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Image Filtering 
&

Edge Detection
Reading: 

Chapter 7 and 8, F&P

What is image filtering?

Modify the pixels in an image based on 
some function of a local neighborhood of 
the pixels.

Some function

Linear Functions
Simplest: linear filtering.

Replace each pixel by a linear combination of its 
neighbors.

The prescription for the linear combination is 
called the “convolution kernel”.

Let I be the image and g be the kernel. The 
output of convolving I with g is denoted 

Convolution
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Key properties
Linearity:

filter(I1 + I2 ) = filter(I1) + filter(I2)
Shift invariance:

same behavior regardless of pixel location
filter(shift(I)) = shift(filter(I))

Theoretical result: 
Any linear shift-invariant operator can be 
represented as a convolution
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Properties in more detail
Commutative: a * b = b * a

Conceptually no difference between filter and signal
Associative: a * (b * c) = (a * b) * c

Often apply several filters one after another: (((a * b1) * b2) * b3)
This is equivalent to applying one filter: a * (b1 * b2 * b3)

Distributes over addition: a * (b + c) = (a * b) + (a * c)
Scalars factor out: ka * b = a * kb = k (a * b)
Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],
a * e = a
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Yucky details
What is the size of the output?
MATLAB: filter2(g, I, shape)

shape = ‘full’: output size is sum of sizes of I and g
shape = ‘same’: output size is same as I
shape = ‘valid’:output size is of difference sizes for I & g 
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Implementation details
What about near the edge?

the filter window falls off the edge of the image
need to extrapolate
methods:

clip filter (black)
wrap around
copy edge
reflect across edge

Source: S. Marschner

Implementation details
What about near the edge?

the filter window falls off the edge of the image
need to extrapolate
methods (MATLAB):

clip filter (black): imfilter(f, g, 0)
wrap around: imfilter(f, g, ‘circular’)
copy edge: imfilter(f, g, ‘replicate’)
reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner



4

Linear filtering (warm-up slide)
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Blur examples Blur examples
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Smoothing with box filter revisited
Smoothing with an average actually doesn’t 
compare at all well with a defocused lens
Most obvious difference is that a single point of 
light viewed in a defocused lens looks like a fuzzy 
blob; but the averaging process would give a little 
square

Source: D. Forsyth

Smoothing with box filter revisited
Smoothing with an average actually doesn’t compare at 
all well with a defocused lens
Most obvious difference is that a single point of light 
viewed in a defocused lens looks like a fuzzy blob; but 
the averaging process would give a little square
Better idea: to eliminate edge effects, weight 
contribution of neighborhood pixels according to their 
closeness to the center, like so:

“fuzzy blob”

Gaussian Kernel

Constant factor at front makes volume sum to 1 (can be 
ignored, as we should re-normalize weights to sum to 1 
in any case)

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Source: C. Rasmussen

Choosing kernel width
Gaussian filters have infinite support, but 
discrete filters use finite kernels

Source: K. Grauman
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Gaussian filtering
A Gaussian kernel gives less weight to pixels further 
from the center of the window

This kernel is an approximation of a Gaussian function:
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Example: Smoothing with a 
Gaussian

Mean vs. Gaussian filtering Separability of the Gaussian filter

Source: D. Lowe

Separability example

*

*

=

=

2D convolution
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:

Gaussian filters
Remove “high-frequency” components from the image 
(low-pass filter)
Convolution with self is another Gaussian

So can smooth with small-width kernel, repeat, and get same 
result as larger-width kernel would have
Convolving two times with Gaussian kernel of width σ is same 
as convolving once with kernel of width sqrt(2) σ

Separable kernel
Factors into product of two 1D Gaussians
Useful: can convolve all rows, then all columns
How does this change the computational complexity?

Linear vs. quadratic in mask size

Source: K. Grauman
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Review: Linear filtering
What are the defining mathematical properties 
of a convolution?
What is the difference between blurring with a 
box filter and blurring with a Gaussian?
What happens when we convolve a Gaussian 
with another Gaussian?
What is separability?
How does separability affect computational 
complexity?

Noise
Salt and pepper 
noise: contains 
random occurrences 
of black and white 
pixels
Impulse noise: 
contains random 
occurrences of white 
pixels
Gaussian noise: 
variations in intensity 
drawn from a 
Gaussian normal 
distribution

Original

Gaussian noise

Salt and pepper noise

Impulse noise

Source: S. Seitz

Gaussian noise
Mathematical model: sum of many independent 
factors
Good for small standard deviations
Assumption: independent, zero-mean noise

Source: K. Grauman

Smoothing with larger standard deviations suppresses noise, 
but also blurs the image

Reducing Gaussian noise

Reducing salt-and-pepper noise

What’s wrong with the results?

3x3 5x5 7x7

Alternative idea: Median filtering
A median filter operates over a window by 
selecting the median intensity in the window

Source: K. Grauman

Is median filtering linear? 
No. Not a convolution
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Median filter
What advantage does median filtering have 
over Gaussian filtering?

Robustness to outliers

Source: K. Grauman

Median filter
Salt-and-pepper noise Median filtered

Source: K. Grauman

MATLAB: medfilt2(image, [h w])

Median vs. Gaussian filtering
3x3 5x5 7x7

Gaussian

Median

Linear filtering (warm-up slide)
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(Remember blurring)
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(Note that filter sums to 1)

Source: D. Lowe
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Sharpening filter
- Accentuates differences 
with local average

Source: D. Lowe

Sharpening
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Sharpening

before after

Unsharp mask filter

Gaussian
unit impulse

Laplacian of Gaussian
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image blurred
image

unit impulse
(identity)

Sharpening Revisited
What does blurring take away?

