
1

Fourier Transforms

Req. reading:
Chapter 7, 9.2 F&P
Adelson, Simoncelli and Freeman (handout online)

Opt. reading:
Horn 7 & 8
FP 8

Last Time
Convolution

Filters:
Mean/Box filter
Gaussian filter
Finite difference filter
Laplacian of Gaussian filter

Edge Detection

Convolutions
Convolution is computationally costly, and a
complex operation

(f+kg)⊗ h = f⊗h +k (g⊗h)

We want to find a better expression
A linear transformation of the function
whose behavior is simpler (computationally cheaper)
under convolution

Linear Image Transformation
In analyzing images, it’s often useful to make a
change of basis.

Uif = Vectorized image

PCA, ICA
Fourier Transform, or
Wavelet Transform, or
Steerable Pyramid Transform

Transformed image

Invertible Transforms

Same basis functions are used for the
inverse transform

fU

fUi
+

−

=

=

Transpose and complex conjugate

Capturing what’s important

2

A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.

Jean Baptiste Joseph Fourier
(1768-1830)

had crazy idea
(1807):

Any periodic function
can be rewritten as a
weighted sum of sines
and cosines of different
frequencies.
Don’t believe it?

Neither did Lagrange,
Laplace, Poisson and
other big wigs
Not translated into
English until 1878!

But it’s true!
called Fourier Series

A sum of sines
Our building block:

Add enough of them to
get any signal f(x) you
want!

How many degrees of
freedom?

What does each control?

Which one encodes the
coarse vs. fine structure of
the signal?

)+ φωxAsin(

Fourier Transform
We want to understand the frequency ω of our signal.
So, let’s reparametrize the signal by ω instead of x:

)+ φωxAsin(

f(x) F(ω)Fourier
Transform

F(ω) f(x)Inverse Fourier
Transform

For every ω from 0 to inf, F(ω) holds the amplitude A
and phase φ of the corresponding sin

How can F hold both? Complex number trick!

)()()(ωωω iIRF +=
22)()(ωω IRA +±=

)(
)(tan 1

ω
ωφ

R
I−=

We can always go back:

Time and Frequency
example : g(t) = sin(2π f t) + (1/3)sin(2π (3f t))

Frequency Spectra
example : g(t) = sin(2π f t) + (1/3)sin(2π (3f) t)

= +

3

Frequency Spectra
Usually, frequency is more interesting than the phase

= +

=

Frequency Spectra

= +

=

Frequency Spectra

= +

=

Frequency Spectra

= +

=

Frequency Spectra

= +

=

Frequency Spectra

4

=
1

1 sin(2)
k

A kt
k

π
∞

=
∑

Frequency Spectra Frequency Spectra

FT: Just a change of basis

.

.

.

. =

U f(x) = F(ω)

IFT: Just a change of basis

.

.

.

. =

U-1 . F(ω) = f(x)

Definitions Definitions

Recall:
The exponential is

So it’s just our signal f(x) times sine at
frequency ω

)sin()cos(xixe xi ωωω +=









 = +±=

)+=+

−

Q
PQPΑ

xAxQxP

122 tan

sin()sin()cos(

φ

φ

)+ φωxAsin(
phase can be encoded

by sin/cos pair

5

2D FFT transform

This is the
magnitude
transform
of the
cheetah pic

This is the
phase
transform
of the
cheetah pic

This is the
magnitude
transform
of the zebra
pic

6

This is the
phase
transform
of the zebra
pic

Reconstruction
with zebra
phase, cheetah
magnitude

Reconstruction
with cheetah
phase, zebra
magnitude

Man-made Scene

Can change spectrum, then
reconstruct

Most information in at low frequencies!

7

Filtering in Fourier domain What is a good representation for
image analysis?

Fourier transform domain tells you “what” (textural
properties), but not “where”.
Pixel domain representation tells you “where” (pixel
location), but not “what”.
Want an image representation that gives you a local
description of image events—what is happening where.

Application to Image compression
Compression is about hidding differences from
the true image where you can’t see them

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG
A variant of discrete Fourier transform

Real numbers
Fast implementation

Block size
small block

faster
correlation exists between neighboring pixels

large block
better compression in smooth regions

Using DCT in JPEG
The first coefficient B(0,0) is the DC component,
the average intensity
The top-left coeffs represent low frequencies,
the bottom right – high frequencies

8

Image compression using DCT
DCT enables image compression by
concentrating most image information in the low
frequencies
Loose unimportant image info (high frequencies)
by cutting B(u,v) at bottom right
The decoder computes the inverse DCT – IDCT
•Quantization Table

3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19
7 9 11 13 15 17 19 21
9 11 13 15 17 19 21 23
11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

JPEG compression comparison

89k 12k

Why is the Fourier domain particularly
useful?

