
Intelligent agents need to learn how the communication
structure evolves within interacting groups and how to
influence the groups overall behavior. We are developing
methods to automatically and unobtrusively learn the
social network structure that arises within a human group
based on wearable sensors. Computational models of
group interaction dynamics are derived from data
gathered using wearable sensors. The questions we are
exploring are: Can we tell who influences whom? Can we
quantify this amount of influence? How can we modify
group interactions to promote better information
diffusion? The goal is real-time learning and modification
of social network relationships by applying statistical
machine learning techniques to data obtained from
unobtrusive wearable sensors.

1 Motivation
In almost any social and work situation our decision-
making is influenced by the actions of others around us.
Who are the people we talk to? For how long? How often?
How actively do we participate in the conversations?
Answers to these questions have been used to understand
the success and effectiveness of a work group or an
organization as a whole. Can we identify the differences
between people’s interactions? Can we identify the
individuals who talk to a large fraction of the group or
community members? Such individuals, often referred to
the connectors, have an important role in information
diffusion [1]. Thus, learning the connection structure and
nature of communication among people are important in
trying to understand the following phenomena: (i)
diffusion of information (ii) consensus building (iii)
coalition formation etc.

The goal of our research is twofold – (i) build systems and
sensors that can play the role of a mythical "familiar" that
sits perched on a user's shoulder, seeing what he sees, with
the opportunity to learn what he learns (ii) build an
algorithmic pipeline that can take these sensors data and

model the dynamics and interconnections between
different players in the community. Although some may
claim the link structure or social connections are often
known, in many cases it has been shown that informal
networks coexist with the formal structure of an institution
and these spontaneous networks enhance the productivity
of the formal organization [2]. We believe the best way to
learn the informal networks is through observations. We
then need to have a mechanism to understand the dynamics
of an individual and how they interact with each other
from observations.

We are interested in models the can capture the dynamics
of an individual and how they interact with others in their
social network. While a variety of models are potentially
appropriate, such as, the HMM or the coupled HMM, these
require a very large number of parameters to describe the
interactions, so learning the parameters of these models is
difficult and interpretation of the model parameters is
impossible.

We propose as an alternative an elaboration of Influence
model developed by Chalee Asavathiratham in [3]. The
Influence Model parameterizes the hidden state transition
probabilities by taking a convex combination of the
pairwise transitions with a constant “influence” parameter.
A key property of the Influence Model is a framework for
understanding the global behavior by doing eigenstructure
analysis of the more tractable “influence matrix”. This is
important in trying to understand how the behavior of each
individual agent affects the global dynamics.

We develop a learning algorithm for this model and show
its abilities to model chain dependencies in comparison to
other standard models with synthetic data. We also show
early results of applying this model to human interaction
data.

In our research, we hope to lay the groundwork for being
able to automatically study how different groups within
social or business institutions connect, understand how

Learning Communities: Connectivity and Dynamics of
Interacting Agents

Tanzeem Choudhury1, Brian Clarkson2, Sumit Basu3, and Alex Pentland1

1 MIT Media Lab
20 Ames Street

Cambridge, MA 02139
USA

{tanzeem,sandy}@media.mit.edu

2Sony Computer Science Laboratories
Takanawa Muse Bldg.

Shinagawa-ku, Tokyo, 141-0022
Japan

clarkson@csl.sony.co.jp

3Microsoft Research

One Microsoft Way
Redmond, WA 98052

USA
sumitb@microsoft.com

MIT Media Lab Technical Report TR#560
To appear in the Proceedings of the International Joint Conference on Neural Networks - Special Session on Autonomous
Mental Development. July 2003.

information propagates between these groups and analyze
the effects of new policy or new technology on the group
structure.

2 Measuring Interactions – The Sociometer
In this section we describe how we use wearable sensors to
measure interactions. The first step towards reliably
measuring communication is to have sensors that can
capture interaction features. For example, in order to
measure face-to-face interactions we need to know who is
talking to whom, the frequency and duration of
conversations.

