discontinuities)
in an image

Intuitively, most semantic
and shape information from
the image can be encoded in
the edges
More compact than pixels

Ideal: artist’s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe

Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Characterizing edges
An edge is a place of rapid change in the image
intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

11

Image gradient
The gradient of an image:

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

how does this relate to the direction of the edge? perpendicular
The edge strength is given by the gradient magnitude

Differentiation and convolution
Recall, for 2D
function, f(x,y):

This is linear and shift
invariant, so must be
the result of a
convolution.

We could
approximate this as

(which is obviously a
convolution)

∂f
∂x

= lim
ε→0

f x + ε, y()
ε

−
f x, y()

ε

 


 

∂f
∂x

≈
f xn+1,y()− f xn , y()

∆x

1-1

Source: D. Forsyth, D. Lowe

Finite differences: example

Which one is the gradient in the x-direction
(resp. y-direction)?

Finite difference filters
Other approximations of derivative filters exist:

Source: K. Grauman

Effects of noise
Consider a single row or column of the image

Plotting intensity as a function of position gives a
signal

Where is the edge?

How to compute a derivative?

Effects of noise
Finite difference filters respond strongly to noise

Image noise results in pixels that look very different
from their neighbors
Generally, the larger the noise the stronger the
response

What is to be done?

Source: D. Forsyth

12

Effects of noise
Finite difference filters respond strongly to noise

Image noise results in pixels that look very different
from their neighbors
Generally, the larger the noise the stronger the
response

What is to be done?
Smoothing the image should help, by forcing pixels
different to their neighbors (=noise pixels?) to look
more like neighbors

Source: D. Forsyth Where is the edge?

Solution: smooth first

Look for peaks in

Differentiation is convolution, and convolution is
associative:

This saves us one operation:

g
dx
dfgf

dx
d

∗=∗)(

Derivative theorem of convolution

g
dx
df ∗

f

g
dx
d

Source: S. Seitz

Derivative of Gaussian filter

* [1 -1] =

Derivative of Gaussian filter

Which one finds horizontal/vertical edges?

x-direction y-direction

Summary: Filter mask properties
Filters act as templates

Highest response for regions that “look the most like
the filter”
Dot product as correlation

Smoothing masks
Values positive
Sum to 1 → constant regions are unchanged
Amount of smoothing proportional to mask size

Derivative masks
Opposite signs used to get high response in regions of
high contrast
Sum to 0 → no response in constant regions
High absolute value at points of high contrast

Source: K. Grauman

13

Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and
localization

Source: D. Forsyth

The gradient magnitude is large along a thick
“trail” or “ridge,” so how do we identify the
actual edge points?
How do we link the edge points to form curves?

Implementation issues

Source: D. Forsyth

Laplacian of Gaussian
Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

MATLAB demo

g = fspecial('gaussian',15,2);
imagesc(g)
surfl(g)
gclown = conv2(clown,g,'same');
imagesc(conv2(clown,[-1 1],'same'));
imagesc(conv2(gclown,[-1 1],'same'));
dx = conv2(g,[-1 1],'same');
imagesc(conv2(clown,dx,'same'));
lg = fspecial('log',15,2);
lclown = conv2(clown,lg,'same');
imagesc(lclown)
imagesc(clown + .2*lclown)

We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the
curve (non-maximum suppression). These points should form a curve.
There are then two algorithmic issues: at which point is the maximum,
and where is the next one?

Edge finding

Source: D. Forsyth

14

Non-maximum suppression

At q, we have a
maximum if the
value is larger
than those at
both p and at r.
Interpolate to
get these
values.

Source: D. Forsyth

Assume the marked
point is an edge point.
Then we construct the
tangent to the edge
curve (which is normal
to the gradient at that
point) and use this to
predict the next points
(here either r or s).

Predicting the next edge point

Source: D. Forsyth

Designing an edge detector
Criteria for an “optimal” edge detector:

Good detection: the optimal detector must
minimize the probability of false positives (detecting
spurious edges caused by noise), as well as that of
false negatives (missing real edges)
Good localization: the edges detected must be as
close as possible to the true edges
Single response: the detector must return one
point only for each true edge point; that is, minimize
the number of local maxima around the true edge

Source: L. Fei-Fei

Canny edge detector

This is probably the most widely used edge
detector in computer vision
Theoretical model: step-edges corrupted by
additive Gaussian noise
Canny has shown that the first derivative of the
Gaussian closely approximates the operator
that optimizes the product of signal-to-noise
ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

Canny edge detector
1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

Thin multi-pixel wide “ridges” down to single pixel
width

4. Linking and thresholding (hysteresis):
Define two thresholds: low and high
Use the high threshold to start edge curves and the
low threshold to continue them

MATLAB: edge(image, ‘canny’)
Source: D. Lowe, L. Fei-Fei

The Canny edge detector

original image (Lena)

15

The Canny edge detector

norm of the gradient

The Canny edge detector

thresholding

The Canny edge detector

thinning
(non-maximum suppression)

Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-Fei

Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original

The choice of σ depends on desired behavior
large σ detects large scale edges
small σ detects fine features

Source: S. Seitz

Edge detection is just the beginning…

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbe
nch/

image human segmentation gradient magnitude

