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Abstract

We present a 3D model of human lips and develop
a framework for training it from real data. The
model starts o� with generic physics speci�ed with
the �nite element method and \learns" the correct
physics through observations. The model's physics
allow physically-based regularization between sparse
observation points and the resulting set of deforma-
tions are used to derive the correct physical modes of
the model. Preliminary results showing the model's
ability to reconstruct lip shapes from sparse data are
shown. The resulting model can be used for both
analysis and synthesis.

1 Introduction

In the course of ordinary conversation and expression, the hu-
man lips can deform in a variety of interesting and non-rigid
ways. Tracking these motions accurately has proved to be quite
di�cult. There are a number of reasons behind this, but pri-
mary among them is that all of the information about the lips is
not observable at a given point. For example, we can at best see
only the inner and outer contours of the lips from a given view.
In addition, the presence of the tongue can obscure the inner
contour, and the esh tone/lighting can obscure the outer con-
tour. we propose that with an accurate spatio-temporal model
of the lips, this task will be greatly simpli�ed. In essence, the
argument is that a model that can only vary in the ways that the
lips actually move will not be \fooled" by erroneous data. Such
a model could form the heart of a robust estimation framework
for �nding the best estimate of the lip pose given whatever
data was available. In addition, this model could be used to
synthesize lip motions for computer graphics. In this study, we
present a model and a means for training it that we feel will be
able to provide these bene�ts for analysis and synthesis.

1.1 Background

In looking at the prior work, there are two major groups of
lip models. The �rst of these contains the models developed
for analysis, usually intended for input into a combined audio-
visual speech recognition system. The underlying assumption
behind most of these models is that the head will be viewed from
only one known pose. As a result, these models are often only
two-dimensional. Many are based directly on image features:
Coianiz et al. [6] and Kass et al. [9] model the lips with contours
along the outer edge, while Duchnowski et al. [7] feed the raw
pixel intensities into a neural net to classify lip shapes. Others
use such low level features to form a parametrization of the lip
shape: Petajan et al. use several image features to estimate an
overal lip contour [13]; Adjoudani et al. relate a small set of
observed features (such as lip opening width and height, etc.)
to the controls of a polygonal lip model [1].

Still others have a trained model of lip variations and at-
tempt to �t the observations to this model. Some of the most
interesting work done in this area has been along these lines:
Bregler and Omohundro's work, for example [5], models the
non-linear subspace of valid lip poses within the image space
and can thus be used for both analysis and synthesis. Similarly,
Luettin's system learns the subspace of variations for 2D con-
tours surrounding the lips [11]. However, in order for these 2D
models to be robust, they have to allow for at least small rota-
tions of the head. The changes in the apparent lip shape due
to rigid rotations, then, have to be modeled as changes in the
actual lip pose. Our goal is thus to extend these ideas to 3D.
By modeling the true three-dimensional nature of the lips, vari-
ations that look complex and nonlinear from a 2D perspective
become simple and linear.

With a 3D model, we can simply rotate the model to match
the observed pose, thus modeling only the actual variations
in lip pose. Some researchers have argued that only two-
dimensional information is observable and that it thus makes
sense to base measurements and models on 2D features alone.
However, while it is true that only the two-dimensional contours
(at best) are visible in a given frame, the meaning of those two
dimensions changes as the subject moves around - with changes
is pose, the unobservables become observable. There has been
some work done taking information from two known views [1],
but this requires the head to remain fairly static. We feel that
in order to capture interesting lip data during natural speech
and gesture, it will be necessary to robustly track the lips from
any pose. In addition, in order to fully train this model, it will
be necessary to apply the observations from an arbitrary pose.
Prior work has shown that the rigid position of the head can be
robustly and accurately tracked [3], so it is feasible that we can
apply the observations from any pose to the correct degrees of
freedom of the model. As a result, our goal has been to create
a model that can cover the full 3D variations of the lips.

