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Abstract

Tracking human lips in video is an important but notoriously di�cult task. To accurately recover their motions in

3D from any head pose is an even more challenging task, though still necessary for natural interactions. Our approach

is to build and train 3D models of lip motion to make up for the information we cannot always observe when tracking.

We use physical models as a prior and combine them with statistical models, showing how the two can be smoothly and

naturally integrated into a synthesis method and a MAP estimation framework for tracking. We have found that this

approach allows us to accurately and robustly track and synthesize the 3D shape of the lips from arbitrary head poses in

a 2D video stream. We demonstrate this with numerical results on reconstruction accuracy, examples of static ®ts, and

audio-visual sequences. Ó 1998 Elsevier Science B.V. All rights reserved.

Keywords: Lip models; Deformable/non-rigid models; Finite element models; Analysis-synthesis models; Training models from video;

Model-based tracking

1. Introduction

It is well-known that lips play a signi®cant role
in spoken communication. Summer®eld's classic
1979 study (Summer®eld, 1979) showed how the
presence of the lips alone (without tongue or
teeth) raised word intelligibility in noisy condi-
tions from 22.7% to 54% on average and up to a
maximum of 71%. Not only can the lip shape be
used to reduce noise and enhance intelligibilty for
human/machine speech understanding, but it is
also useful as a signi®cant feature for the under-
standing of expression. However, to realize any of

these applications, it is necessary to robustly and
accurately track the lips in 3D. Why is 3D so
critical? Consider the canonical task of speech
recognition at a distance. By moving the micro-
phone from the headset to the desktop and using
the lip shapes to account for the new channel
noise, we can free the user from cumbersome
headgear. However, if he must be facing straight
into the camera in order for the system to work,
we have achieved only minimal freedom. In nat-
ural conversation and expression, we move our
heads constantly, both in translation and rotation.
If we cannot contend with this simple fact, we will
never reach the unconstrained interfaces we desire.
Computer vision techniques have been developed
that accurately track the head's 3D rigid motions
(as in our previous work (Basu et al., 1996; Jebara
and Pentland, 1997)), leaving the formidable task
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of tracking the remaining 3D non-rigid deforma-
tions.

In this paper, we develop a method for suc-
cessfully facing this di�cult problem. One of the
most vexing issues surrounding the lip tracking
problem has been the poor quality of the available
data ± contours, color, ¯ow, etc., are all obscured
at some point or other by lighting, the speed of
motion, and so on. Our approach is thus to build
and rely on strong models of the lip shape to
correct for anomalies in the data. In essence, our
model learns the permissible space of lip motions.
The incoming data from the video stream is then
regularized by this model ± we ®nd the permissible
lip shape that can best account for the data. In this
way, we remain robust to the unavoidable noise in
the raw features. To build and train this model, we
start by giving a lip-shaped mesh generic physical
characteristics using the Finite Element Method
(FEM). This acts as a physically based ``prior''
(i.e., locally elastic behavior) on how things move.
We then train this model with 3D data of real lip
motions and blend the physical prior with the
statistical characteristics of this data. Finally, we
use this physical±statistical model in a MAP esti-
mation framework to ®nd the locally most prob-
able lip shape that accounts for the incoming data.
Along the way, we have also developed a full-
¯edged synthesis model ± by moving the model
through the permissible lip space, we can generate
images of the 3D lips in motion.

Through this method, we have been able to
robustly and accurately track lip shapes in 3D
from arbitrary head poses in a video stream. We
will demonstrate our results with an illustration of
the learned lip subspace, numerical ®gures on re-
construction accuracy, examples of static ®ts of the
model, and audio-visual sequences demonstrating
the tracking and synthesis in action.

1.1. Background

In looking at the prior work on lip modeling
and tracking, there are two major groups of
models. The ®rst of these contains the models de-
veloped for analysis, usually intended for input
into a combined audio±visual speech recognition
system. The underlying assumption behind most

of these models is that the head will be viewed
from only one known pose. As a result, these
models are only two-dimensional. Many are based
directly on image data (Coianiz et al., 1995; Kass
et al., 1988); others use such low level features to
form a parametrized description of the lip shape
(Adjoudani and BenoõÃt, 1995).

Some of the most interesting work done in this
area has been in using a statistically trained model
of lip variations. Bregler and Omohundro (1995)
and Luettin et al. (1996), for example, model the
subspace of lip bitmaps and contours respectively.
However, since these are 2D models, the changes
in the apparent lip shape due to rigid rotations
have to be modeled as complex changes in the lip
pose. In our work, we begin by extending this
philosophy to 3D. By modeling the true three-
dimensional nature of the lips, variations that
look complex and highly nonlinear from a 2D
perspective become far simpler. With a 3D model,
we can rotate the model to match the observed
pose, modeling only the actual variations in lip
shape.

