Last Time

Convolution
o Filters:
Mean/Box filter
Gaussian filter
Finite difference filter
R di Laplacian of Gaussian filter
eq. reading: .
oChapter 7, 9.2 F&P Edge Detection
oAdelson, Simoncelli and Freeman (handout online)
Opt. reading:
oHorn 7 & 8
oFP 8

Fourier Transforms

Convolutions Linear Image Transformation

Convolution is computationally costly, and a

In analyzing images, it’s often useful to make a
complex operation

change of basis.
(f+kg)® h = feh +k (g®h)

We want to find a better expression

f=Ui -
o A linear transformation of the function - l Vectorized image
whose behavior is simpler (computationally cheaper)

under convolution I T

Transformed image PCA, ICA
Fourier Transform, or
Wavelet Transform, or
Steerable Pyramid Transform

Invertible Transforms

Capturing what’s important

Same basis functions are used for the
inverse transform

i =UTf

=U"f

1

Transpose and complex conjugate

A nice set of basis

Teases away fast vs. slow changes in the image

Fn i ||||||||||m””

LLLEARR

This change of basis has a special name...

Jean Baptiste Joseph Fourier

(1768-1830)

= had crazy idea
(1807):

" Any periodic function
can be rewritten as a
weighted sum of sines
and cosines of different
frequencies.

= Don’t believe it?

o Neither did Lagrange,
Laplace, Poisson and
other big wigs

o Not translated into
English until 1878!

= Butit's true!

o called Fourier Series

A sum of sines

= Our building block:

Asin(wx + @)

= Add enough of them to
get any signal f(x) you
want!

= How many degrees of
freedom?

= What does each control?

= Which one encodes the
coarse vs. fine structure of f(tarqeﬂ- h ! i IL

the signal? fr b ftf s

Fourier Transform

= We want to understand the frequency of our signal.
So, let's reparametrize the signal by w instead of x:

f(x Fourier Flw
() Transform (@)

= For every wfrom 0 to inf, F(@) holds the amplitude A
and phase ¢ of the corresponding sin A sin(wx + @)
o How can F hold both? Complex number trick!

F(o)=R(w)+il(w)

A=+ R(w)’ + ()’ ¢ =tan™ L)

R(w)
We can always go back:

F(w) Inverse Fourier f(x)
Transform

Time and Frequency

= example : g(?) = sin2zf1) + (1/3)sin(2 7z (31 1))

Frequency Spectra

= example : g(1) =sin2zf 1) + (1/3)sin(2z (3f) 1)

o [2 ar

Frequency Spectra

= Usually, frequency is more interesting than the phase

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

- AZ%sin(Zﬂkt)
k=1

““l““lllu“

Frequency Spectra

AJV : ;Li

"T
il

266 - =
192

25‘

.

T e e s s m v om s
w
e
75 ‘,,(24| ‘
S, ¥ “W" R
- 4 [. I
o _ it et
0T E e e s mo0 s s
o

FT: Just a change of basis

U f(x) = F(®)

LANANANAL

IFT: Just a change of basis

U F(e) = f(x)

Definitions

Fourier Transform : F(w) = JH\’}: —foox

+eo
- 1 . ¢
Inverse Fourier Transform : f{x)= 5 Flm)e"™ doy
a4

Definitions

Fourter Transform : Flw)= _,r'(.\’!n'_“'“d.\'

1 .
Inverse Fourier Transform : f{x) = Fo I}'—'t:l)k'ﬂm ey
=T

= Recall: = cos(x) + i sin(wx)
= The exponentlal Is Asin(wx + ¢)

phase can be encoded
by sin/cos pair

= So it's just our signal f(x) times sine at
frequency @

— Pcos(x)+Qsin(x) = Asin(x + @)

(P
g=n (Q]

2D FFT transform

This is the
magnitude
transform
of the
cheetah pic

This is the
phase
transform
of the
cheetah pic

This is the
magnitude
transform
of the zebra
pic

This is the
phase :
transform
of the zebr:
pic

Reconstruction
with zebra
phase, cheetah
magnitude

Reconstruction
with cheetah
phase, zebra
magnitude

Man-made Scene

Can change spectrum, then
reconstruct

il
TR R s

Most information in at low frequencies!

Filtering in Fourier domain

What is a good representation for

image analysis?
= Fourier transform domain tells you “what” (textural
properties), but not “where”.

= Pixel domain representation tells you “where” (pixel
location), but not “what”.

= Want an image representation that gives you a local
description of image events—what is happening where.