The other category of lip models are those designed for syn-
thesis and facial animation. These lip models are usually part of
a larger facial animation system, and the lips themselves often
have a limited repertoire of motions [10]. To their credit, these
models are mostly in 3D. For many of the models, though, the
control parameters are de�ned by hand. A few are based on the
actual physics of the lips: they attempt to model the physical
material and musculature in the mouth region [8],[15]. Unfortu-
nately, the musculature of the lips is extremely complicated and
has proved to be very di�cult to model accurately. The basic
physiology is comprised of an ellipsoidal muscle (the Obicularis
oris) surrounding the mouth and several muscles which push
and pull on this ring. This ellipsoidal muscle is exceedingly
di�cult to model in a computationally economic way. In addi-
tion, even if one were able to completely and correctly model
the muscles and materials, the problem would not be solved:
there would still be the very di�cult issue of control. We do
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not have independent control of all of these facial muscles: the
observed set of facial motions seem to be a slim subspace of the
full range implied by the muscles. Some models, as in the work
by Frisbie and Waters, have tried to approximate this subspace
by modeling key lip positions (visemes) and then interpolating
between them [15]. However, this limits the accuracy of the
resulting lip shapes, since the only shapes learned from data
are those for the static viseme poses.

We hope to �ll the gap in these approaches with a 3D model
that can be used for both analysis and synthesis. Our approach
is to start with a 3D shape model and generic physics. We
then deform this initial model with real 3D data to learn the
correct physics and thus the correct modes of variation. We will
demonstrate this technique using a simple �nite element model
and 3D point data, though the methodology could be applied to
an arbitrary model and observation set. By training the modes
of variation with real data, we can learn all of the deformation
modes that occur in the observations. In this way, we not only
solve the problem of parametrizing the model's motions, but
also that of control. Because we learn only the modes that are
observed, we end up with degrees of freedom that correspond
only to plausible motions.

2 The Model

The underlying representation of our initial model is a mesh in
the shape of the lips constructed from a linear elastic material.
In the following section, we give a brief description of the choice
of model shape and the physics used.

2.1 The initial shape

To get an initial shape for the model, a region surrounding
the lips was extracted from a Viewpoint Data Labs model of
the human head. There were some simple changes that were
necessary to place this shape into a �nite element framework.
Because this mesh was designed for graphics and not for physics,
there was some asymmetry between the right and left halves of
the lips. By forcing these to be symmetric, it was ensured
that the resulting stress-strain relations of the initial model
would also be symmetric. In addition, some faces placed at
strange angles for graphics e�ects were smoothed out to further
facilitate the physical modeling. The �nal model has 336 faces
and 204 nodes, resulting in 612 degrees of freedom (three per
node). The initial shape of the model is shown in �gure 1.

Figure 1: Initial shape of lips

2.2 The �nite element method

The �nite element method (FEM) is a numerical method for
approximating the physics of an arbitrarily complex body. The
central idea is to break the body into many small pieces whose
individual physics are simple and then assembling the individ-
ual physics into a complete model. In contrast to the �nite
di�erence method, the �nite element method also models the
physics of the material between the nodes. This is possible be-
cause the method gives us interpolation functions that let us
describe the entire modeled body in a piecewise analytic man-
ner. Given this piecewise representation, the constitutive re-
lations are integrated over the entire body to �nd the overall
stress-strain relationship. The individual stress-strain matri-
ces found in this manner can then be assembled into a single,
overall matrix expressing the static equilibrium equation

KU = F (1)

where the displacements U and forces F are in a global co-
ordinate system. The details of this method are described in
many references on �nite elements including [4] and [16]. At
the current time, we are not considering the higher order ef-
fects of dynamics (the mass and damping matrices). We hope
to incorporate this into our model in the near future.

2.3 Model Speci�cs

For this application, a thin-shell model was chosen. We
constructed the model by beginning with a 2D plane-stress
isotropic material formulation [16] and adding a strain rela-
tionship for the out-of-plane components. For each triangular
element, then, the six in-plane degrees of freedom are related
with a six-by-six matrix kxy, while the out-of-plane degrees of
freedom are related by the three-by-three kz. In order to pre-
serve the linearity of our model while maintaining the use of at
elements, we treat these two modes as being decoupled. They
are thus assembled into the total ke as shown in block-matrix
form below:

ke =

�
kxy

kz

�
(2)

We built the 2D kxy using the formulation as described by
Zienkiewicz [16] and Bathe [4]. This formulation has the fol-
lowing stress modes:
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where u and v correspond to displacements along the x and y

dimensions of the local coordinate system. Using the relation
�(x) = B(x)U and the overall displacement vector

Ue =
�
u1 v1 u2 v2 u3 v3

�
T

(4)

we can solve for B. In addition, the material matrix C is
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5 (5)

where E is the elastic modulus and v is Poisson's ratio. For
the lip model, Poisson's ratio was chosen to be 0.01. Since the
elastic modulus E is a constant multiplier of the entire material
matrix, it can be used to vary the sti�ness of the element is a
whole. As a result, a default value of 1.0 was used for this
parameter. Elements that were to be more or less sti� than the
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default material were then assigned larger and smaller values
respectively.
The next step is to relate the out-of-plane degrees of freedom.