The other category of lip models includes those
designed for synthesis and facial animation. These
lip models are usually part of a larger facial ani-
mation system, and the lips themselves often have
a limited repertoire of motions (Lee et al., 1995).
To their credit, these models are mostly in 3D. For
many of the models, though, the control parame-
ters are de®ned by hand. A few are based on the
actual physics of the lips: they attempt to model
the physical material and musculature in the
mouth region (Essa, 1995; Waters and Frisbie,
1995). Unfortunately, the musculature of the
mouth is extremely complicated and has proved to
be very di�cult to model accurately. Even if the
modeling were accurate, this approach would still
result in a di�cult control problem. Humans do
not have independent control of all of these facial
muscles: normal motions are a small subspace of
the possible muscle states. Some models have tried
to approximate this subspace by modeling key lip
positions (visemes) and then interpolating between
them (for example, (Waters and Frisbie, 1995)).
However, this limits the accuracy of the resulting
lip shapes, since only the key positions are learned
from data.
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We hope to ®ll the gap in these approaches with
our 3D model, which can be used for both analysis
and synthesis. We start with a 3D shape model and
generic physics, but then deform this initial model
with real 3D data to learn the correct modes of
variation, i.e., all of the deformation modes that
occur in the observations. In this way, we not only
address the problem of parametrizing the model's
motions, but also that of control. Because we learn
only the modes that are observed, we end up with
degrees of freedom that correspond only to plau-
sible motions. This yields powerful advantages for
both tracking and synthesizing lip shapes. For
tracking, it means we only need to search along the
learned degrees of freedom (a 10-dimensional
space, for example, instead of a 612-dimensional
one for the unconstrained mesh), and also that we
remain robust to anomalies in the data. For syn-
thesis, it means we have a small number of ``con-
trol knobs'' to produce any lip shape we may need.
Furthermore, as we will show, we also have a
model of the probability density of the lip shape
within this parametric space. We can thus trade o�
the likelihood of the model with the strength of the
observations to ®nd an optimally probable lip
shape given the data.

2. The model

In the following section, we give a brief de-
scription of the choice of the model shape and the
physics used. A more detailed account of the FEM
and particulars of our implementation are pro-
vided in Appendix A.

The underlying representation of our initial
model is a mesh in the shape of the lips. At the
initial stage, before any training has occurred, we
have no learned notion of the lip shape. We thus
simply extract the region surrounding the mouth
in a Viewpoint Data Labs model of the human
head and made a few minor changes to aid the
physical modeling steps ahead. The ®nal model
has 336 faces and 204 nodes, resulting in 612 de-
grees of freedom (three per node). The initial shape
is shown in Fig. 1. Similarly, we have no real idea
what the inherent degrees of freedom of the lips
are. However, we do know something about how
the lip material behaves, namely that it acts in a
locally elastic way. When one portion of the lips is
pulled on, the surrounding region stretches with it.
We express this notion mathematically in our
model by using the FEM. We use this method to
give this initial mesh the properties of a generic
elastic material ± i.e., we treat the mesh as if it were
formed from a rubber sheet. The resulting ®rst-
stage model is a ``physical prior'' for our training
stages to come. It clearly does not have the overall
correct shape modes of the lips, but when we re-
ceive 3D point locations from our training data, it
tells us how to move the points in between.

2.1. More on the FEM

The FEM is a numerical technique for ap-
proximating the physics of an arbitrarily complex
body by breaking it into many small pieces (ele-
ments) whose individual physics are very simple.
The individual stress±strain matrices of the
elements can then be assembled into a single,

Fig. 1. Initial shape of the model: front, partial pro®le and full pro®le views.
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overall matrix expressing the static equilibrium
equation

Ku � f ; �1�
where the displacements u and forces f are in a
global coordinate system. The FEM thus linearizes
the physics of the body around a given point. It is
important to choose this nominal point carefully,
as the linearization is only valid in a limited
neighborhood of the point. Initially, the physics
for the model were derived using a thin-shell
model with the shape in Fig. 1 as a nominal point.
However, because this shape is not very realistic,
we used the training data and the deformation
strategy described in the sections below to deform
this model to a data frame that had the lips in a
typical rest (closed) position. The physics were
then relinearized about this point. The resulting
model was the one used in all of training methods
described below, and is shown in Fig. 2.

Appendix A and Basu (1997) give further de-
tails on the physical modeling techniques that were
used and how they were applied to the lip model.

2.2. Understanding the meaning of the model

It is important here to understand the di�erence
between a physically-based and a physiological
model. We are not attempting to construct a
physiological model, and thus we do not claim that
our model has any simple relation to the actual
sti�nesses of the skin, muscle, and other tissue that
make up the mouth region. Our model is a thin
shell structure, while the actual lips are clearly
volumetric in nature. What we do claim is that our

model (after training) can accurately account for
the visible observations of the mouth. The ``learned
physics'' that we discuss here corresponds to
learning the modes and distributions of deforma-
tions that account for these observations. The
framework of the physical model is simply a means
of modeling these observations that allows us to
conveniently describe the interrelations between
di�erent parts of the structure.

3. The observations

To train this model to have the correct 3D
variations of the lips, it was necessary to have
accurate 3D data. Also, in order to observe natural
motions, it was not acceptable to a�x re¯ective
markers or other cumbersome objects to the lips.
To satisfy these criteria, seventeen points were
marked on the face with ink: sixteen on the lips

Fig. 2. Final linearization point for the model: front, partial pro®le and full pro®le views. The FEM matrix K used for all training

computations was derived from this shape.

Fig. 3. Locations of marked points on the face.
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and one on the nose. The placement of these points
is shown in Fig. 3. The points were chosen to
obtain a maximally informative sampling of the
3D motions of the lips.

Once the points were marked, two views of the
points were taken by using a camera-mirror setup
to ensure perfect synchronization between the two
views. The points were tracked over 150 frames at
a 30 Hz frame rate using supervised normalized
correlation. The two views were then used to re-
construct the 3D location of the points. Finally,
the points were transformed into a head-aligned
coordinate system to prevent the rigid motion of
the head from aliasing with the non-rigid motions
of the lips. See (Basu, 1997) for further details on
these methods.

