
Intelligent agents need to learn how the communication 
structure evolves within interacting groups and how to 
influence the groups overall behavior. We are developing 
methods to automatically and unobtrusively learn the 
social network structure that arises within a human group 
based on wearable sensors.  Computational models of 
group interaction dynamics are derived from data 
gathered using wearable sensors. The questions we are 
exploring are: Can we tell who influences whom? Can we 
quantify this amount of influence?  How can we modify 
group interactions to promote better information 
diffusion?  The goal is real-time learning and modification 
of social network relationships by applying statistical 
machine learning techniques to data obtained from 
unobtrusive wearable sensors. 

1 Motivation 
In almost any social and work situation our decision-
making is influenced by the actions of others around us. 
Who are the people we talk to? For how long? How often? 
How actively do we participate in the conversations? 
Answers to these questions have been used to understand 
the success and effectiveness of a work group or an 
organization as a whole.  Can we identify the differences 
between people’s interactions? Can we identify the 
individuals who talk to a large fraction of the group or 
community members? Such individuals, often referred to 
the connectors, have an important role in information 
diffusion [1]. Thus, learning the connection structure and 
nature of communication among people are important in 
trying to understand the following phenomena:  (i) 
diffusion of information (ii) consensus building (iii) 
coalition formation etc.  

The goal of our research is twofold – (i) build systems and 
sensors that can play the role of a mythical "familiar" that 
sits perched on a user's shoulder, seeing what he sees, with 
the opportunity to learn what he learns (ii) build an 
algorithmic pipeline that can take these sensors data and 

model the dynamics and interconnections between 
different players in the community. Although some may 
claim the link structure or social connections are often 
known, in many cases it has been shown that informal 
networks coexist with the formal structure of an institution 
and these spontaneous networks enhance the productivity 
of the formal organization [2].  We believe the best way to 
learn the informal networks is through observations. We 
then need to have a mechanism to understand the dynamics 
of an individual and how they interact with each other 
from observations.  

We are interested in models the can capture the dynamics 
of an individual and how they interact with others in their 
social network.  While a variety of models are potentially 
appropriate, such as, the HMM or the coupled HMM, these 
require a very large number of parameters to describe the 
interactions, so learning the parameters of these models is 
difficult and interpretation of the model parameters is 
impossible.   

We propose as an alternative an elaboration of Influence 
model developed by Chalee Asavathiratham in [3]. The 
Influence Model parameterizes the hidden state transition 
probabilities by taking a convex combination of the 
pairwise transitions with a constant “influence” parameter.  
A key property of the Influence Model is a framework for 
understanding the global behavior by doing eigenstructure 
analysis of the more tractable “influence matrix”.  This is 
important in trying to understand how the behavior of each 
individual agent affects the global dynamics. 

We develop a learning algorithm for this model and show 
its abilities to model chain dependencies in comparison to 
other standard models with synthetic data.  We also show 
early results of applying this model to human interaction 
data.            

In our research, we hope to lay the groundwork for being 
able to automatically study how different groups within 
social or business institutions connect, understand how 
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information propagates between these groups and analyze 
the effects of new policy or new technology on the group 
structure.   

2 Measuring Interactions – The Sociometer 
In this section we describe how we use wearable sensors to 
measure interactions. The first step towards reliably 
measuring communication is to have sensors that can 
capture interaction features. For example, in order to 
measure face-to-face interactions we need to know who is 
talking to whom, the frequency and duration of 
conversations.  
 

We describe an experiment we completed at the MIT 
Media lab. A group of people at the lab agreed to wear the 
sociometer – the wearable sensor package that measures 
social interactions. It is an adaptation of the hoarder board, 
a wearable data acquisition board, designed by the 
electronic publishing and the wearable computing group at 
the Media lab [4, 5]. The sociometer is especially designed 
for the comfort of the wearer, aesthetics, and placement of 
sensors that are optimal in getting reliable measurements 
of interactions [6]. The users have the device on them for 
six hours a day (11AM –5PM) while they are on MIT 
campus. We performed the experiment in two stages – (i) 
the single group stage where 8 subjects from the same 
research group wore the sociometer for 10 days (60 hours 
of data per subject). (ii) the multi-group stage where 23 
subjects from 4 different research group wore the 
sociometer for 11 days (over two full work weeks and 66 
hours of data per subject). 
 