We describe an experiment we completed at the MIT
Media lab. A group of people at the lab agreed to wear the
sociometer – the wearable sensor package that measures
social interactions. It is an adaptation of the hoarder board,
a wearable data acquisition board, designed by the
electronic publishing and the wearable computing group at
the Media lab [4, 5]. The sociometer is especially designed
for the comfort of the wearer, aesthetics, and placement of
sensors that are optimal in getting reliable measurements
of interactions [6]. The users have the device on them for
six hours a day (11AM –5PM) while they are on MIT
campus. We performed the experiment in two stages – (i)
the single group stage where 8 subjects from the same
research group wore the sociometer for 10 days (60 hours
of data per subject). (ii) the multi-group stage where 23
subjects from 4 different research group wore the
sociometer for 11 days (over two full work weeks and 66
hours of data per subject).

Figure 1 The shoulder mounted sociometer

The sociometer has an IR transceiver, a microphone, two
accelerometers, on-board storage, and power supply. The
wearable stores the data locally on a 256MB compact flash
card and is powered by four AAA batteries. A set of four
AAA batteries is enough to power the device for 24 hours.
Everything is packaged into a shoulder mount so that it can
be worn all day without any discomfort.

The sociometer stores the following information for each
individual

(i) Information about people nearby (sampling
rate 17Hz – sensor IR)

(ii) Speech information (8KHz - microphone)
(iii) Motion information (50Hz - accelerometer)

Other sensors (e.g. light sensors, GPS etc.) can also be
added in the future using the extension board.

Using the sociometer, we can obtain the following
information about people’s communication – (i) who are
the people an individual talks to (ii) the frequency of their
communication (iii) the duration of their communication
(iv) and also the flavor of their conversation. For more
details about this please refer to [7, 8].

3 The Influence Model
The step after data collection is building a computational
model that can use the data to infer the dynamics of the
individuals and their interconnections. The learnability and
interpretability of a model greatly depends on its
parameterization. The "Influence Model," describes the
connections between many Markov chains with a simple
parameterization in terms of the “influence” each chain has
on the others[3]. Asavathiratham showed how complex
phenomena involving interactions between large numbers
of chains could be simulated through this simplified
model, such as the up/down time for power stations across
the US power grid. The Influence model is a tractable
framework for understanding the recurrent classes of the
global system and its steady state behavior by doing
eigenstructure analysis of the “influence matrix”. This
representation makes the analysis of global behavior
possible, which otherwise would become intractable with
increasing number of individuals or agents.

In Asavathiratham’s description all states were observed.
He did not develop a mechanism for learning the
parameters of the model – he assumed that they were
known apriori. Learning the model parameters from
observation in an important requirement in our case. We
extend his model by adding the notion of hidden states and
observations. We describe algorithms for learning the
parameters of the Influence model in section 4.

The graphical model for the influence model is identical to
that of the generalized N-chain coupled HMM, but there is
one very important simplification. Instead of keeping the

entire 1
1 1(| ,...,)i N

t t tP S S S− − , we only keep 1(|)i j
t tP S S −

and approximate the former with:

1
1 1 1(| ,...,) (|)i N i j

t t t ij t t
j

P S S S P S Sα− − −= ∑

In other words, we form our probability for the next
state by taking a convex combination of the pairwise

conditional probabilities for our next state given our
previous state and the neighbors’ previous state. As a
result, we only have N QxQ tables and N α parameters
per chain, resulting in a total of NQ2 + N2 transition
parameters - far fewer parameters than any of the above
models. The real question, of course, is whether we
have retained enough modeling power to determine the
interactions between the participants. Asavathiratham
refers to the α 's as "influences," because they are
constant factors that tell us how much the state
transitions of a given chain depend on a given
neighbor. It is important to realize the ramifications of
these factors being constant: intuitively, it means that
how much we are influenced by a neighbor is constant,
but how we are influenced by it depends on its state.