It was attempted to have as great a variety of lip
motions within this brief period as possible. To
this end, several utterances using all of the English
vowels and the major fricative positions were
spoken during the tracking period. Clearly, 150
frames from one subject is still not enough to cover
all possible lip motions, but it is enough to provide
the model with the initial training necessary to
cover a signi®cant subset of motions. Methods for
continuing the training using other forms of input
data will be discussed in a later section.

4. Training the model

In order to relate the training data to the model,
the correspondence between data points and
model nodes had to be de®ned. This was a simple
process of examining a video frame containing the
marked points and ®nding the nodes on the lip
model that best matched them in a structural
sense. The di�erence between the goal locations of
these points (i.e., the observed 3D point locations)
and their current location in the model is then the
displacement goal, ug.

4.1. Reaching the displacement goals

The issue was then how to reach these dis-
placement goals. The recorded data points con-
strained 48 degrees of freedom (16 points on the
lips with three degrees of freedom each). However,

the other 564 degrees of freedom were left open.
There are an in®nite number of ways to reach the
displacement goals ± as long as the constrained
points reach the goals, the other points are free to
do anything. However, we wanted the physically
correct solution: to pin down the constrained
points and let the other points go to their equi-
librium locations.

Mathematically, this idea translates to the
constraint of minimum strain. Given the set of
constrained point displacements, our solution
must minimize the strain felt throughout the
structure. This solution is thus a physically-based
smoothing operation: the physics of the model are
used to smooth out the regions where we have no
observation data by minimizing the strain in the
model.

Fortunately, in the ®nite element framework,
this solution can be found analytically and with
little computation. If we denote the Kÿ1 matrix
with only the rows pertaining to the constrained
degrees of freedom as P, the desired solution can be
put in the form of the standard underconstrained
least-squares problem. We wish to minimize

f Tf ; �2�
with the constraint

Pf � ug; �3�
which results in following solution (Gelb, 1974):

f̂ � PT�PPT�ÿ1ug: �4�
If we apply this f̂ to the mesh, we will have the
desired minimum-strain displacement.

4.2. Modeling the observations

Once we have all the displacements for all of the
frames, the observed deformations can be related
to a subset of the ``correct'' physics of the model.
We began with the default physics (i.e., fairly
uniform sti�ness, only adjacent nodes connected)
and have now seen how the model can be de-
formed with point observations. The results of
these deformations can now be used to form a
new, ``learned'' K matrix. Martin et al. (1998)
described the connection between the strain matrix
and the covariance of the displacements Ru: if we
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consider the components of the force to be IID
with unit variance, we have

Ru � Kÿ2: �5�
We can now take this mapping in the opposite
direction. Given the sample covariance matrix R̂u,
we can ®nd Kÿ1 by taking its positive de®nite
square root, i.e., diagonalizing the matrix into
SKST (where each column of S is an eigenvector
and K is the diagonal matrix of eigenvalues) and
then reforming it with the square roots of the ei-
genvalues. We can then use the resulting ``sample
Kÿ1'' to represent the learned physics from the
observations. Forces can now be applied to this
matrix to calculate the most likely displacement
given the observations.

However, because we only have a small number
of training observations (150) and a large number
of degrees of freedom (612), we could at best ob-
serve 150 independent degrees of freedom. Fur-
thermore, noise in the observations makes it
unreasonable to estimate even this many modes.
We thus take only the 10 linear modes that ac-

count for the greatest amount of variance in the
input data (i.e., those with the largest eigenvalues
of the covariance matrix). These modes are found
by performing principal components analysis
(PCA) on the sample covariance matrix. The
modal covariance and Kÿ1 matrices can then be
reconstructed using these modes. We thus have a
parametric description of the subspace of lip
shapes (the modes) and a probability measure for
the subspace (the modal covariance matrix).

Frontal, partial pro®le, and full pro®le views of
the the mean displacement (�u) and some of the ®rst
few modes are shown in Fig. 4. Though we are
only using the ®rst ten modes, it was found that
these account for 99.2% of the variance in the
data. We should thus be able to reconstruct most
shape variations from these modes alone.

5. Tracking the lips in raw video

At this point, we have a parametric model of
the permissible lip shapes and a probability model

Fig. 4. Front, partial pro®le and full pro®le views of the mean displacement and some characteristic modes.
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for the resulting subspace. The remaining task is to
®t this model to the raw video stream in the ab-
sence of special markings on the lips or face. As
mentioned earlier, our approach will be to ®nd the
lip shape within the learned subspace that best
accounts for the incoming data. In statistical
terms, this means ®nding the parameters with the
highest a posteriori probability given the obser-
vations and our prior model. Intuitively, though, it
simply means balancing the potentially noisy data
from our observations with our learned notion of
what shapes are permissible.

