Statistical Linear Models: ICA \& FLD

Last Time: PCA

- PCA identifies an m dimensional explanation of n dimensional data where $\mathrm{m}<\mathrm{n}$.
- Originated as a statistical analysis technique.
- PCA attempts to minimize the reconstruction error under the following restrictions
- Linear Reconstruction
- Orthogonal Factors
- Equivalently, PCA attempts to maximize variance.

Data Loss

- Sample points can be projected via the new $m \times d$ projection matrix $B_{\text {opt }}$ and can still be reconstructed, but some information will be lost.

PCA for Recognition - EigenImages

Consider a set of images of 2 people under fixed viewpoint \& N lighting condition Each image is made up of 2 pixels

Reduce dimensionality by throwing away the axis along which the data varies the least
The coefficient vector associated with the $1^{\text {st }}$ basis vector is used for classifiction
Possible classifier: Mahalanobis distance
Each image is represented by one coefficient vector
Each person is displayed in N images and therefore has N coefficient vectors

SVD of a Matrix

Scatter of matrix: $\mathbf{S}_{T}=\frac{1}{N-1}(\mathbf{D}-\mathbf{M})(\mathbf{D}-\mathbf{M})^{T}$
$(\mathbf{D}-\mathbf{M})=\mathbf{U} \Sigma \mathbf{V}^{T} \quad$ by svd of $(\mathbf{D}-\mathbf{M}) \quad \Longrightarrow \quad$ set $\mathbf{B}=\mathbf{U}$
$(\mathbf{D}-\mathbf{M})(\mathbf{D}-\mathbf{M})^{T}=\mathbf{U} \Sigma^{2} \mathbf{U}^{T}\left(\operatorname{svd}\right.$ of $\left.\mathbf{S}_{T}\right) \longmapsto \operatorname{set} \mathbf{B}=\mathbf{U}$

PART I: 2D Vision

- Appearance-Based Methods
- Statistical Linear Models:
- Principal Component Analysis

Today \Rightarrow - ICA, FLD

- Non-negative Matrix Factorization, Sparse Matrix Factorization
- Statistical Tensor Models:
- Multilinear PCA,
- Multilinear ICA
- Person and Activity Recognition

Statistical Linear Models

- Generative Models:
- Second-order methods
- faithful/accurate data representation - minimal reconstruction (mean-square) error
- covariance
- PCA - Principal Component Analysis
- Factor Analysis
- Higher Order Methods
- meaningful representation

> - higher order statistics

- ICA - Independent Component Analysis
- Descriminant Models:
- FLD - Fisher Linear Descriminant Analysis

ICA

Blind Signal Separation (BSS) or Independent Component Analysis (ICA) is the identification \& separation of mixtures of sources with little prior information.

- Applications include:
- Audio Processing
- Medical data
- Finance
- Array processing (beamforming)
- Coding
- ... and most applications where Factor Analysis and PCA is currently used.
- While PCA seeks directions that represents data best in a $\Sigma\left|x_{0}-\mathrm{x}\right|^{2}$ sense, ICA seeks such directions that are most independent from each other.

The simple "Cocktail Party" Problem

n sources, $\mathrm{m}=n$ observations

Motivation

Two Independent Sources

Mixture at two Mics

$$
\begin{aligned}
& x_{1}(t)=a_{11} s_{1}+a_{12} s_{2} \\
& x_{2}(t)=a_{21} s_{1}+a_{22} s_{2}
\end{aligned}
$$

$\mathrm{a}_{\mathrm{IJ}} \ldots$ Depend on the distances of the microphones from the speakers

Independent Component Analysis

Given m signals of length n, construct the data matrix

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\vdots \\
\mathbf{x}_{m}^{T}
\end{array}\right]
$$

We assume that X consists of m sources such that

$$
\mathrm{X}=\mathrm{AS}
$$

where A is an unknown m by mixing matrix and S is m independent sources.

Motivation

Independent Component Analysis

PCA finds the directions that uncorellated

- ICA / Blind Source Separation:
- Observed data is modeled as a linear combination of independent sources
- Cocktail Problem: A sound recording at a party is the Cocktail Problem: A sound recording at a party is the
result of multiple individuals speaking (independent sources)
- Finds the directions of maximum independence
- Statistically independent:
- Two variables \mathbf{x}, \mathbf{y} are statistically independent iff

$$
P(\mathbf{x} \& \mathbf{y})=P(\mathbf{x}) P(\mathbf{y}) .
$$

- Equivalently, $E\{g(\mathbf{x}) h(\mathbf{y})\}-E\{g(\mathbf{x})\} E\{h(\mathbf{y})\}=0$ where g and h are any functions.