This simplification seems reasonable for the domain of
human interactions and potentially for many other
domains. Furthermore, it gives us a small set of
interpretable parameters, the α values, which summarize
the interactions between the chains. By estimating these
parameters, we can gain an understanding of how much
the chains influence each other.

Figure 2 Graphs for (a) a generalized coupled HMM,
(b) an Influence Model with hidden states, (c) an
Influence Model with observed states.

3.1 The Influence Matrix

There is clearly a computational advantage of using the
influence model framework in terms of the relatively small
number of parameters that must be learned. Another
benefit of this representation is comes also during the
analysis the global dynamics of the system. It has been
shown in [3] that we can make statements about the
recurrent states and the steady state probabilities of the
global system by analyzing the structure of the influence
matrix.

The influence matrix H is defined as the Kronecker
product [9] of the network influence matrix A and the local
state transition matrix P.

H P= Α ⊗

The recurrent state of a Markov chain is a state j if Pj(T<���
= 1 otherwise if Pj(T=����������	�
���
	����	�
�������������
time of the first visit to state j.

As the dimension of G is exponential in the number of
nodes (agents) in the system it is practically impossible to
do computation on G. Thus being able to relate G and H
and thereby do some computation on H that provides
results for G will be of great practical importance. The
following connections have been shown between G and H
– (i) the recurrent classes of the master Markov chain can
be inferred from the structure of the graph H (ii) the
influence matrix H has a dominant eigenvalue at 1 and its
algebraic multiplicity if equal to the number of recurrent
classes of G (iii) one can also track the evolution of the
steady state probability of the influence model E(s[k])
instead of the state probability of the global Markov model
E(f[k]).

The advantage of doing such analysis in the domain of
human interaction is in understanding how connections
between people effect the overall group behavior. The
connections we have with the others increase the
correlation of the statuses of connected sites. How can we
manipulate our links to better propagate information or
stop the flow of information among the group? If we want
consensus among nodes what kind of network graph will
help achieve that, i.e. can we identify and modify the
recurrent states of the network?

Our framework allows us to take a data driven approach to
modeling social dynamics. In the following section we
describe how we learn individual’s states from observation
data of their communication and use those to learn the
network influence matrix. By doing so we will have
learned all the parameters necessary to define the in
Influence model. We will then be ready to understand the
global properties of the system and how we may go about
changing these properties.

4 Learning for the Influence Model
The problem of estimating the Influence Model from data
can be stated as follows. We are given sequences of

observations, { }itx , from each chain, i . The goal is to

estimate the amount of influence, ijα , that chain j has on

chain i, along with the pairwise conditional probability
distributions that describe this inter-chain influence,

1(|)i j
t tP S S − . In this section we develop methods for doing

this and illustrate them with synthetic data.

4.1 Expectation-Maximization Method

In Figure 2 we show the graphical model for the most
general form of the Influence Model with hidden states and
continuous observations. Fitting this model to data requires

us to maximize the likelihood of Influence Model over its
free parameters. The likelihood function can be readily
written as:

0 0 0 1(,) () (|) (|) (|)i i i i i i j
t t ij t t

ji i t

P S X P S P x S P x S P S Sα −
 =

∑∏ ∏∏

One possibility for estimating the parameters of this model
is Expectation-Maximization. The E-step requires us to
calculate (|)P S X which in most cases amounts to

applying the Junction Tree algorithm (exact inference) or
other approximate inference algorithms. We will discuss
the possibilities for doing inference on this model later.
The M-step is specific to this model and requires
maximizing the lower bound obtained in the E-step.
Examining this expression we can see that the M-step for

all the parameters except the ijα ’s is only trivially

different from the HMM[10]. However, we can readily

write down the update equations for the ijα ’s by noticing

that they are mixture weights for N conditional probability

tables analogous to a mixture of Gaussians. The ijα

update equations are obtained by following the derivation
of the M-step for a Gaussian mixture (i.e. introduce a
hidden state to represent the “active” mixture component
and then take an expectation over its sufficient statistics):

1

1

(, , |)

(, |)

i i j
t t t

new t k l
ij i j

t t
t k l

P c j S k S l X

P S k S l X
α

−

−

= = =
=

= =

∑∑∑
∑∑∑

The “ i
tc j= ” event means that at time t chain i was

influenced by chain j , and the “ i
tS k= ” event means

that chain i was in state k during time t .