Any of a number of features (or a combination
thereof) could be used as observations in our
framework ± color classi®cation, optical ¯ow,
contours, tracked points, etc. For this implemen-
tation, we have chosen to use only the color con-
tent of the various regions, as it is a robust and
easily computable candidate. Of course, this fea-
ture will not directly give us any kind of shape
information ± it will only give us the probabilities
of each pixel belonging to the color classes,
fmodel � f �colorjmodel�. From our statistical per-
spective, though, it is clear how this data should be
used. We wish to ®nd the set of parameters p� for
our model that maximizes its posterior probability
given the observations

p� � arg max
p

f �pjO�

� arg max
p

f �Ojp� f �p�
f �O� ; �6�

we can neglect the denominator in the last ex-
pression, since it will be the same for all p, leaving
us with

p� � arg max
p

f �Ojp�f �p�: �7�

We can further simplify this by taking the loga-
rithm. Because the logarithm is a monotonic
function, maximizing the log of the expression in
Eq. (7) is equivalent to maximizing the original
expression

p� � arg max
p

log f �Ojp�f �p�
� arg max

p
log f �Ojp� � log f �p�� �: �8�

Another piece of information we have is the color
class of each point on our model. As shown in the

®gures above, the model contains the lips and
some surrounding skin, and we know a priori
which triangular faces belong to which class. If we
now project the model in state p into the camera
view, we can compute the term f �O�x; y�jp� for
each point in the visible surface of the model. This
value is simply the probability of the observed
color value at �x; y� belonging to the same class as
the point in the model that is projected onto it. To
®nd the overall probability of the model in this
state, we simply take the product of the observa-
tions (making an assumption of independence,
which we will modify later on) over the model
region and postmultiply by the prior value of the
model being in state p,

f �pjO� � a
Y

n

f �On�x; y�jp�f �p�; �9�

where a represents a constant factor to account for
f �O�. In the log domain, this product becomes a
sum,

log f �pjO� �
X

n

log f �On�x; y�jp�

� log f �p� � log a: �10�
This gives us a measure of the posterior proba-
bility of the model being in a given state. We will
show in a later section how this quantity can be
decomposed for e�cient computation. This still
leaves the problem of ®nding the optimal state
without searching the entire subspace. We ap-
proach this through gradient ascent: at each step,
we compute the direction in the parameter space
that will most increase the ®t of our model to the
data. We then take a step in this direction.

In order to apply these ideas to our tracking
problem, we ®rst train models of the color classes
for the skin and lips. Next, we compute the
probability maps for the image (i.e., 2D maps
whose entries are the probability values of the
given class). The model is then initially positioned
based on the rigid pose and geometry of the head.
From this initial ®t, we ®nd the gradient of the
optimization function in Eq. (10) in the parameter
space and climb to a local maximum of the pos-
terior probability. For the next frame, we then
begin the ascent at these parameter values. We will
describe this process in detail in the following
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sections. Note that this technique is much stabler
and faster than the local-contribution method de-
scribed in our earlier work (Basu et al., 1998).

5.1. Training the color classes

The statistical models of the lip and skin colors
are derived by ®rst collecting a hundred or so RGB
sample points from each class for a given user. For
this paper, the samples were picked by hand, but it
is a simple matter to acquire them automatically,
for example using a system such as (Oliver et al.,
1997). The distributions are modeled as mixtures
of Gaussians and are estimated using the Expec-
tation±Maximization algorithm, using three com-
ponents for the lips and one for the skin. In the
past, we have modeled these classes in an intensity-
normalized color space (Basu et. al, 1998), but
have found that this produces less accurate fea-
tures. This is especially true in dark areas where
dividing by the intensity has the dangerous e�ect
of amplifying the camera noise. Furthermore,
there are subjects for whom the lip color is quite
similar to the skin color, in which case it is the
intensity alone which di�erentiates the classes. For
these reasons, we now model the color classes in
the full RGB space.

Once we have these models, we can apply them
to the relevant regions of the image to produce
probability maps for the lip and the skin classes.
Fig. 5 shows the probability maps for the lip
�flips�x; y�� and skin �fskin�x; y�� classes for a typical
input image.

These probability maps tend to be somewhat
noisy due to camera noise, as can be seen in Fig. 5.
To compensate for this, we convolve them with a
7 ´ 7 normalized Hamming kernel, resulting in

smoothed probability maps. Note also that the
lighting conditions can often obscure the color
information available. For example, the right side
of the face in Fig. 5 is too dark to provide any
salient color cues. However, because we have
learned the subspace of permissible lip shapes, the
lip shape can be accurately estimated using only
the available information (i.e., the left side of the
face). The quality of the tracking results under this
particular lighting condition can be viewed in the
®rst audio-visual sequence.

5.2. Projecting the model into the camera view

The 2D projection of the model into the camera
view is found using a pinhole camera model with a
calibrated focal length. The rigid pose of the model
is related to the camera view by six rigid parame-
ters: three for rotation and three for translation. In
addition, there are three scaling parameters (in x, y
and z) that ®t the lip shape to a particular user ±
these parameters are of course constant for a given
user. For the results shown in this paper, these
parameters were ®t by hand in the ®rst frame and
the head was kept rigid throughout the sequence.
We are currently integrating the head-tracking
system in (Jebara and Pentland, 1997) to auto-
matically determine the rigid position of the head.
Given this initial rigid ®t, we iteratively deform the
model along the learned non-rigid modes to max-
imize the probability of the model state given the
observations as described in the sections below.

