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Fourier Transforms 

Req. reading: 
Chapter 7, 9.2 F&P
Adelson, Simoncelli and Freeman (handout online)

Opt. reading: 
Horn 7 & 8
FP 8

Last Time
Convolution

Filters:
Mean/Box filter
Gaussian filter
Finite difference filter
Laplacian of Gaussian filter

Edge Detection

Convolutions
Convolution is computationally costly, and a 
complex operation

(f+kg)⊗ h = f⊗h +k (g⊗h) 

We want to find a better expression
A linear transformation of the function 
whose behavior is simpler (computationally cheaper) 
under convolution

Linear Image Transformation
In analyzing images, it’s often useful to make a 
change of basis.

Uif = Vectorized image

PCA, ICA
Fourier Transform, or
Wavelet Transform, or
Steerable Pyramid Transform

Transformed image

Invertible Transforms

Same basis functions are used for the 
inverse transform

fU

fUi
+

−

=

=

Transpose and complex conjugate

Capturing what’s important
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A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.

Jean Baptiste Joseph Fourier 
(1768-1830)

had crazy idea 
(1807):

Any periodic function 
can be rewritten as a 
weighted sum of sines
and cosines of different 
frequencies. 
Don’t believe it?  

Neither did Lagrange, 
Laplace, Poisson and 
other big wigs
Not translated into 
English until 1878!

But it’s true!
called Fourier Series

A sum of sines
Our building block:

Add enough of them to 
get any signal f(x) you 
want!

How many degrees of 
freedom?

What does each control?

Which one encodes the 
coarse vs. fine structure of 
the signal?

)+ φωxAsin(

Fourier Transform
We want to understand the frequency ω of our signal.  
So, let’s reparametrize the signal by ω instead of x:

)+ φωxAsin(

f(x) F(ω)Fourier 
Transform

F(ω) f(x)Inverse Fourier 
Transform

For every ω from 0 to inf, F(ω) holds the amplitude A 
and phase φ of the corresponding sin  

How can F hold both?  Complex number trick!

)()()( ωωω iIRF +=
22 )()( ωω IRA +±=

)(
)(tan 1

ω
ωφ

R
I−=

We can always go back:

Time and Frequency
example : g(t) = sin(2π f t) + (1/3)sin(2π (3f t))

Frequency Spectra
example : g(t) = sin(2π f t) + (1/3)sin(2π (3f ) t)

= +
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Frequency Spectra
Usually, frequency is more interesting than the phase

= +

= 

Frequency Spectra

= +

= 

Frequency Spectra

= +

= 

Frequency Spectra

= +

= 

Frequency Spectra

= +

= 

Frequency Spectra
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Frequency Spectra Frequency Spectra

FT: Just a change of basis

.

.

.

. =

U f(x) = F(ω)

IFT: Just a change of basis

.

.

.

. =

U-1 . F(ω) = f(x)

Definitions Definitions

Recall:
The exponential is

So it’s just our signal f(x) times sine at 
frequency ω

)sin()cos( xixe xi ωωω +=









 = +±=

)+=+

−

Q
PQPΑ

xAxQxP

122 tan

sin()sin()cos(

φ

φ

)+ φωxAsin(
phase can be encoded

by sin/cos pair
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2D FFT transform

This is the 
magnitude 
transform 
of the 
cheetah pic

This is the 
phase 
transform 
of the 
cheetah pic

This is the 
magnitude 
transform 
of the zebra 
pic
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This is the 
phase 
transform 
of the zebra 
pic

Reconstruction 
with zebra 
phase, cheetah 
magnitude

Reconstruction 
with cheetah 
phase, zebra 
magnitude

Man-made Scene

Can change spectrum, then 
reconstruct

Most information in at low frequencies!
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Filtering in Fourier domain What is a good representation for 
image analysis?

Fourier transform domain tells you “what” (textural 
properties), but not “where”.
Pixel domain representation tells you “where” (pixel 
location), but not “what”.
Want an image representation that gives you a local 
description of image events—what is happening where.

Application to Image compression
Compression is about hidding differences from 
the true image where you can’t see them

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG 
A variant of discrete Fourier transform

Real numbers
Fast implementation

Block size
small block

faster 
correlation exists between neighboring pixels

large block
better compression in smooth regions

Using DCT in JPEG 
The first coefficient B(0,0) is the DC component, 
the average intensity
The top-left coeffs represent low frequencies, 
the bottom right – high frequencies
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Image compression using DCT
DCT enables image compression by 
concentrating most image information in the low 
frequencies
Loose unimportant image info (high frequencies) 
by cutting B(u,v) at bottom right 
The decoder computes the inverse DCT – IDCT 
•Quantization Table

3      5     7     9     11   13   15   17
5      7     9     11   13   15   17   19
7      9     11   13   15   17   19   21
9      11   13   15   17   19   21   23
11    13   15   17   19   21   23   25
13    15   17   19   21   23   25   27
15    17   19   21   23   25   27   29
17    19   21   23   25   27   29   31

JPEG compression comparison

89k 12k

Why is the Fourier domain particularly 
useful?

It tells us the effect of linear convolutions.
There is a fast algorithm for performing the DFT, 
allowing for efficient signal filtering.
The Fourier domain offers an alternative domain 
for understanding and manipulating the image.

The Convolution Theorem

The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two 
inverse Fourier transforms

Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg =∗

][F][F][F 111 hggh −−− ∗=

hgf ⊗=

Consider a (circular) convolution of g and h

Fourier transform of convolution
hgf ⊗=

( )hgDFTnmF ⊗=],[
Take DFT of both sides

Fourier transform of convolution
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Write the DFT and convolution explicitly
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Fourier transform of convolution
hgf ⊗=

( )hgDFTnmF ⊗=],[

Move the exponent in
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Fourier transform of convolution

hgf ⊗=
( )hgDFTnmF ⊗=],[

Change variables in the sum
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Fourier transform of convolution
hgf ⊗=

( )hgDFTnmF ⊗=],[

Perform the DFT (circular boundary conditions)
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Fourier transform of convolution

hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Perform the other DFT (circular boundary conditions)
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Convolution versus FFT
1-d FFT:  O(NlogN) computation time, where N 
is number of samples.
2-d FFT: 2N(NlogN), where N is number of 
pixels on a side
Convolution: K N2, where K is number of 
samples in kernel
Say N=210, K=100.  2-d FFT: 20 220, while 
convolution gives 100 220
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Big Motivation for Fourier analysis
Sine waves are eigenvectors of the convolution 
operator

Motivation for Fourier analysis: 
Sampling

The sampling grid is a periodic structure
Fourier is pretty good at handling that
We saw that a sine wave has serious problems with sampling

Sampling is a linear process

Sampling Density
If we’re lucky, sampling density is enough

Input Reconstructed

Sampling Density
If we insufficiently sample the signal, it may be 
mistaken for something simpler during reconstruction 
(that's aliasing!)

Sampling Theorem
When sampling a signal at discrete intervals, 
the sampling frequency must be greater than 
twice the highest frequency of the input signal in 
order to be able to reconstruct the original 
perfectly from the sampled version (Shannon, 
Nyquist, Whittaker, Kotelnikov)

Recap: motivation for sine waves
Blurring sine waves is simple

You get the same sine wave, just scaled down
The sine functions are the eigenvectors of the convolution 
operator

Sampling sine waves is interesting
Get another sine wave
Not necessarily the same one! (aliasing)

If we represent functions (or images) with a sum of sine 
waves, convolution and sampling are easy to study