Unfortunately, exact inference of the Influence model is
computationally intractable because of the densely
connected hidden variables [11]. Variational methods or
approximate inference techniques may be alternate
tractable methods for learning the full model. However, in
the next section we take a different approach towards
tackling the intractability problem.

4.2 The Constrained Gradient Descent Method

Due to the difficulties involved in doing the inference
required for E-step, we decided to simplify the estimation

problem by allowing the states i
tS to be observed for each

chain (see Figure 2). In practice, we found we could obtain
reasonable state sequences by fitting an HMM to each

chain’s observations and performing a Viterbi decoding.
Then the chain transition tables can be easily estimated (by
frequency counts) directly from these state sequences.
Since our goal is to estimate the inter-chain influences (via

the ijα ’s) this “clamping” of the observation and chain

transition parameters help combat the overfitting problems
of the full model.

We now have an unusual DBN where the observed nodes
are strongly interconnected and the hidden states are not.
This presents serious problems for inference because
marginalizing out the observed state nodes causes all the
hidden states to become fully connected across all time and
all chains. Unless we apply an approximation that can
successfully decouple these nodes, a maximization
procedure such as EM will not be tractable. However,

there is a far similar way to estimate the ijα values in our

observed scenario. Let us first examine how the likelihood
function simplifies for the observed Influence Model:

 0 1(|{ }) () (|)i i j
ij ij t t

ji i t

P S P S P S Sα α −
 =

∑∏ ∏∏

Converting this expression to log likelihood and removing

terms that are not relevant to maximization over ijα

yields:

*
1arg max log (|)

ij

i j
ij ij t t

i t j

P S S
α

α α −

=

∑∑ ∑

We can further simplify this expression by keeping
terms relevant to chain i :

*
1arg max log (|)

ij

i j
ij ij t t

t j

P S S
α

α α −

=

∑ ∑

This per chain likelihood is concave in ijα , which can be

easily shown as follows: Let

0i

iN

α
α

α

 =

�

0
1

1

(|)

(|)

i
t t

i
t

i N
t t

P S S

B

P S S

−

−

 =

� then the per chain likelihood

becomes: () log , i
i t

t

f Bα α= ∑ .

This is concave since for any 0 1w< ≤ and 0 1,α α :

0 1 0 1

0 1

0 1

0 1

((1)) log (1) ,

log (1) , ,

(1) log , log ,

(1) () ()

i
t

t

i i
t t

t

i i
t t

t

f w w w w B

w B w B

w B w B

w f wf

α α α α

α α

α α

α α

− + = − +

 = − +

≥ − +

= − +

∑

∑
∑

(using Jensen’s inequality)

Now take the derivative w.r.t. ijα :

() 1 1

1

(|) (|)
.

(|) ,

i j i j
t t t t

i k i
t tij ik t t i t

k

P S S P S S

P S S Bα α α
− −

−

∂ = =
∂ ∑ ∑∑

Here we notice the gradient and the per-chain likelihood
expression above are inexpensive to compute with
appropriate rearranging of the conditional probability
tables to form the i

tB vectors. This along with the facts

that the per-chain likelihood is concave and the space of

feasible ijα ’s is convex means that this optimization

problem is a case of constrained gradient ascent with full
1-D search (see [12]). Furthermore, in all examples in this
paper, 20 iterations were sufficient to ensure convergence.