Application to Image compression

= Compression is about hidding differences from
the true image where you can’t see them

Using DCT in JPEG

= A variant of discrete Fourier transform
o Real numbers
o Fast implementation

= Block size
o small block
= faster
= correlation exists between neighboring pixels
o large block
= better compression in smooth regions

Lossy Image Compression (JPEG)

B0 DR 00 0010
b W VA W AR

Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

= The first coefficient B(0,0) is the DC component,
the average intensity

= The top-left coeffs represent low frequencies,
the bottom right — high frequencies

Q

N
N
N
B

PN
i
N

Image compression using DCT

= DCT enables image compression by

concentrating most image information in the low
frequencies

= Loose unimportant image info (high frequencies)
by cutting B(x,v) at bottom right

= The decoder computes the inverse DCT — IDCT
*Quantization Table

3 5 7 9 1113 15 17
5 7 9 11131517 19
79 11 13 15 17 19 21
9 11 13 15 17 19 21 23
1113 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

JPEG compression comparison

89k 12k

Why is the Fourier domain particularly
useful?

= It tells us the effect of linear convolutions.

= There is a fast algorithm for performing the DFT,
allowing for efficient signal filtering.

= The Fourier domain offers an alternative domain
for understanding and manipulating the image.

The Convolution Theorem

aThe Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg*h]=F[g]F[h]

aThe inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two
inverse Fourier transforms

Fl[gh]l=F '[g]*F '[A]

oConvolution in spatial domain is equivalent to
multiplication in frequency domain!

Fourier transform of convolution

Consider a (circular) convolution of g and h

f=g®h

Fourier transform of convolution

f=g®h

Take DFT of both sides

F[m,n]=DFT(g®h)

Fourier transform of convolution

f=g®h
F[m,n]=DFT(g®h)

Write the DFT and convolution explicitly

F[m, n] = Aff Zg[u —k,v-Ih[k, l]eﬂd[ﬁ)rﬁj
=0 v=0 Kk

Fourier transform of convolution

f=g®h
Flm,n]=DFT(g®h) o

Flm.n]= ZZZg[u kov-1lhk,le (575)

Move the exponent in

=A§f§2g[a kv—lle [Vm %]h[k 7

Fourier transform of convolution

f=g®h
Flm,n]= DFT(g@h)

F[mn] ZZZgu k,v—11h| kl]e []

I\Z‘: g[ufk,vfl]e [M wJh[k,l]

Kl

< i

,M

Change variables in the sum
M—k—1N-I-1 ((k+g)m (1+0)n

=3 S S aluvle L

u=—k v=-I ki

Fourier transform of convolution

f=g®h
Flm,]DFT(g@h)

Flm,n}= Zzz.gu kyv—1lhk, e (5%

=0 v OAI

Perform the DFT (circular boundary conditions)
(km In

_ ZG[m,n]eim[HWJh[k,l]

Fourier transform of convolution

f=g®h
Flm,n]= DFT(g@h)

Flm,n) ZZZg[u ke,v—11hk, l]eim[ﬁ*AVJ
u=0 v:

ZZZg[u kvt 5 g
=0 v=0 k.1
M—k-1N=I-1 (kt)m (1+0) ”1

f b
> 2 elwvle MY hk D

pu=—k v=—I ki

_f
=>"G[m,nle & "‘]h[k,l]
kJ
Perform the other DFT (circular boundary conditions)

= G[m,n}H[m,n]

Convolution versus FFT

= 1-d FFT: O(NlogN) computation time, where N
is number of samples.

= 2-d FFT: 2N(NlogN), where N is number of
pixels on a side

= Convolution: K N2, where K is number of
samples in kernel

m Say N=210, K=100. 2-d FFT: 20 220, while
convolution gives 100 220

Big Motivation for Fourier analysis

Motivation for Fourier analysis:

= Sine waves are eigenvectors of the convolution
operator

Sampling

= The sampling grid is a periodic structure

a Fourier is pretty good at handling that

o We saw that a sine wave has serious problems with sampling
= Sampling is a linear process

Sampling Density

Sampling Density

= If we're lucky, sampling density is enough

Input Reconstructed

= If we insufficiently sample the signal, it may be
mistaken for something simpler during reconstruction
(that's aliasing!)

Sampling Theorem

Recap: motivation for sine waves

= When sampling a signal at discrete intervals,
the sampling frequency must be greater than
twice the highest frequency of the input signal in
order to be able to reconstruct the original
perfectly from the sampled version (Shannon,
Nyquist, Whittaker, Kotelnikov)

= Blurring sine waves is simple
o You get the same sine wave, just scaled down
o The sine functions are the eigenvectors of the convolution
operator
= Sampling sine waves is interesting
o Get another sine wave
o Not necessarily the same one! (aliasing)
If we represent functions (or images) with a sum of sine
waves, convolution and sampling are easy to study