It is important at this stage to consider the desired behavior
of the material. If it were important for nodes to be able to
move independently out of the plane without causing strain in
the adjoined nodes, the kz of equation 2 should be diagonal.
In this case, however, it is desired that \pulling" on a given
node has the e�ect of \pulling" its neighbors along with it. As
a result, we construct the following kz:

kz =
E(1 � v)

(1 + v)(1� 2v)

"
1 �0:5 �0:5
�0:5 1 �0:5
�0:5 �0:5 1

#
(6)

Consider this matrix in terms of the basic relation keue = fe.
A positive displacement (out of the plane) in only one of these
degrees of freedom produces negative forces (into the plane)
in the other two. This means that stretching one node out of
the plane without moving the other two would require forces
pushing the other two down. When equal displacements are
applied to all three nodes, there is zero strain on the element,
resulting in a rigid motion mode out of the plane. Though the
out-of-plane degrees of freedom are decoupled from the in-plane
components, this mechanism acts to relate the strain energy to
the deformation of the element due to out-of-plane displace-
ments. The greater the disparity in out-of-plane displacements
(i.e., the greater the stretching of the element due to such mo-
tions), the greater the strain energy is produced by this kz.
Once the degrees of freedom are properly aligned as described

above, the resulting material has the approximate physics of
many small plane-strain elements hooked together. The in-
plane forces of one element can pull on both the in-plane and
out-of-plane components of its neighbors, and the vice versa.
Once the complete Kmatrix has been assembled, we have a lin-
ear approximation to the relationship between the displacement
and the resulting strain. We can now invert this relationship to
�nd the displacements produced by an applied force (external
strain). However, the matrix cannot be inverted as is: it is nec-
essarily singular, as there are several displacement vectors that
produce no stress in the body (i.e., they exist in the nullspace
of K). These are the modes of rigid motion. Consider, for
example, a uniform displacement applied to all of the nodes.
This would clearly produce no strain on the body. As a result,
a minimum set of nodes must be \grounded" (i.e., held �xed)
to prevent these singularities. For a 3D body, two nodes (6
DOF) must be grounded. This amounts to removing the rows
and columns corresponding to the degrees of freedom for these
nodes. The remaining Ks has full rank and can be inverted to
provide the desired strain-stress relation:

K
�1
s Fs = Us (7)

while K is easy to compute and band diagonal (due to the
limited interconnections between nodes), �nding its inverse is
an expensive calculation. We thus want to take this inverse
only once at a point where it is appropriate to linearize the
physics.

2.4 Applying the method to the lips

The method described above can be directly applied to the
mesh in �gure 1, resulting in a physical model in that shape
made up of a uniform elastic material. However, in order to
accentuate certain properties of the lips, some additional in-
formation was added to the model. First, in order to maintain
smoothness in the inner contours of the lips, the faces along the

inside ridges of the lips were made twice as sti� as the default
material. In addition, to allow relatively free deformation of
the lips while still maintaining the necessary rigid constraints,
a thin strip of low-sti�ness elements was added to the top of the
lips stretching back into the oral cavity. The nodes at the far
end of this strip were then �xed in 3D. Lastly, since the FEM
linearizes the physics of a body around a given point, the initial
K matrix was used to deform the model to the \rest state" of
the lips (the method for this is described in a following section).

The �nal K and K�1s matrices were formed at this point, to al-
low for a greater e�ective range of the linearized physics. This

K
�1
s was then used for all remaining calculations. The �nal

state of the model after adding these constraints and deforma-
tions can be seen in �gure 7.

3 The Observations

To train this lip model to have the correct 3D variations of
the lips, it was necessary to have accurate 3D data. Also, in
order to observe natural motions, it was not acceptable to a�x
reective markers or other easily trackable objects to the lips.
To satisfy these criteria, seventeen points were marked on the
face with ink: sixteen on the lips themselves and one on the
nose. The placement of these points is shown in �gure 2. Note
that only a subset of the points drawn on the lips (those that
are numbered in �gure 2) were used for tracking. The points
were chosen to obtain a maximally informative sampling of the
3D motions of the lips. The spacing of the points accounts
for the relative nonlinearity of various regions: regions where
more non-linearity was expected were sampled more heavily.
In addition, with the results of this study, it should become
clear where the greatest remaining non-linearities reside, thus
guiding the next stage of training.
It is important to realize that the choice of points is not

inherently limited to those shown. As the development below
will show, any set of observations can be used to train the
model. Of course, the higher the information content of the
data, the less data will be required to train the model. In
addition, because the points would be tracked from two views
in this case, it was necessary to choose points that were visible
over a reasonable range of head rotation from both perspectives.