 

Figure 1 The shoulder mounted sociometer 

 
The sociometer has an IR transceiver, a microphone, two 
accelerometers, on-board storage, and power supply. The 
wearable stores the data locally on a 256MB compact flash 
card and is powered by four AAA batteries. A set of four 
AAA batteries is enough to power the device for 24 hours. 
Everything is packaged into a shoulder mount so that it can 
be worn all day without any discomfort.  
 

The sociometer stores the following information for each 
individual  

(i) Information about people nearby (sampling 
rate 17Hz – sensor IR) 

(ii) Speech information (8KHz - microphone) 
(iii) Motion information (50Hz - accelerometer)  

 
Other sensors (e.g. light sensors, GPS etc.) can also be 
added in the future using the extension board.  
 

Using the sociometer, we can obtain the following 
information about people’s communication – (i) who are 
the people an individual talks to (ii) the frequency of their 
communication (iii) the duration of their communication 
(iv) and also the flavor of their conversation. For more 
details about this please refer to [7, 8]. 

3 The Influence Model 
The step after data collection is building a computational 
model that can use the data to infer the dynamics of the 
individuals and their interconnections. The learnability and 
interpretability of a model greatly depends on its 
parameterization. The "Influence Model," describes the 
connections between many Markov chains with a simple 
parameterization in terms of the “influence” each chain has 
on the others[3]. Asavathiratham showed how complex 
phenomena involving interactions between large numbers 
of chains could be simulated through this simplified 
model, such as the up/down time for power stations across 
the US power grid.  The Influence model is a tractable 
framework for understanding the recurrent classes of the 
global system and its steady state behavior by doing 
eigenstructure analysis of the “influence matrix”. This 
representation makes the analysis of global behavior 
possible, which otherwise would become intractable with 
increasing number of individuals or agents. 
 

In Asavathiratham’s description all states were observed. 
He did not develop a mechanism for learning the 
parameters of the model – he assumed that they were 
known apriori.  Learning the model parameters from 
observation in an important requirement in our case. We 
extend his model by adding the notion of hidden states and 
observations. We describe algorithms for learning the 
parameters of the Influence model in section 4. 
 

The graphical model for the influence model is identical to 
that of the generalized N-chain coupled HMM, but there is 
one very important simplification.  Instead of keeping  the 

entire 1
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In other words, we form our probability for the next 
state by taking a convex combination of the pairwise 



conditional probabilities for our next state given our 
previous state and the neighbors’ previous state.  As a 
result, we only have N QxQ tables and N α  parameters 
per chain, resulting in a total of NQ2 + N2 transition 
parameters - far fewer parameters than any of the above 
models.  The real question, of course, is whether we 
have retained enough modeling power to determine the 
interactions between the participants. Asavathiratham 
refers to the α 's as "influences," because they are 
constant factors that tell us how much the state 
transitions of a given chain depend on a given 
neighbor.  It is important to realize the ramifications of 
these factors being constant:  intuitively, it means that 
how much we are influenced by a neighbor is constant, 
but how we are influenced by it depends on its state.   
 

This simplification seems reasonable for the domain of 
human interactions and potentially for many other 
domains.  Furthermore, it gives us a small set of 
interpretable parameters, the α  values, which summarize 
the interactions between the chains.  By estimating these 
parameters, we can gain an understanding of how much 
the chains influence each other.   
 

  

Figure 2 Graphs for (a) a generalized coupled HMM, 
(b) an Influence Model with hidden states, (c) an 
Influence Model with observed states. 

3.1 The Influence Matrix 
 
There is clearly a computational advantage of using the 
influence model framework in terms of the relatively small 
number of parameters that must be learned. Another 
benefit of this representation is comes also during the 
analysis the global dynamics of the system.  It has been 
shown in [3] that we can make statements about the 
recurrent states and the steady state probabilities of the 
global system by analyzing the structure of the influence 
matrix. 

The influence matrix H is defined as the Kronecker 
product [9] of the network influence matrix A and the local 
state transition matrix P. 

H P= Α ⊗  

The recurrent state of a Markov chain is a state j if Pj(T<���
= 1 otherwise if Pj(T=����������	�
���
	����	�
�������������
time of the first visit to state j. 