5.3. Measuring the model probability

In order to measure the probability of the cur-
rent model state given the observations, we need to

Fig. 5. Original image, lip probability map and skin probability map.
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now compute the expression in Eq. (10), which
sums the log probability of the observations. We
can break this expression up into a sum of sums
over the pixels of the faces (the triangular facets)
of the model

log f �pjO� �
X

i

X
facei

log f �O�x; y�jp�

� log f �p� � log a: �11�
Furthermore, we can reduce the computation by
only sampling each face at its centroid and multi-
plying by the visible area of the face, which can be
easily computed as the 3D area multiplied by the
dot product of the view vector and the face normal
(faces that are not visible do not contribute to this
sum). This area Ai is thus multiplied by the value at
the center of the patch, log f �O��xi; �yi�jp�. Note
that this scheme approximates the function as
being constant over the face. This is reasonable for
our situation because of the small size of the faces
(and thus the small variation in the function sur-
face over them ± see Fig. 8). At this point, we also
introduce a scaling factor c that multiplies the re-
sulting value for each face. By multiplying each
centroid probability by the visible surface area (of
Ai pixels2), we are making the assumption that we
have Ai statistically independent samples of the
value at the centroid, which is clearly not the case.
If we do not adjust for the mutual dependence of
these samples, their contribution will overwhelm
the prior ( log f �p�) and we would trust the data
entirely. The small number of samples we are ac-
tually taking and the lack of true independence
among these values does not warrant this level of
trust. We thus scale all of the areas by a parameter
c which compensates for the dependence among
the observations. This makes the e�ect of our
observations commensurate with that of our prior,
still giving each face a contribution proportional
to its visible area.

The resulting scaled total sum is

log f �pjO� �
X

n

cAn log f �O��xn; �yn�jp�

� log f �p� � log a: �12�
We can now simplify f �O�x; y�jp� to flips�x; y� or
fskin�x; y�, depending on whether the given face in

the model is a lip face or a skin face. This breaks
the sum into two pieces:

log f �pjO� �
X

lipfaces

cAn log flips��xn; �yn�

�
X

skinfaces

cAn log fskin��xn; �yn�

� log f �p� � log a: �13�
Lastly, to evaluate the prior term f �p�, we use a
Gaussian model with the learned covariance
Ru;modal, which takes the form

f �p� � 1

�2p�5 � Ruj j0:5
exp ÿ 0:5pTRÿ1

u p
ÿ �

: �14�

The log of this quantity is then simply

log f �p� � C ÿ 0:5pTRÿ1
u p; �15�

where C is the constant log of the scaling for the
Gaussian. This can further be simpli®ed to the sum
of eleven terms, since Ru is diagonal,

log f �p� � C ÿ 0:5
X10

i�1

p2
i

ki
: �16�

The overall posterior probability of the model can
thus be written as a set of simple sums, where the
new constant D is C � a,

log f �pjO� �
X

lipfaces

cAm log flips��xm; �ym�

�
X

skinfaces

cAn log fskin��xn; �yn� �17�

ÿ 0:5
X10

i�1

p2
i

ki
�18�

� D: �19�

5.4. Iterating to a solution

Now that the posterior probability of the model
shape can be computed, we need a means of im-
proving it. We do this by iteratively moving in the
direction that will most improve this posterior. In
general, ®nding the explicit gradient can be quite
expensive, and approximations to the gradient are
used to save computation (as in our previous work
(Basu et al., 1998)). However, in this case, because
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we have found a low-dimensional parametric
space that our model is allowed to move in, we
only need to compute the gradient along these
dimensions. Furthermore, because our modes are
linear, we do not need to relinearize our model at
every step. As a result, we have found that we can
compute the explicit gradients for our model very
e�ciently. Because this correponds to the optimal
direction to move the model, it converges much
more quickly and smoothly to a probabilistic
maximum than our previous method.

We thus wish to ®nd the direction of optimal
ascent in our parametric space. Mathematically,
we seek the quantity

d log f �pjO�
dp

: �20�

Since f �O� is constant for a given frame, we can
apply Bayes' rule and then break this up as fol-
lows:

d log f �pjO�
dp

� d log f �Ojp�
dp

� d log f �p�
dp

: �21�

We will deal with these terms separately to sim-
plify the development. The ®rst term can be
rewritten as a chain of partial derivatives,

d log f �Ojp�
dp

� o log f �Ojp�
o�xn

o�xn

op
; �22�

which can be written more explicitly as

d log f �Ojp�
dp

� c A1
o log f �O��x1;�y1�jp�

ox1
. . . AN

o log f �O��xn;�yn�jp�
oyn

h i

�

o�x1

op1

o�x1

op2
. . . . . .

o�y1

op1

o�y1

op2
. . . . . .

..

. ..
. . .

.

..

. ..
. o�yN

opM

266666664

377777775 �23�

where N is the number of faces and M is the
number of modes being used. The ®rst term in this
product is composed of the x and y derivatives of
the log probability map, scaled by the visible face
areas An and c. The columns of the second term are
simply the in-plane components of the modes
computed at the centroids of each face. To ®nd the

latter, the 3D modes are rotated and scaled by the
rigid transform/scaling discussed earlier. Because
the modes are linear, though, for a given head
pose, this second term is constant. Even when the
head moves, it can be updated at minimal com-
putation cost (the modes are simply transformed
by 3� 3 rotation/scaling matrix).

We now go on to deal with the second term in
Eq. (21). The gradient of this term is

d log f �p�
dp

� ÿ Rÿ1
u p

ÿ �T
: �24�

We now use these results to take a step in the di-
rection of the overall gradient,

p̂ � p̂ � b
d log f �pjO�

dp
; �25�

where b is su�ciently small to account for the non-
linearities in the posterior surface in most cases. To
ensure that we continue moving upwards in prob-
ability, though, the log probability is computed
after each step. If it has decreased, we go back and
use a smaller (half) value of b. This ascent process is
continued until we have converged to a local max-
imum, which typically occurs in less than twenty
iterations. The resulting estimated shape is then
used as the initial shape for the next input frame.