Figure 2: Locations of marked points on the face

Once the points were marked, two views of the points were
taken by using a camera-mirror setup to ensure perfect synchro-
nization between the two views (see �gure 3). This resulted in
two independent 2D views of the marked points. As can be
seen in �gure 5, the left side of the raw camera view contains
the ipped version of the virtual (left) camera view.
The points were tracked over 150 frames at a 30Hz frame

rate using normalized correlation. Because of the large degree
of motion of the lips between frames, normalized correlation
did not always �nd the correct movement. As a result, a GUI
was developed in which the user could move a tracker back to
the correct point when normalized correlation failed.
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virtual camera

mirror

physical camera

subject

Figure 3: Data collection setup

It was attempted to have as great a variety of lip motions
within this brief period as possible. To this end, several utter-
ances using all of the English vowels and the major fricative
positions were spoken during the tracking period. Clearly, 150
frames from one subject is still not enough to cover all possible
lip motions, but it is enough to provide the model with the ini-
tial training necessary to cover a signi�cant subset of motions.
Methods to continue the training using other forms of input
data will be discussed in a later section. The 3D camera cal-
ibration algorithm of Azarbayejani and Pentland [2] was then
used to calibrate the real and virtual cameras using pinhole
camera models. Given this calibration, the 3D point location
for a given point was estimated by computing the closest point
between the projective rays from the camera COP's (centers of
projection) corresponding to that point. A schematic showing
the projective rays for a sample 3D point are shown in �gure 4.
Also, a sample frame showing the 3D reconstructed points and
the original video frame is shown in �gure 5. Note that the
3D points are shown at a di�erent orientation than the camera
views to demonstrate the reconstruction of depth information.

COP 1 COP 2

cam2 projective ray cam1 projective ray

focal axisfocal axis

cam2 imaging planecam1 imaging plane

3D point location

Figure 4: Point reconstruction geometry

Figure 5: An input frame and the reconstructed 3D points

After the reconstruction, several steps were taken to normal-
ize the input data. The position of the nose was subtracted out
from all points to help account for rigid translation. In addi-
tion, to normalize the e�ects of rigid rotation, planes were �t
to the outer subsets of both the upper and lower lip point sets.

The line forming the intersection of these planes was used to
form the normalized coordinate: this line was treated as the x
axis, the y axis was formed by taking the global y and subtract-
ing o� the projection onto the new x, and the z axis was the
cross product between the two. An example of �tting planes to
the points and �nding the resulting coordinate system in shown
in �gure 6 below.

(a) (b)

(c) (d)

Figure 6: Normalization of 3D point coordinates

In order to then transform the training data into the coordi-
nate frame of the model, a graphical interface was used to �nd
the best rigid rotation, translation, and scaling that would �t
the default model to the �rst frame of this data set. This trans-
form was then inverted to bring the data into the normalized
coordinate system of the model. The philosophy behind this is
that all of the training should be in the coordinate system of
the model; the resulting model can then easily be scaled and
moved (in 3D) to �t new incoming data. This global normal-
ization step was done only once for the entire data set.

4 Training the Model

In order to relate the training data to the model, the correspon-
dence between data points and model nodes had to be de�ned.
This was a simple process of examining a video frame contain-
ing the marked points and �nding the nodes on the lip model
that best matched them in a structural sense. The di�erence
between the goal locations of these points (i.e., the observed
point locations) and their current location in the model is then
the desired displacement goal, Ug.

4.1 Reaching the Displacement Goals

The issue is now how to reach these displacement goals. The
recorded data points have constrained 48 degrees of freedom (16
points on the lips with three degrees of freedom each). However,
the other 564 degrees of freedom are left open. We thus have an
underconstrained problem: there are an in�nite number of ways
to reach the desired displacement goals. However, we would
not be satis�ed with simply any one of these solutions - we
want the one that minimizes the strain energy in the mesh. In
other words, given the set of constrained point displacements,
we want to �nd the set of displacements for the rest of the
nodes that minimizes the strain felt throughout the structure.