It tells us the effect of linear convolutions.
There is a fast algorithm for performing the DFT,
allowing for efficient signal filtering.
The Fourier domain offers an alternative domain
for understanding and manipulating the image.

The Convolution Theorem

The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two
inverse Fourier transforms

Convolution in spatial domain is equivalent to
multiplication in frequency domain!

]F[]F[]F[hghg =∗

][F][F][F 111 hggh −−− ∗=

hgf ⊗=

Consider a (circular) convolution of g and h

Fourier transform of convolution
hgf ⊗=

()hgDFTnmF ⊗=],[
Take DFT of both sides

Fourier transform of convolution

9

hgf ⊗=
()hgDFTnmF ⊗=],[

Write the DFT and convolution explicitly

[] ∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,
],[],[,

M

u

N

v

N
vn

M
umi

lk
elkhlvkugnmF

π

Fourier transform of convolution
hgf ⊗=

()hgDFTnmF ⊗=],[

Move the exponent in

[] ∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,

],[],[,
M

u

N

v

N
vn

M
umi

lk

elkhlvkugnmF
π

∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,
],[],[

M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

Fourier transform of convolution

hgf ⊗=
()hgDFTnmF ⊗=],[

Change variables in the sum

[] ∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,

],[],[,
M

u

N

v

N
vn

M
umi

lk

elkhlvkugnmF
π

∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,

],[],[
M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

() ()

∑ ∑ ∑
−−

−=

−−

−=







 +

+
+

−
=

1 1

,
],[],[

kM

k

lN

l lk

N
nl

M
mki

lkheg
µ υ

υµπ
υµ

Fourier transform of convolution
hgf ⊗=

()hgDFTnmF ⊗=],[

Perform the DFT (circular boundary conditions)

[] ∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,

],[],[,
M

u

N

v

N
vn

M
umi

lk

elkhlvkugnmF
π

∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,

],[],[
M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

() ()

∑ ∑ ∑
−−

−=

−−

−=







 +

+
+

−
=

1 1

,
],[],[

kM

k

lN

l lk

N
nl

M
mki

lkheg
µ υ

υµπ
υµ

[]∑






 +−

=
lk

NM
kmi

lkhenmG
,

ln

],[,
π

Fourier transform of convolution

hgf ⊗=
()hgDFTnmF ⊗=],[

Fourier transform of convolution

Perform the other DFT (circular boundary conditions)

[] ∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,

],[],[,
M

u

N

v

N
vn

M
umi

lk

elkhlvkugnmF
π

∑∑∑
−

=

−

=







 +−

−−=
1

0

1

0 ,

],[],[
M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

() ()

∑ ∑ ∑
−−

−=

−−

−=







 +

+
+

−
=

1 1

,
],[],[

kM

k

lN

l lk

N
nl

M
mki

lkheg
µ υ

υµπ
υµ

[]∑






 +−

=
lk

NM
kmi

lkhenmG
,

ln

],[,
π

[] []nmHnmG ,,=

Convolution versus FFT
1-d FFT: O(NlogN) computation time, where N
is number of samples.
2-d FFT: 2N(NlogN), where N is number of
pixels on a side
Convolution: K N2, where K is number of
samples in kernel
Say N=210, K=100. 2-d FFT: 20 220, while
convolution gives 100 220

10

Big Motivation for Fourier analysis
Sine waves are eigenvectors of the convolution
operator

Motivation for Fourier analysis:
Sampling

The sampling grid is a periodic structure
Fourier is pretty good at handling that
We saw that a sine wave has serious problems with sampling

Sampling is a linear process

Sampling Density
If we’re lucky, sampling density is enough

Input Reconstructed

Sampling Density
If we insufficiently sample the signal, it may be
mistaken for something simpler during reconstruction
(that's aliasing!)

Sampling Theorem
When sampling a signal at discrete intervals,
the sampling frequency must be greater than
twice the highest frequency of the input signal in
order to be able to reconstruct the original
perfectly from the sampled version (Shannon,
Nyquist, Whittaker, Kotelnikov)

Recap: motivation for sine waves
Blurring sine waves is simple

You get the same sine wave, just scaled down
The sine functions are the eigenvectors of the convolution
operator

Sampling sine waves is interesting
Get another sine wave
Not necessarily the same one! (aliasing)

If we represent functions (or images) with a sum of sine
waves, convolution and sampling are easy to study