6. Results

In this section, the reconstruction and tracking
capabilities of our method are demonstrated. We
®rst provide numerical results that show the ca-
pability of our model to accurately reconstruct 3D
lip shapes from 2D data. Examples are then pro-
vided of using the tracking method described
above to capture the lip shape from a 2D video
stream and reconstruct the 3D shape. This is
shown both with example ®ts in static frames and
with audio-visual sequences. The advantages of
the modal form of our model are also discussed.

6.1. Reconstruction capabilities

As noted above, one of the major arguments
behind the 3D representation was that a small
number of observations from any viewpoint could
be used to ®nd a good estimate of the model shape.
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This is because the subspace of permissible lip
shapes has been learned. Without the model, the
2D observations would leave far too many degrees
of freedom unconstrained. With the model, as we
will show, all degrees of freedom can accurately be
reconstructed. We demonstrate this by recon-
structing the 3D shape using only xÿ y (frontal
view) data and only y ÿ z (side view) data.

The mean-squared reconstruction errors per
degree of freedom were found for two cases of 2D
observation scenarios and are shown in Table 1.
The results are given in the coordinate system of
the model, in which the model is 2.35 units across,
2.83 units wide and 0.83 units deep. The recon-
struction error shown is from using only the ®rst
ten modes. Note that these results were obtained
using a cross-validation method, so the errors re-
ported are on frames outside the training set.

The rows of the table correspond to what
measurements were used to reconstruct the full 3D
shape. In the ®rst row, only the data available
from a frontal view was used for the estimation. In
other words, the x and y coordinates of all points
were observed, but the z coordinates were not.
Fig. 6 shows the dimensions of the data points
used for the estimation with a `+' marker and
those not used with an `o' marker. Front and side
views of the reconstruction for the point locations
are also shown.

Table 1

Reconstruction error per DOF (in normalized coordinates)

Data used 3D reconstruction error

xy (frontal) 6.70 ´ 10ÿ3

yz (pro®le) 7.13 ´ 10ÿ4

Fig. 6. Data used and a sample reconstruction for frontal view reconstruction experiment. Data point dimensions used (x and y) are

labeled with a `+'; dimensions not used are labeled with an `o'.
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The second row shows the results of using only
the data available from a pro®le (side) view. Here,
the y and z components of the data were observed,
but the x locations were not. Fig. 7 shows the
coordinates used and a sample reconstruction for
this experiment.

Note that in both cases (see Table 1), the re-
construction is quite accurate in terms of mean-
squared error. This shows that the ten learned
modes are a su�ciently strong characterization to
accurately reconstruct the 3D lip shape from 2D
data. It is interesting to note that the y ÿ z data
provides much better performance than the xÿ y
case. This is understandable in that there was a
signi®cant amount of depth variation in the test
frames. Because many xÿ y variations can occur
at a variety of z positions, the depth variation is
not observable from the frontal plane. As a result,
the y ÿ z data provides more information about
the lip shape in these cases. Since our model is a

full 3D representation, it can take advantage of
this disparity (or any other advantageous 3D pose)
when these observations are available.

6.2. Tracking and reconstruction results

In this section, several examples are provided
for using our algorithm to estimate the 3D lip
shape. We begin with a detailed example (Fig. 8).
The ®rst frame shows the mouth image we are
trying to ®t. The next frame shows the initial
placement of the model on the image. The third
frame shows the gradient direction resulting from
the observations. In the last frame we see the ®nal,
converged result after 20 iterations.

Figs. 9±12 show some other frames with the
initial image, the ®nal converged ®t, and the pro®le
view of the estimated model. The audio-visual
sequences these frames are taken from, along
with the tracking and reconstruction views, are

Fig. 7. Data used and a sample reconstruction for pro®le (side) view reconstruction experiment. Data point dimensions used (y and z)

are labeled with a `+'; dimensions not used are labeled with an `o'.
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available on the Elsevier website 2. We recommend
viewing these sequences both at normal speed, in
order to see the natural quality of the motions, but
also at reduced speed, in order to see the quality of
the ®t from frame to frame.

6.3. Advantages of the modal representation

It is worth noting here the ¯exibility that we gain
from having a modal representation. As we have
already described, the ®rst few modes account for
the greatest variation in lip shape, whereas the last
few contribute the least. The more modes we use,
the more accurately we can ®t the shape (though
the gain in accuracy drops with every mode). The
fewer modes we use, the more robustly we can re-

ject noise, since we only move along the directions
of the greatest variation. Increasing or decreasing
the number of modes we use for tracking is thus
like moving a slider between accuracy (many
modes) and robustness (few modes).

One of the main reasons we have used a small
number of modes (10) thusfar is to be robust to
noisy data. When clean data is available, though,
we expect to be able to ®t many more modes for a
higher accuracy of ®t. This points towards a much
more convenient method of continuing to train the
model when clean data is available. We can pro-
duce such clean data by carefully controlling the
lighting or by improving colorspace separation by
using colored lipstick. When such ``clean'' color
data is available, we can ®t many more than ten
modes with high accuracy. Because point marking
and tracking is then no longer necessary, we can
easily train on large volumes of data in this way.
We can then use data collected with this technique

2 Speech ®les available. See http://www.elsevier.nl/locate/spec-

om.

Fig. 8. From initial image to ®nal ®t.
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Fig. 10. Initial image, ®nal ®t and 3D reconstruction.

Fig. 11. Initial image, ®nal ®t and 3D reconstruction.

Fig. 12. Initial image, ®nal ®t and 3D reconstruction.

