Adv. Topics in Statistical Learning: CSE 692
Fall 2007
CLASS INFORMATION:
Lectures: Tue 1:50 -- 3:40 pm
Location: Computer Science Bldg. room 1441
Instructor: Prof. M. Alex O. Vasilescu
Office Hours: Wed 1-2pm or by appointment
Prerequisites: Linear Algebra, Probability, or consent of the instructor.
Course Description:
This
seminar emphasizes the fundamentals of statistical learning, pattern
analysis and recognition. Topics covered include supervised and
unsupervised learning, regression methods, classification methods, basic
expansions and regularization, kernel methods, model assessment and
selection, model inference and averaging, boosting, neural networks,
support vector machines, multilinear (tensor) analysis, nearest-neighbor
methods, and unsupervised clustering.
We will examine one or two papers per class. Students will be grouped
into teams. Each team will be assigned papers to analyze, deliver a
lecture and lead the classroom discussions. All the students are
required to read every paper before it is discussed. Each class will
start by collecting questions from all the students about the topic of
the day, followed by a student presentation, and then classroom
discussions based on the collected questions.
Grading:
There will be no exams or homeworks in this course. The grading will
be based on a course project (50%), the quality of
the seminar presentations delivered by each team(30%), class
participation, and
questions submitted at the start of each class (20%).
Lecture Schedule
Reference Textbooks:
- "Pattern Classification" by Richard O. Duda, Peter E.
Hart, David G. Stork
- "The Elements of Statistical Learning: Data Mining,
Inference, and Prediction" by Trevor Hastie, Robert Tibshirani and Jerome
Friedman
- "Neural Networks for Pattern Recognition" by Christopher M.
Bishop
Partial Reading List:
-
Turk, M. & Pentland, A. (1991). "Eigenfaces for recognition" Journal of Cognitive Neuroscience, 3, 71-86.
http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf
-
B. Moghaddam, W. Wahid, and A. Pentland "Beyond eigenfaces: Probabilistic matching for face recognition",
In Proc. of International Conf. on Automatic Face and Gesture Recognition, pages 30--35, Nara, Japan, April 1998.
http://citeseer.ist.psu.edu/moghaddam98beyond.html
___________________________________________________________________________________
- Hyvarinen, Aapo "Independent Component Analysis: Algorithms and Applications" in Neural Networks, 13(4-5):411-430, 2000.
http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/
- Bartlett M.S., Movellan J.R., Sejnowski T.J, `Face Recognition by Independent Component Analysis', IEEE Transactions on Neural Networks 13 (6) (2002) 1450-- 1464.
http://citeseer.ist.psu.edu/bartlett02face.html
___________________________________________________________________________________
- M. Brand. Incremental singular value decomposition of uncertain data with
missing values. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors,
Seventh Europian Conference on Computer Vision (ECCV), volume 1, pages 707--720.
Springer Verlag (LNCS 2350), 2002.
http://citeseer.ist.psu.edu/665917.html
- M. Brand. Fast online SVD revisions for lightweight recommender systems. In
Proc. SIAM International Conference on Data Mining, 2003.
Paper - pdf.
___________________________________________________________________________________
-
Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization.
Nature, vol.401, no.6755, Macmillan Magazines, 21 Oct. 1999. p.788-91.
___________________________________________________________________________________
-
Belhumeur N., Hespanha J. and Kriegman D., "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection", Proc. ECCV, 45--58, 1996.
http://citeseer.ist.psu.edu/belhumeur96eigenfaces.html
___________________________________________________________________________________
-
Vasilescu M.A.O., Terzopoulos D., "Multilinear Analysis of Image Ensembles: TensorFaces," Proc. 7th European Conference on
Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002, in Computer
Vision -- ECCV 2002, Lecture Notes in Computer Science, Vol. 2350,
A. Heyden et al. (Eds.), Springer-Verlag, Berlin, 2002, 447-460.
Abstract | Full Article in PDF
(882KB)
- Vasilescu M.A.O., Terzopoulos D., `Multilinear Independent Components Analysis', Proc. Computer Vision and Pattern Recognition Conf. (CVPR '05), 547-553 vol.1, 2005.
Paper (1,027 KB - .pdf)
- Vasilescu M.A.O., Terzopoulos D., `Multilinear Projection for Recognition: Extending the Tensor Framework', Proc. International Conference on Computer Vision (ICCV
'07), 2007 (to appear).
___________________________________________________________________________________
- Cootes, T.F.; Edwards, G.J.; Taylor, C.J. Active
appearance models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, June 2001, vol.23, (no.6):681-5.
___________________________________________________________________________________
- R. Bro, PARAFAC: Tutorial & applications, in: 2nd Internet Conf. in Chemometrics (INCINC'96), Chemometrics Intell. Lab. Syst., vol. 38, 1997, pp. 149–171 (special issue)
http://www.models.kvl.dk/users/rasmus/presentations/parafac_tutorial/paraf.htm
- R.A. Harshman, Foundations of the PARAFAC procedure: model and conditions for an “explanatory” multi-mode factor analysis, UCLA Working Papers in Phonetics 16(1) (1970)
___________________________________________________________________________________
Kruskal, J.B., "Rank, decomposition, and Uniqueness for 3-Way and N-Way Decomposition", Multiway Data Analysis, R. Coppi and S.Bolasco (Eds.), Elsevier Science Publishers - North-Holland 1989.
-
Blinn, J.F., "How to solve a cubic equation. Part 1. The shape of the discriminant", Computer Graphics and Applications, IEEE, May-June 2006, vol. 26, nr. 3, pgs: 84- 93
___________________________________________________________________________________
- Schoelkopf, B.; Smola, A.; Mueller, K.-R.
Nonlinear
component analysis as a kernel eigenvalue problem. Neural Computation, 1 July 1998, vol.10, (no.5):1299-319.
- K.-R. Muller, S. Mika, G. Rätsch, K. Tsuda, and B. Scholkopf. "An introduction to kernel-based learning algorithms," IEEE Neural Networks, 12(2):181-201, May 2001.
- B. Schoelkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Mueller, G.
Raetsch, and A.J. Smola.
Input space vs. feature space in kernel-based methods. IEEE
Transactions on Neural Networks, 10(5):1000-1017, September 1999.
- S. Mika, B. Schoelkopf, A.J. Smola, K.-R. Mueller, M. Scholz, and G. Raetsch.
Kernel
PCA and de-noising in feature spaces. In M.S. Kearns, S.A. Solla, and D.A.
Cohn, editors, Advances in Neural Information Processing Systems 11, pages
536-542. MIT Press, 1999.
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 2(2), 1998
- Tutorials on Kernel Methods and SVM
___________________________________________________________________________________
- Roweis, S.T.; Saul, L.K.
Nonlinear
dimensionality reduction by locally linear embedding. Science, 22 Dec.
2000, vol.290, (no.5500):2323-6.
- Tenenbaum, J.B.; de Silva, V.; Langford, J.C.
A
global geometric framework for nonlinear dimensionality reduction.
Science, 22 Dec. 2000, vol.290, (no.5500):2319-23.
___________________________________________________________________________________
-
D. Comaniciu, P. Meer:
Mean shift analysis and applications. Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20-27 Sept.
1999.
-
Subbarao Raghav and Meer Peter,
Nonlinear Mean Shift for Clustering over Analytic Manifolds, CVPR 2006.
___________________________________________________________________________________
- Using Multiple Segmentations to Discover Objects and
their Extent in Image Collections, Bryan Russell, Alexei
Efros, Josef Sivic, William Freeman, and Andrew
Zisserman, CVPR'06.
|
|
|