As the dimension of G is exponential in the number of 
nodes (agents) in the system it is practically impossible to 
do computation on G. Thus being able to relate G and H 
and thereby do some computation on H that provides 
results for G will be of great practical importance. The 
following connections have been shown between G and H 
– (i) the recurrent classes of the master Markov chain can 
be inferred from the structure of the graph H (ii) the 
influence matrix H has a dominant eigenvalue at 1 and its 
algebraic multiplicity if equal to the number of recurrent 
classes of G (iii) one can also track the evolution of the 
steady state probability of the influence model E(s[k]) 
instead of the state probability of the global Markov model 
E(f[k]). 

The advantage of doing such analysis in the domain of 
human interaction is in understanding how connections 
between people effect the overall group behavior. The 
connections we have with the others increase the 
correlation of the statuses of connected sites. How can we 
manipulate our links to better propagate information or 
stop the flow of information among the group? If we want 
consensus among nodes what kind of network graph will 
help achieve that, i.e. can we identify and modify the 
recurrent states of the network?  

Our framework allows us to take a data driven approach to 
modeling social dynamics. In the following section we 
describe how we learn individual’s states from observation 
data of their communication and use those to learn the 
network influence matrix. By doing so we will have 
learned all the parameters necessary to define the in 
Influence model. We will then be ready to understand the 
global properties of the system and how we may go about 
changing these properties. 

4 Learning for the Influence Model 
The problem of estimating the Influence Model from data 
can be stated as follows. We are given sequences of 

observations, { }itx , from each chain, i . The goal is to 

estimate the amount of influence, ijα , that chain j has on 

chain i, along with the pairwise conditional probability 
distributions that describe this inter-chain influence, 

1( | )i j
t tP S S − . In this section we develop methods for doing 

this and illustrate them with synthetic data. 

4.1 Expectation-Maximization Method 
 
In  Figure 2 we show the graphical model for the most 
general form of the Influence Model with hidden states and 
continuous observations. Fitting this model to data requires 



us to maximize the likelihood of Influence Model over its 
free parameters. The likelihood function can be readily 
written as: 
 

0 0 0 1( , ) ( ) ( | ) ( | ) ( | )i i i i i i j
t t ij t t
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 =  
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One possibility for estimating the parameters of this model 
is Expectation-Maximization. The E-step requires us to 
calculate ( | )P S X  which in most cases amounts to 

applying the Junction Tree algorithm (exact inference) or 
other approximate inference algorithms. We will discuss 
the possibilities for doing inference on this model later. 
The M-step is specific to this model and requires 
maximizing the lower bound obtained in the E-step. 
Examining this expression we can see that the M-step for 

all the parameters except the ijα ’s is only trivially 

different from the HMM[10]. However, we can readily 

write down the update equations for the ijα ’s by noticing 

that they are mixture weights for N conditional probability 

tables analogous to a mixture of Gaussians. The ijα  

update equations are obtained by following the derivation 
of the M-step for a Gaussian mixture (i.e. introduce a 
hidden state to represent the “active” mixture component 
and then take an expectation over its sufficient statistics): 

1

1

( , , | )

( , | )

i i j
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The “ i
tc j= ” event means that at time t  chain i  was 

influenced by chain j , and the “ i
tS k= ” event means 

that chain i  was in state k  during time t . 
 
Unfortunately, exact inference of the Influence model is 
computationally intractable because of the densely 
connected hidden variables [11]. Variational methods or 
approximate inference techniques may be alternate 
tractable methods for learning the full model. However, in 
the next section we take a different approach towards 
tackling the intractability problem. 

4.2 The Constrained Gradient Descent Method 
 
Due to the difficulties involved in doing the inference 
required for E-step, we decided to simplify the estimation 

problem by allowing the states i
tS  to be observed for each 

chain (see Figure 2). In practice, we found we could obtain 
reasonable state sequences by fitting an HMM to each 

chain’s observations and performing a Viterbi decoding. 
Then the chain transition tables can be easily estimated (by 
frequency counts) directly from these state sequences. 
Since our goal is to estimate the inter-chain influences (via 

the ijα ’s) this “clamping” of the observation and chain 

transition parameters help combat the overfitting problems 
of the full model. 
 