Fig. 9. Initial image, ®nal ®t and 3D reconstruction.
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to ®nd an improved set of generic modes (model-
ing the lip variations of many users) or a special-
ized set of modes (i.e., for high-detail tracking of
an individual user).

On the other hand, in a video coding applica-
tion, we may be receiving very noisy data (from a
low quality camera) and we want to keep the
number of transmitted bytes very low. For such an
application, we want to use an even smaller num-
ber of modes (perhaps only two or three) to
maximize robustness and data reduction.

The modal representation thus gives us the
powerful capability of moving smoothly between
high accuracy and high robustness, allowing us to
adapt to the quality of the available data and the
bandwidth of the communication channel.

7. Conclusions and future directions

We have presented a method for estimating and
reconstructing the 3D shape of human lips from
raw video data. This method began with a physical
model with generic physical properties ± a rubber
sheet in the shape of the lips. 3D observations were
then used to train this intial model with the true
variations of human lip shapes, smoothly going
from a physical to a hybrid physical±statistical
model. This model ®t naturally into a MAP esti-
mation framework, which was then used for
tracking and resynthesis of 3D lip shapes. We have
shown through static and video examples how the
observations in raw data can be accurately
tracked, and have also demonstrated the ability of
our model to accurately reconstruct 3D lip shapes
from sparse 2D data. With the method presented
here, we can now accurately and robustly track 3D
lip shapes from 2D video data taken from an ar-
bitrary pose.

This capability allows us to look towards a
number of new directions in the future. The ®rst
step will be to integrate a 3D head pose tracker so
that the model does not need to be initialized by
hand in the ®rst frame and so it can deal with large
head motions within a sequence. The next step will
be to incorporate this model as a feature of an
audio-visual speech recognition system, allowing
users to have truly unconstrained head motion

while speaking. Other directions we wish to pursue
include applying this method to other non-rigid
areas of the face, such as the eyes and eyebrows, so
that we can track and resynthesize the entire face
without marking it with points. The methods de-
scribed here can then be used for analysis/synthesis
of all facial motion, which leads to many video
coding and computer graphics applications.
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Appendix A. Using the ®nite element method

In this appendix, we give an overview of the
®nite element method (for the static equilibrium
case), the speci®cs of our model, and the steps
involved in applying our model to the lips.

A.1. The ®nite element method

The FEM is a numerical method for approxi-
mating the physics of an arbitrarily complex body.
The central idea is to break the body into many
small pieces whose individual physics are simple
and then assembling the individual physics into a
complete model. In contrast to the ®nite di�erence
method, the ®nite element method also models the
physics of the material between the nodes. This is
possible because the method gives us interpolation
functions that let us describe the entire modeled
body in a piecewise analytic manner. Given this
piecewise representation, the constitutive relations
are integrated over the entire body to ®nd the
overall stress±strain relationship. These interpol-
ation functions are written in vector form as

S. Basu et al. / Speech Communication 26 (1998) 131±148 145



u�x� � H�x�u; �26�
where u represents the values of the function to be
interpolated at the nodes, H�x� is the interpolation
matrix, and u�x� is the analytic representation of
the function in the local coordinates of the ele-
ment. In our case, the function we are interested in
is the strain � (internal force) resulting from a given
deformation. We can ®nd this using the relation

��x� � B�x�u; �27�
where u now represents the displacements at each
node and B is a combination of H�x� above and
the stress±strain relationship of the material. It can
be obtained by appropriately di�erentiating and
recombining the rows of H given the stress modes
speci®ed by �. To ®nd the sti�ness matrix K for an
entire element, we integrate this relationship over
the volume of the element,

ke �
Z

BTCB dV ; �28�
where C describes the stress±strain relationship
between the di�erent degrees of freedom in the
element. For each such matrix, we have the rela-
tionship

keu � f ; �29�
where u represents the nodal displacements and f
the strain resulting from these displacements. Note
that the stresses and the strains are both expressed
in the local coordinate system at this point. Each
of these element matrices can be transformed by a
matrix k, which transforms the global coordinate
system to the local one,

k �
 õ̂ !
 |̂ !
 k̂ !

264
375; �30�

where õ̂, |̂ and k̂ are unit vectors in the local x, y
and z directions, respectively. Because these vec-
tors are orthonormal, kÿ1 is simply the transpose
of the above matrix. kT thus transforms from the
local coordinate system to the global one.

Note that the matrix above transforms only
three degrees of freedom: to apply it to the strain
matrix for an entire element (which is nine-by-
nine), we must repeat the same k in the following
block-diagonal form:

T �
k

k

k

264
375: �31�

The matrix T can then be applied to the element
strain matrix to produce the strain matrix in the
global coordinate system

k0e � TTkeT: �32�
In the expanded form on the right-hand side, we
can see how in a vector post-multiplication (by a
global displacement) this k0e ®rst transforms the
vector to the local coordinate system (with T),
applies the stress±strain relation (with ke), and
transforms the resulting force back into the global
coordinate system (with TT ).

The resulting transformed strain matrices now
have aligned degrees of freedom and can be as-
sembled into a single, overall matrix such that

Ku � f ; �33�
where the displacements and forces are now in the
global coordinate system.

Further details of this method are described in
many references on ®nite elements including
(Bathe, 1982; Zienkiewicz and Cheung, 1967).
Note that at the current time, we are not consid-
ering the higher order e�ects of dynamics (the
mass and damping matrices) and thus do not
describe them here.

