Statistical Linear Models:
ICA & FLD

Data Loss

» Sample points can be projected via the new mxd
projection matrix B, and can still be reconstructed,
but some information will be lost.
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PCA for Recognition - EigenImages

Consider a set of images of 2 people under fixed viewpoint & N lighting condition
Each image is made up of 2 pixels
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Reduce dimensionality by throwing away the axis along which the data varies the least
The coefficient vector associated with the 15 basis vector is used for classifiction
Possible classifier: Mahalanobis distance

Each image is represented by one coefficient vector

Each person is displayed in N images and therefore has N coefficient vectors
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Last Time: PCA

PCA identifies an m dimensional explanation of n dimensional
data where m < n.

Originated as a statistical analysis technique.

PCA attempts to minimize the reconstruction error under the
following restrictions

— Linear Reconstruction

— Orthogonal Factors

Equivalently, PCA attempts to maximize variance.

SVD of a Matrix
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PART I: 2D Vision

» Appearance-Based Methods
« Statistical Linear Models:
— Principal Component Analysis

Today = - ICAFLD

— Non-negative Matrix Factorization, Sparse Matrix Factorization
- Statistical Tensor Models:

— Multilinear PCA,

— Multilinear ICA
« Person and Activity Recognition




Statistical Linear Models ICA

Blind Signal Separation (BSS) or Independent Component Analysis

* Generative Models:
— Second-order methods

« faithful/accurate data representation - minimal reconstruction
(mean-square) error
— covariance
« PCA — Principal Component Analysis
« Factor Analysis
— Higher Order Methods
* meaningful representation
— higher order statistics
* ICA — Independent Component Analysis

Descriminant Models:
— FLD - Fisher Linear Descriminant Analysis

The simple “Cocktail Party” Problem

Mixing matrix A

e=_
Xy
Observations
Sources a—-
Sy "’

n sources, m=n observations

Independent Component Analysis

Given m signals of length n, construct the data
matrix

We assume that X consists of m sources such that

X=AS

where A is an unknown m by m mixing matrix
and S is m independent sources.

(ICA) is the identification & separation of mixtures of sour ith
little prior information.
Applications include:

- Audio Processing

- Medical data

- Finance

- Array processing (beamforming)

Coding

.. and most applications where Factor Analysis and PCA is currently
used.
While PCA seeks directions that represents data best ina Z|x, - x |2
sense, ICA seeks such directions that are most independent from each
other.

Motivation

Two Independent Sources Mixture at two Mics
x,(t)=a;s, +ap,s,

X,(t) =a,s, +ays,

. Depend on the distances of the microphones from the speakers

Motivation

Get the Independent Signals out of the Mixture




Independent Component Analysis

PCA finds the directions that uncorellated

ICA / Blind Source Separation:
— Observed data is modeled as a linear combination of
independent sources
+ Cocktail Problem: A sound recording at a party is the
result of multiple individuals speaking (independent
sources)

- Finds the directions of maximum independence

— Statistically independent:
« Two variables x, y are statistically independent iff

Pix&y) = P(X)P(y).

« Equivalently, E{g(X)h(y)}— E{g(X)}E

where g and h are any functions.

Measures of Non-Gaussianity

We need to have a quantitative measure of non-gaussianity for

ICA Estimation.

— Kurtotis : gauss=0 kurt (y)=F {.1~4} —
(sensitive to outliers)

— Entropy : gauss=largest H(y)= *J f(y)log f(y)dy

— Neg-entropy :
+ gauss = 0 (difficult to estimate)

J(y)=H(y - H(y)

— Approximations /(¥ Y+ Vygkurt(y)*
»i-EGWIF

where v is a gaussian rand. variable : G(»)

Geometric View of ICA
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Computing Independent Components

By maximization of nongaussianity: kurtosis
By maximum likelihood estimation

By minimization of mutual information

By tensorial methods

By nonlinear decorrelation and nonlinear PCA
By methods using time structure

« Hyvarinen A, Karhunen J, Oja E. Independent component analysis, John
Wiley & Sons, Inc., New York, 2001, p. 481
« Material in: http://www.cis.hut.fi/projects/ica/fastica/

Computing IC's using Non-Gausia

Kurtosis
= kuri(y) = E{y*} - 3(E{y?})* = E{y*} - 3

for unit-variance data
— kurt(y) = 0 for gaussian data
— kurt(y) < 0 for subgaussian data
— kurt(y) > 0 for supergaussian data

kurtosis is measured along each possible projection
direction over the data
— a maximum corresponds to one of the IC’s

— other IC’s are found from the orthogonal directions with an iterative
algorithm

— rotation matrix R has now been solved

Geometric View of ICA
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After PCA Rotation
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Geometric View of ICA Geometric View of ICA
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Independent Components

PCA vs. ICA subspace

Is ICA and PCA subspace theoretically guaranteed to be the same or
different?

Fisher Linear Discriminant:
*  When are the two subspaces different?

FisherFaces

Fisher's Linear Discriminant

+ Objective: Find a projection which separates data clusters

Poor separation Good separation Poor separation

6ood separation



FLD: Theory

» Find a projection that maximize the between-class
scatter while minimizing the within-class scatter

FLD: Data Scatter

» Within-class scatter matrix

S, =% 3 (i, )i, ~ )’
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» Between-class scatter matrix
&
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» Total scatter matrix

Sr=Sw+Ss

Good separation

FLD: Problem formulation

N Sample images: {in"':iN}

C classes:
(D, - D, - D]

1 .
Average of each class: B, = F Zlk

i i,eD,

Total average:
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FLD: Practice (cont)

After projection:

y, =B'x
And... : :

Between class scatter (of y’s): S. -B’S B
B — B

Within class scatter (of y’s): S, =B’S,B

Fisher Linear Discriminant

» The basis matrix B is chosen in order to maximize ratio of the
determinant between class scatter matrix of the projected samples to
the determinant within class scatter matrix of the projected samples

in

» B is the set of generalized eigenvectors of Sg;,, and Sy,
corresponding with a set of decreasing eigenvalues

S,.,B=S ... AB

btw within




Fisher Linear Discriminant

+ Consider a set of images of 2 people under fixed viewpoint & N lighting condition

274 axis

pixel 1

< Each image is represented by one coefficient vector

« Each person is displayed in N images and therefore has N coefficient vectors