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ α

Edge detection

Goal:  Identify sudden 
changes (discontinuities) 
in an image

Intuitively, most semantic 
and shape information from 
the image can be encoded in 
the edges
More compact than pixels

Ideal: artist’s line drawing 
(but artist is also using 
object-level knowledge)

Source: D. Lowe

Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Characterizing edges
An edge is a place of rapid change in the image 
intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative
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Image gradient
The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

how does this relate to the direction of the edge? perpendicular
The edge strength is given by the gradient magnitude

Differentiation and convolution
Recall, for 2D 
function, f(x,y):

This is linear and shift 
invariant, so must be 
the result of a 
convolution.

We could 
approximate this as

(which is obviously a 
convolution)

∂f
∂x

= lim
ε→0

f x + ε, y( )
ε

−
f x, y( )

ε
 
  

 
  

∂f
∂x

≈
f xn+1,y( )− f xn , y( )

∆x

1-1

Source: D. Forsyth, D. Lowe

Finite differences: example

Which one is the gradient in the x-direction 
(resp. y-direction)?

Finite difference filters
Other approximations of derivative filters exist:

Source: K. Grauman

Effects of noise
Consider a single row or column of the image

Plotting intensity as a function of position gives a 
signal

Where is the edge?

How to compute a derivative?

Effects of noise
Finite difference filters respond strongly to noise

Image noise results in pixels that look very different 
from their neighbors
Generally, the larger the noise the stronger the 
response

What is to be done?

Source: D. Forsyth
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Effects of noise
Finite difference filters respond strongly to noise

Image noise results in pixels that look very different 
from their neighbors
Generally, the larger the noise the stronger the 
response

What is to be done?
Smoothing the image should help, by forcing pixels 
different to their neighbors (=noise pixels?) to look 
more like neighbors

Source: D. Forsyth Where is the edge?  

Solution:  smooth first

Look for peaks in 

Differentiation is convolution, and convolution is 
associative:

This saves us one operation:

g
dx
dfgf

dx
d

∗=∗ )(

Derivative theorem of convolution

g
dx
df ∗

f

g
dx
d

Source: S. Seitz

Derivative of Gaussian filter

* [1 -1] =

Derivative of Gaussian filter

Which one finds horizontal/vertical edges?

x-direction y-direction

Summary: Filter mask properties
Filters act as templates

Highest response for regions that “look the most like 
the filter”
Dot product as correlation

Smoothing masks
Values positive
Sum to 1 → constant regions are unchanged
Amount of smoothing proportional to mask size

Derivative masks
Opposite signs used to get high response in regions of 
high contrast
Sum to 0 → no response in constant regions
High absolute value at points of high contrast

Source: K. Grauman



13

Smoothed derivative removes noise, but blurs 
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and 
localization

Source: D. Forsyth

The gradient magnitude is large along a thick 
“trail” or “ridge,” so how do we identify the 
actual edge points?
How do we link the edge points to form curves?

Implementation issues

Source: D. Forsyth

Laplacian of Gaussian
Consider  

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

MATLAB demo

g = fspecial('gaussian',15,2);
imagesc(g)
surfl(g)
gclown = conv2(clown,g,'same');
imagesc(conv2(clown,[-1 1],'same'));
imagesc(conv2(gclown,[-1 1],'same'));
dx = conv2(g,[-1 1],'same');
imagesc(conv2(clown,dx,'same'));
lg = fspecial('log',15,2);
lclown = conv2(clown,lg,'same');
imagesc(lclown)
imagesc(clown + .2*lclown)

We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the 
curve (non-maximum suppression).  These points should form a curve. 
There are then two algorithmic issues: at which point is the maximum, 
and where is the next one?

Edge finding

Source: D. Forsyth
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Non-maximum suppression

At q, we have a 
maximum if the 
value is larger 
than those at 
both p and at r. 
Interpolate to 
get these 
values.

Source: D. Forsyth

Assume the marked 
point is an edge point.  
Then we construct the 
tangent to the edge 
curve (which is normal 
to the gradient at that 
point) and use this to 
predict the next points 
(here either r or s). 

Predicting the next edge point

Source: D. Forsyth

Designing an edge detector
Criteria for an “optimal” edge detector:

Good detection: the optimal detector must 
minimize the probability of false positives (detecting 
spurious edges caused by noise), as well as that of 
false negatives (missing real edges)
Good localization: the edges detected must be as 
close as possible to the true edges
Single response: the detector must return one 
point only for each true edge point; that is, minimize 
the number of local maxima around the true edge

Source: L. Fei-Fei

Canny edge detector

This is probably the most widely used edge 
detector in computer vision
Theoretical model: step-edges corrupted by 
additive Gaussian noise
Canny has shown that the first derivative of the 
Gaussian closely approximates the operator 
that optimizes the product of signal-to-noise 
ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE 
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

Source: L. Fei-Fei

Canny edge detector
1. Filter image with derivative of Gaussian 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

Thin multi-pixel wide “ridges” down to single pixel 
width

4. Linking and thresholding (hysteresis):
Define two thresholds: low and high
Use the high threshold to start edge curves and the 
low threshold to continue them

MATLAB: edge(image, ‘canny’)
Source: D. Lowe, L. Fei-Fei

The Canny edge detector

original image (Lena)
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The Canny edge detector

norm of the gradient

The Canny edge detector

thresholding

The Canny edge detector

thinning
(non-maximum suppression)

Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-Fei

Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of σ depends on desired behavior
large σ detects large scale edges
small σ detects fine features

Source: S. Seitz

Edge detection is just the beginning…

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbe
nch/

image human segmentation gradient magnitude