A.2. Model speci®cs

For this application, a thin-shell model was
chosen. We constructed the model by beginning
with a 2D plane-stress isotropic material formu-
lation (Zienkiewicz and Cheung, 1967) and adding
a strain relationship for the out-of-plane compo-
nents. For each triangular element, then, the six in-
plane degrees of freedom are related with a six-by-
six matrix kxy, while the out-of-plane degrees of
freedom are related by the three-by-three kz. In
order to preserve the linearity of our model while
maintaining the use of ¯at elements, we treat these
two modes as being decoupled. They are thus as-
sembled into the total ke as shown in block-matrix
form below:
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ke �
kxy

kz

� �
: �34�

We built the 2D kxy using the formulation as
described by Zienkiewicz and Cheung (1967) and
Bathe (1982). This formulation has the following
stress modes:

� �
�x

�y

cxy

264
375 � ou=ox

ov=oy

ou=oy � ov=ox

264
375; �35�

where u and v correspond to displacements along
the x and y dimensions of the local coordinate
system. Using the relation ��x� � B�x�u and the
overall displacement vector

ue � u1 v1 u2 v2 u3 v3� �T; �36�
we can solve for B. In addition, the material ma-
trix C is

C � E�1ÿ v�
�1� v��1ÿ 2v�

1 v
1ÿv 0

v
1ÿv 1 0

0 0 1ÿ2v
2�1ÿv�

264
375; �37�

where E is the elastic modulus and v is Poisson's
ratio. For the lip model, Poisson's ratio was cho-
sen to be 0.01. Since the elastic modulus E is a
constant multiplier of the entire material matrix, it
can be used to vary the sti�ness of the element as a
whole. As a result, a default value of 1.0 was used
for this parameter. Elements that were to be more
or less sti� than the default material were then
assigned larger and smaller values, respectively.

The next step is to relate the out-of-plane de-
grees of freedom. It is important at this stage to
consider the desired behavior of the material. If it
were important for nodes to be able to move in-
dependently out of the plane without causing
strain in the adjoined nodes, the kz of Eq. (34)
should be diagonal. In this case, however, it is
desired that ``pulling'' on a given node has the
e�ect of ``pulling'' its neighbors along with it. As a
result, we construct the following kz:

kz � E�1ÿ v�
�1� v��1ÿ 2v�

1 ÿ0:5 ÿ0:5

ÿ0:5 1 ÿ0:5

ÿ0:5 ÿ0:5 1

264
375: �38�

Consider this matrix in terms of the basic relation
keue � fe. A positive displacement (out of the
plane) in only one of these degrees of freedom
produces negative forces (into the plane) in the
other two. This means that stretching one node out
of the plane without moving the other two would
require forces pushing the other two down. When
equal displacements are applied to all three nodes,
there is zero strain on the element, resulting in a
rigid motion mode out of the plane. Though the
out-of-plane degrees of freedom are decoupled
from the in-plane components, this mechanism
acts to relate the strain energy to the deformation
of the element due to out-of-plane displacements.
The greater the disparity in out-of-plane dis-
placements (i.e., the greater the stretching of the
element due to such motions), the greater the
strain energy is produced by this kz.

Once the degrees of freedom are properly
aligned as described above, the resulting material
has the approximate physics of many small plane-
strain elements hooked together. The in-plane
forces of one element can pull on both the in-plane
and out-of-plane components of its neighbors, and
the vice versa.

Once the complete K matrix has been assem-
bled, we have a linear approximation to the rela-
tionship between the displacement and the
resulting strain. We can now invert this relation-
ship to ®nd the displacements produced by an
applied force (external strain). However, the ma-
trix cannot be inverted as is: it is necessarily sin-
gular, as there are several displacement vectors
that produce no stress in the body (i.e., they exist
in the nullspace of K). These are the modes of rigid
motion. Consider, for example, a uniform dis-
placement applied to all of the nodes. This would
clearly produce no strain on the body. As a result,
a minimum set of nodes must be ``grounded'' (i.e.,
held ®xed) to prevent these singularities. For a 3D
body, two nodes (6 DOF) must be grounded. This
amounts to removing the rows and columns cor-
responding to the degrees of freedom for these
nodes. The remaining Ks has full rank and can be
inverted to provide the desired strain±stress rela-
tion:

Kÿ1
s fs � us; �39�
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while K is easy to compute and is band diagonal
(due to the limited interconnections between
nodes), ®nding its inverse is an expensive calcula-
tion. We thus want to take this inverse only once at a
point where it is appropriate to linearize the physics.

A.3. Applying the method to the lips

The method described above can be directly
applied to the mesh in Fig. 1, resulting in a phys-
ical model in that shape made up of a uniform
elastic material. However, in order to accentuate
certain properties of the lips, some additional in-
formation was added to the model. First, in order
to maintain smoothness in the inner contours of
the lips, the faces along the inside ridges of the lips
were made twice as sti� as the default material. In
addition, to allow relatively free deformation of
the lips while still maintaining the necessary rigid
constraints, a thin strip of low-sti�ness elements
was added to the top of the lips stretching back
into the oral cavity. The nodes at the far end of
this strip were then ®xed in 3D. Lastly, since the
FEM linearizes the physics of a body around a
given point, the initial K matrix (Fig. 1) was used
to deform the model to a more natural state of the
lips (see Fig. 2), as described in the main text. The
K and Kÿ1

s matrices used for the training were
formed at this point to allow a more e�ective range
for the linearized physics.
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