We denote the K�1s matrix with all 600 columns but only the
rows pertaining to constrained degrees of freedom as P. We can

4



then describe the problem in the following LaGrange multiplier
formulation: we wish to minimize

F
T
F (8)

with the constraint
PF =Ug (9)

which results in the solution

F̂ = P
T(PPT)�1Ug (10)

This solution is thus a physically based smoothing operation:
we are using the physics of the model to smooth out the regions
where we have no observation data by minimizing the strain in
the model.
A very interesting relationship exists between this solution

and the linear least-squares estimation formulation. Consider
treating the quantity we wish to estimate as the combined vec-
tor of x and y (i.e., U), and the covariance matrix of the data
as that found in equation 12. The LLSE estimate of U is then
exactly the solution we obtained in equation 10 above. In other
words, minimizing the strain in the model for a given set of
displacement constraints is equivalent to �nding the LLSE esti-
mate of the displacements using the covariances resulting from
the physical model. This can also be seen by realizing that

the strain energy FTF is the Mahalanobis distance using this
covariance. Thus by minimizing the strain energy we are maxi-
mizing the likelihood of our solution given a Gaussian model of
the distribution, which in the linear case (i.e., using only second
order moments of the distribution) is equivalent to minimizing
its mean-squared error regardless of the distribution. This pro-
vides a full-circle link between the covariance of the input data
and the strain matrix of the model.
This method has thus given us displacements Û and forces

F̂ for all 612 degrees of freedom for each frame. An example
of using this method to deform the model is shown in �gure 7
below. The deformed state shown was de�ned as the \rest
state" of the lips as described above. The physics were thus

re-linearized at this point, resulting in a �nal K�1s that was
used for the rest of the deformations.

Figure 7: Initial model and deformation to rest state

Two frames of the original video along with the correspond-
ing deformed model are shown in �gure 8 below. Note that
because the deformations of the model are shown in the coor-
dinate system of the model, the deformations of the model will
appear slightly di�erent than the input data (applying the in-
verse of the rotation and independent scaling in x, y, and z that
brought the data points to the model coordinate system would
undo this e�ect).

4.2 Modeling the Observations

Once we have all the displacements for all of the frames, we
can relate the observed deformations to a subset of the \cor-
rect" physics of the model. We began with the default physics

Figure 8: Example deformations of the model

(i.e., fairly uniform sti�ness, only adjacent nodes connected)
and have now observed how the model actually deforms. This
new information can be used to form a new, \learned" K ma-
trix. Martin et al. [12] described the connection between the
strain matrix and the covariance of the displacements. Since

K�1s is a linear transform on F, we can express the covariance
of U in the following way:

KU = E[(K�1s F)(K�1s F)T] = K
�1
s E[FFT](K�1s )T (11)

If we now consider the components of the force to be IID with
unit variance, the covariance matrix of F is the identity and we
are left with

KU = K
�1
s (K

�1
s )

T
=K

�2
s (12)

where the last step is possible because of the symmetry of Ks

and thus ofK�1s . We can also take this mapping in the opposite
direction: given the sample covariance matrix

K̂U = E[(U� �U)(U� �U)T] =
1

n � 1
AA

T (13)

where A is the matrix of observations in which each column is
one observation U and n is the number of observations. We
can �nd K�1 by taking its square root, i.e., diagonalizing the

matrix into S�ST (where each column of S is an eigenvector
and � is the diagonal matrix of eigenvalues) form and then
reforming it with the square roots of the eigenvalues. We can

then use the resulting \sample K�1" to represent the learned
physics from the observations. Forces can now be applied to
this matrix to calculate the most likely displacement given the
observations.
However, because we only have a small number of observa-

tions (150) and a large number of degrees of freedom (612),
we could at best observe 150 independent degrees of freedom.
Furthermore, noise in the observations makes it unreasonable
to estimate even this many modes. We thus take only the 10
observed modes that account for the greatest amount of vari-
ance in the input data. These modes are found by performing
principal components analysis (PCA) on the sample covariance
matrix [14], i.e., taking the eigenvectors and eigenvalues. Find-
ing the eigenvalues and eigenvectors of the expected covari-
ance matrix (which is 612 by 612) would take a great deal of
computation. We can �nd the desired vectors by taking the

eigenvectors of a much smaller matrix ( 1
n�1

ATA) and then

appropriately transforming the results. Note also that because
the matrices involved are symmetric, the eigenvectors will be
orthogonal.
Once the eigenvectors were found, only the ten with the

largest eigenvalues were kept. These were then normalized to
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unit length and used to reassemble the sample covariance ma-

trix as S�ST. We can now use the sample covariance matrix
to �nd the linear least squares estimate (LLSE) of the over-
all displacements given any subset of the displacements as an
observation.

