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Statistical Linear Models:
ICA & FLD

Statistical Linear Models:
ICA & FLD

Last Time: PCALast Time: PCA

• PCA identifies an m dimensional explanation of n dimensional 
data where m < n.

• Originated as a statistical analysis technique.  
• PCA attempts to minimize the reconstruction error under the 

following restrictions
– Linear Reconstruction
– Orthogonal Factors

• Equivalently, PCA attempts to maximize variance.

Data Loss

• Sample points can be projected via the new m×d
projection matrix Bopt and can still be reconstructed, 
but some information will be lost.
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PCA for Recognition - EigenImagesPCA for Recognition - EigenImages
• Consider a set of images of 2 people under fixed viewpoint  & N lighting condition 
• Each image is made up of 2 pixels

1st axis

2nd axis

1st axis

2nd axis

• Reduce dimensionality by throwing away the axis along which the data varies the least
• The coefficient vector associated with the 1st basis vector is used for classifiction
• Possible classifier: Mahalanobis distance
• Each image is represented by one coefficient vector
• Each person is displayed in N images and therefore has N coefficient vectors
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PART I: 2D VisionPART I: 2D Vision
• Appearance-Based Methods

• Statistical Linear Models:
– Principal Component Analysis
– ICA, FLD
– Non-negative Matrix Factorization, Sparse Matrix Factorization

• Statistical Tensor Models:
– Multilinear PCA,
– Multilinear ICA

• Person and Activity Recognition

Today 
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Statistical Linear ModelsStatistical Linear Models
• Generative Models:

– Second-order methods
• faithful/accurate data representation - minimal reconstruction 

(mean-square) error 
– covariance

• PCA – Principal Component Analysis
• Factor Analysis

– Higher Order Methods
• meaningful representation

– higher order statistics
• ICA – Independent Component Analysis

• Descriminant Models:
– FLD – Fisher Linear Descriminant Analysis

ICAICAICA
Blind Signal Separation (BSS) or Independent Component Analysis 

(ICA) is the identification & separation of mixtures of sources with 
little prior information.

• Applications include:
– Audio Processing
– Medical data
– Finance
– Array processing (beamforming)
– Coding

• … and most applications where Factor Analysis and PCA is currently 
used.

• While PCA seeks directions that represents data best in a Σ|x0 - x|2 

sense, ICA seeks such directions that are most independent from each 
other.

The simple The simple ““Cocktail PartyCocktail Party”” ProblemProblem

Sources
Observations
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Mixing matrix A

x = As

n sources, m=n observations

MotivationMotivationMotivation

Two Independent Sources Mixture at two Mics

aIJ ... Depend on the distances of the microphones from the speakers
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Independent Component AnalysisIndependent Component Analysis

Given m signals of length n, construct the data 
matrix

We assume that X consists of m sources such that

X = AS

where A is an unknown m by m mixing matrix 
and S is m independent sources.  
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MotivationMotivationMotivation

Get the Independent Signals out of the Mixture
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Independent Component AnalysisIndependent Component Analysis
• PCA finds the directions that uncorellated

• ICA / Blind Source Separation:
– Observed data is modeled as a linear combination of 

independent sources
• Cocktail Problem: A sound recording at a party is the 

result of multiple individuals speaking (independent 
sources)

– Finds the directions of maximum independence

– Statistically independent:
• Two variables x, y are statistically independent iff

• Equivalently, 

where g and h are any functions.
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Computing Independent Components Computing Independent Components 

– By maximization of nongaussianity: kurtosis
– By maximum likelihood estimation
– By minimization of mutual information
– By tensorial methods
– By nonlinear decorrelation and nonlinear PCA
– By methods using time structure

• Hyvärinen A, Karhunen J, Oja E. Independent component analysis, John 
Wiley & Sons, Inc., New York, 2001, p. 481

• Material in: http://www.cis.hut.fi/projects/ica/fastica/

Measures of Non-GaussianityMeasures of NonMeasures of Non--GaussianityGaussianity
We need to have a quantitative measure of non-gaussianity for 
ICA Estimation.
– Kurtotis : gauss=0

(sensitive to outliers)

– Entropy : gauss=largest

– Neg-entropy :
• gauss = 0 (difficult to estimate)

– Approximations

where v is a gaussian rand. variable :
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Computing IC’s using Non-GausianityComputing IC’s using Non-Gausianity

• Kurtosis
– kurt(y) = E{y4} – 3(E{y2})2 = E{y4} – 3

• for unit-variance data 
– kurt(y) = 0 for gaussian data
– kurt(y) < 0 for subgaussian data
– kurt(y) > 0 for supergaussian data

• kurtosis is measured along each possible projection 
direction over the data
– a maximum corresponds to one of the IC’s
– other IC’s are found from the orthogonal directions with an iterative 

algorithm
– rotation matrix R has now been solved

Geometric View of ICAGeometric View of ICA
TUSVD =

Geometric View of ICAGeometric View of ICA
TUSVD =

DUD T='
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Geometric View of ICAGeometric View of ICA
TUSVD =
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Geometric View of ICAGeometric View of ICA

R

TUSVD =

DUD T='

DUSD T2
1

'' −
=

DURSD T2
1

'" −

=
TT SVRSRUSD 2

1
2
1

−=

TWSVUWD 1−=
Independent Components

PCA vs. ICA subspacePCA vs. ICA subspace
• Is ICA and PCA subspace theoretically guaranteed to be the same or 

different?
• When are the two subspaces different?

Fisher Linear Discriminant:

FisherFaces

Fisher Linear Discriminant:

FisherFaces

Fisher’s Linear DiscriminantFisher’s Linear Discriminant

• Objective: Find a projection which separates data clusters

Good separationPoor separation Good separationPoor separation
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FLD: TheoryFLD: Theory

• Find a projection that maximize the between-class 
scatter while minimizing the within-class scatter

FLD: Problem formulationFLD: Problem formulation

• N Sample images: 
• C classes:

• Average of each class: 

• Total average:
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FLD: Data ScatterFLD: Data Scatter

• Within-class scatter matrix

• Between-class scatter matrix

• Total scatter matrix
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FLD: Practice (Cont.)FLD: Practice (Cont.)

• After projection:
• And…

• Between class scatter (of y’s):

• Within class scatter (of y’s):
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Fisher Linear DiscriminantFisher Linear Discriminant

• The basis matrix B is chosen in order to maximize ratio of the 
determinant between class scatter matrix of the projected samples to 
the determinant within  class scatter matrix of the projected samples

• B is the set of generalized eigenvectors of SBtw and SWin
corresponding with a set of decreasing eigenvalues
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Fisher Linear DiscriminantFisher Linear Discriminant
• Consider a set of images of 2 people under fixed viewpoint  & N lighting condition
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• Each image is represented by one coefficient vector
• Each person is displayed in N images and therefore has N coefficient vectors