We now have an unusual DBN where the observed nodes 
are strongly interconnected and the hidden states are not. 
This presents serious problems for inference because 
marginalizing out the observed state nodes causes all the 
hidden states to become fully connected across all time and 
all chains. Unless we apply an approximation that can 
successfully decouple these nodes, a maximization 
procedure such as EM will not be tractable. However, 

there is a far similar way to estimate the ijα  values in our 

observed scenario. Let us first examine how the likelihood 
function simplifies for the observed Influence Model: 

 0 1( |{ }) ( ) ( | )i i j
ij ij t t
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Converting this expression to log likelihood and removing 

terms that are not relevant to maximization over ijα  

yields: 

*
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We can further simplify this expression by keeping 
terms relevant to chain i : 
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This per chain likelihood is concave in ijα , which can be 

easily shown as follows: Let 
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This is concave since for any 0 1w< ≤  and 0 1,α α : 
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(using Jensen’s inequality) 
 

Now take the derivative w.r.t. ijα : 
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Here we notice the gradient and the per-chain likelihood 
expression above are inexpensive to compute with 
appropriate rearranging of the conditional probability 
tables to form the i

tB  vectors. This along with the facts 

that the per-chain likelihood is concave and the space of 

feasible ijα ’s is convex means that this optimization 

problem is a case of constrained gradient ascent with full 
1-D search (see [12]).  Furthermore, in all examples in this 
paper, 20 iterations were sufficient to ensure convergence. 

4.3 Performance of the Learning Algorithms 
To evaluate the effectiveness of our learning algorithm we 
show results on synthetic data. The data is generated by an 
Influence Model with 3 chains in lock step: one leader 
which was evolving randomly (i.e., flat transition tables) 
and 2 followers who meticulously followed the leader (i.e., 
an influence of 1 by chain 2 and a self-influence of 0). We 
sampled this model to obtain a training sequence of 50 
timesteps for each chain. These state sequences were then 
used to train another randomly initialized Influence Model.  
For this learned model, the 1( | )i j

t tP S S −  were estimated by 

counting and the ijα ’s by maximizing the likelihood with 

gradient ascent as described above. The resulting influence 
graph is shown along with a typical sample sequence in 
Figure 3.  Note how the “following” behavior is learned 
exactly by this model – chains 1 and 3 follow chain 2 
perfectly.  
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Figure 3 The evaluation pipeline for testing the 
Influence Model on the lockstep synthetic data: (a) the 

graph for the generating model at time t and t+1 (b) the 
training sequence (c) the learned influences (α’s) – the 
thickness of the lines corresponds to the magnitude of 
the influence.  Note that the strong influence of chain 2 
on 1 and 3 was correctly learned. (d) Sample paths 
from the learned model.  Note how chains 1 and 3 (the 
followers) follow chain 2 perfectly. 

We also evaluate EM with Junction Tree on the 
Generalized Coupled HMM (i.e. full state transition 
tables instead of the mixtures of pairwise tables). Again 
we sample from the lock step model as before and train 
a randomly initialized fully connected model. In this 
case, the learned model performed reasonably well, but 
was unable to learn the “following” behavior perfectly 
due to the larger number of parameters it had to learn 
( 1

1 1( | ,..., )i N
t t tP S S S− −  vs. 1( | )i j

t tP S S − ).   
 

5 Results from Pilot Experiment 
We used a pilot dataset of natural human interactions 
collected using the sociometer to learn the influences 
α among individuals. The details of the data collection 
process is described in section 2 and here we are using the 
data from the single-group stage. Figure 4 shows in the 
influence graph for the network where the strength of the 
link is proportional to the influence values.  Qualitative 
comparison of our results with surveys filled out by 
participants show strong correlation in the influence 
values. However, we are in the process of doing rigorous 
analysis and obtaining quantitative results for our 
algorithms by comparing the accuracy of our result to 
hand-labeled ground truth data of the interactions. We plan 
to do analysis on the global behavior of the network, and 
also get results on how well our learned model can do 
prediction on future datasets. 
 

 

Figure 4 The influence graph for the single-group stage 

6 Conclusion 
 

In this paper, we present a method for analyzing the 
connectivity and dynamics of interacting groups using data 
gathered from wearable sensors. We develop 
computational models that use these sensors measurements 
to estimate how much influence the members of a network 
have on the dynamics of one another. Using these models, 
we can also analyze how the influence relationships affect 



the global network properties and how changes in an 
individual’s connection with others can potentially change 
the behavior of the whole network. 
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