5 Results

The sample covariance was computed using only the �rst 140
frames so that the last ten could be used as a test set. After
computing the covariance, the ten most expressive modes were
found as described above. The mean displacement (�U) and
some of the �rst few modes are shown �gure 9 below. It was
found that the �rst ten modes cover 99.2 percent of the variance
in the data - we should thus be able to reconstruct most shape
variations from these modes alone.

Figure 9: The mean displacement and some characteristic
modes

To demonstrate how well this captures the variations in the
data, the LLSE formulation was used to estimate the overall
lip shape. As discussed earlier, one of the major arguments be-
hind the 3D representation was that we could use any number
of observations from any viewpoint and �nd the best estimate
of the model shape. To demonstrate this capability, we have
reconstructed the full shape using only y-z data and only x-y
data (from all of the points) and x-y-z data from only a subset
of the points. For the ten data frames that were not included
in the sample covariance, the mean-squared reconstruction er-
rors per degree of freedom were found for several cases and are
shown in the table below. The results are given in the coor-
dinate system of the model, in which the model is 2.35 units
across, 2.83 units wide, and 5.05 units deep. The �rst column
of the table shows the reconstruction error using only the �rst
ten modes; the second shows the error using the full covariance
matrix. The fact that the performance is quite similar in both
cases implies that the �rst ten modes have captured the im-
portant modes of variation in the data. The rows of the table
correspond to what degrees of freedom were used to reconstruct
the full 3D shape. In the �rst row, the �rst eight points (shown
in �gure 2) were used to reconstruct the remainder of the dis-
placements. Note that the model performs quite well in this
case, again implying that it has learned to some degree the
permissible subset of lip motions. The second row shows the
results of using only the y and z components of the data. This
corresponds to the data that would be available from a pro�le
view. The last row contains the results using the x and y com-
ponents (i.e., a frontal view). It is interesting to note that the
y-z data provides much better peformance than the x-y case.
This is understandable in that there was a signi�cant amount

of depth variation in the test frames. Because some x-y vari-
ations can occur with di�erent degrees of z motion, the depth
variation is not observable from the frontal plane. As a result,
the y-z data provides more information about the lip shape in
these cases. Since our model is a full 3D representation, it can
take advantage of this disparity (or any other advantageous 3D
pose) when these observations are available.

Table 1: Reconstruction error per DOF (in normalized coordi-
nates)

Constraints Used First 10 modes Full Covar.

xyz (8 points) 1.10e-3 7.80e-4
yz (all points) 7.13e-4 4.38e-4
xy (all points) 6.70e-3 7.50e-3

6 Conclusions and Future Directions

With these preliminary experiments, the advantages of this full
3D analysis-synthesis model are clear. We can apply any num-
ber of observations for any points from any pose and robustly
�nd the best lip shape estimate (although a minimum of points
will be necessary for an accurate estimate). However, this is not
the whole story. Clearly, it is not practical to mark and track
points on every subject. To continue the training process, it
will be necessary to use coarser features such as contours or
color classi�cation data. Though we will not have a direct cor-
respondence with the model as in the case with point data,
the relationship we presented between the covariance and the
strain matrices allows us to use this information in a very di�er-
ent way. In essence, we can use the observed features to apply
forces to the learned physics of the model. If a contour is not
at the right position for the lip, it can apply a force in the right
direction, and the learned physics will deform the rest of the
model in an appropriate way.

6.1 Improving the Model

Because this model has only observed a subset of all possible
lip motions, we cannot do the full deformation necessary for
a new motion using only the learned physics. Clearly, as we
have forced it to have a rank of only 10, it cannot cover all
possible variations of the lips. It is thus necessary to retain
the original full-rank physical model in order to reach the new
deformations. It is critical to use both the learned and the
original models together. The learned model acts as a prior for
the gross deformations and can quickly get us to the neighbor-
hood of the correct displacement. The original model can then
make small perturbations to this to make the �nal �t. Using
the learned model alone cannot reach all of the deformations,
and using the original model alone can produce improbable lip
displacements since it has no notion of the range of possible lip
motions. With this combined approach, we can to continue to
train this model to cover all possible lip motions.
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