Measures of Non-Gaussianity

We need to have a quantitative measure of non-gaussianity for ICA Estimation.

$$
\begin{aligned}
& -\frac{\text { Kurtotis : gauss }=0}{\text { (sensitive to outliers) }} \quad \operatorname{kurt}(y)=E\left\{y^{4}\right\}-3\left(E\left\{y^{2}\right\}\right)^{2} \\
& \text { - Entropy: gauss=largest } \quad H(y)=-\int f(y) \log f(y) d y \\
& \text { - } \frac{\text { Neg-entropy: }}{\text { - gauss }=0 \text { (difficult to estimate) } \quad J(y)=H\left(y_{\text {gauss }}\right)-H(y)} \\
& \text { - Approximations } J(y)=1 / 12 E\left\{y^{2}\right\}^{2}+1 / 48 k u r t(y)^{2} \\
& \\
& \quad J(y) \approx[E\{G(y)\}-E\{G(v)\}]^{2}
\end{aligned}
$$

where v is a gaussian rand. variable
$G(y)=1 / a \log \cosh (a \cdot y)$
$G(y)=-\exp \left(-a \cdot u^{2} / 2\right)$

Geometric View of ICA
$\mathbf{D}=\mathbf{U S V}^{T}$

Geometric View of ICA

$\mathbf{D}=\mathbf{U S V}^{\top}$
$\mathbf{D}^{\prime}=\mathbf{U}^{\top} \mathbf{D}$

Geometric View of ICA

PCA vs. ICA subspace

- Is ICA and PCA subspace theoretically guaranteed to be the same or different?
- When are the two subspaces different?

Fisher's Linear Discriminant

- Objective: Find a projection which separates data clusters

Poor separation

Good separation

Geometric View of ICA

$\mathbf{D}=\mathbf{U S V}^{T}$
$\mathbf{D}^{\prime}=\mathbf{U}^{\top} \mathbf{D}$
$\mathbf{D}^{\prime \prime}=\mathbf{S}^{-\frac{1}{2}} \mathbf{U}^{T} \mathbf{D}$
$\mathbf{D}^{\prime \prime \prime}=\mathbf{R S}^{-\frac{1}{2}} \mathbf{U}^{T} \mathbf{D}$
$\mathbf{D}=\mathbf{U} \mathbf{S}^{\frac{1}{2} \mathbf{R}^{T} \mathbf{R S}^{-\frac{1}{2}} \mathbf{S V}^{T}, ~}$
$\mathbf{D}=\mathbf{U W}^{-1} \mathbf{W S V}^{T}$
Independent Components

Fisher Linear Discriminant:
FisherFaces

FLD: Theory

- Find a projection that maximize the between-class scatter while minimizing the within-class scatter

FLD: Problem formulation

- N Sample images:
$\left\{\mathbf{i}_{1}, \cdots, \mathbf{i}_{N}\right\}$
- C classes:
- Average of each class:
- Total average:

$$
\boldsymbol{\mu}=\frac{1}{N} \sum_{k=1}^{N} \mathbf{i}_{k}
$$

FLD: Data Scatter

- Within-class scatter matrix

$$
\mathbf{S}_{W}=\sum_{c=1}^{C} \sum_{\mathbf{i}_{n} \in D_{c}}\left(\mathbf{i}_{n}-\mu_{c}\right)\left(\mathbf{i}_{n}-\mu_{c}\right)^{T}
$$

- Between-class scatter matrix

$$
\mathbf{S}_{B}=\sum_{c=1}^{c}\left|D_{c}\right|\left(\boldsymbol{\mu}_{c}-\boldsymbol{\mu}\right)\left(\boldsymbol{\mu}_{c}-\boldsymbol{\mu}\right)^{T}
$$

- Total scatter matrix

$$
\mathbf{S}_{T}=\mathbf{S}_{W}+\mathbf{S}_{B}
$$

Good separation

FLD: Practice (Cont.)

- After projection:
- And...
- Between class scatter (of y's):

$$
\widetilde{\mathbf{S}}_{B}=\mathbf{B}^{T} \mathbf{S}_{B} \mathbf{B}
$$

- Within class scatter (of y's):
$\widetilde{\mathbf{S}}_{W}=\mathbf{B}^{T} S_{W} \mathbf{B}$

Fisher Linear Discriminant

- The basis matrix B is chosen in order to maximize ratio of the determinant between class scatter matrix of the projected samples to the determinant within class scatter matrix of the projected samples

$$
\mathbf{B}=\arg \max _{\mathbf{B}} \frac{\left|\widetilde{\mathbf{S}}_{b t w}\right|}{\left|\widetilde{\mathbf{S}}_{i n}\right|}=\arg \max _{\mathbf{B}} \frac{\left|\mathbf{B}^{T} \mathbf{S}_{b t w} \mathbf{B}\right|}{\left|\mathbf{B}^{T} \mathbf{S}_{i n} \mathbf{B}\right|}
$$

- B is the set of generalized eigenvectors of $S_{B t w}$ and $S_{\text {Win }}$ corresponding with a set of decreasing eigenvalues

$$
\mathbf{S}_{b t w} \mathbf{B}=\mathbf{S}_{\text {wilhin }} \Lambda \mathbf{B}
$$

Fisher Linear Discriminant
Consider a set of images of 2 people under fixed viewpoint \& N lighting condition

Each image is represented by one coefficient vector
Each person is displayed in N images and therefore has N coefficient vectors