4.3 Performance of the Learning Algorithms
To evaluate the effectiveness of our learning algorithm we
show results on synthetic data. The data is generated by an
Influence Model with 3 chains in lock step: one leader
which was evolving randomly (i.e., flat transition tables)
and 2 followers who meticulously followed the leader (i.e.,
an influence of 1 by chain 2 and a self-influence of 0). We
sampled this model to obtain a training sequence of 50
timesteps for each chain. These state sequences were then
used to train another randomly initialized Influence Model.
For this learned model, the 1(|)i j

t tP S S − were estimated by

counting and the ijα ’s by maximizing the likelihood with

gradient ascent as described above. The resulting influence
graph is shown along with a typical sample sequence in
Figure 3. Note how the “following” behavior is learned
exactly by this model – chains 1 and 3 follow chain 2
perfectly.

1

2 3

Influence Model (LockStep Simulation)

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12
Influence Model Sample Sequence (LockStep Simulation)

ch
a

in
 1

 c

h
a

in
 2

 c

h
a

in
 3

time

x1(t)

x2(t)

x3(t)

x1(t+1)

x2(t+1)

x3(t+1)

s1(t)

s2(t)

s3(t)

s1(t+1)

s2(t+1)

s3(t+1)

Generating Model

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4
Sample Training Sequence

ch
a

in
 1

 c

h
a

in
 2

 c

h
a

in
 3

time

Figure 3 The evaluation pipeline for testing the
Influence Model on the lockstep synthetic data: (a) the

graph for the generating model at time t and t+1 (b) the
training sequence (c) the learned influences (α’s) – the
thickness of the lines corresponds to the magnitude of
the influence. Note that the strong influence of chain 2
on 1 and 3 was correctly learned. (d) Sample paths
from the learned model. Note how chains 1 and 3 (the
followers) follow chain 2 perfectly.

We also evaluate EM with Junction Tree on the
Generalized Coupled HMM (i.e. full state transition
tables instead of the mixtures of pairwise tables). Again
we sample from the lock step model as before and train
a randomly initialized fully connected model. In this
case, the learned model performed reasonably well, but
was unable to learn the “following” behavior perfectly
due to the larger number of parameters it had to learn
(1

1 1(| ,...,)i N
t t tP S S S− − vs. 1(|)i j

t tP S S −).

5 Results from Pilot Experiment
We used a pilot dataset of natural human interactions
collected using the sociometer to learn the influences
α among individuals. The details of the data collection
process is described in section 2 and here we are using the
data from the single-group stage. Figure 4 shows in the
influence graph for the network where the strength of the
link is proportional to the influence values. Qualitative
comparison of our results with surveys filled out by
participants show strong correlation in the influence
values. However, we are in the process of doing rigorous
analysis and obtaining quantitative results for our
algorithms by comparing the accuracy of our result to
hand-labeled ground truth data of the interactions. We plan
to do analysis on the global behavior of the network, and
also get results on how well our learned model can do
prediction on future datasets.

Figure 4 The influence graph for the single-group stage

6 Conclusion

In this paper, we present a method for analyzing the
connectivity and dynamics of interacting groups using data
gathered from wearable sensors. We develop
computational models that use these sensors measurements
to estimate how much influence the members of a network
have on the dynamics of one another. Using these models,
we can also analyze how the influence relationships affect

the global network properties and how changes in an
individual’s connection with others can potentially change
the behavior of the whole network.

Acknowledgements
This work has been partially supported by Center for Bits
and Atoms NSF research grant number NSF CCR-
0122419. The authors would like to thank Rich DeVaul,
Vadim Gerasimov and Leonardo Villarreal for designing
and testing the sociometer hardware.

References

1. Gladwell, M., The Tipping Point: How little things

make can make a big difference. 2000, New York:
Little Brown.

2. Huberman, B. and Hogg, T., Communities of
Practice: Performance and Evolution. Computational
and Mathematical Organization Theory, 1995. 1: p.
73-95.

3. Asavathiratham, C., The Influence Model: A
Tractable Representation for the Dynamics of
Networked Markov Chains, in Dept. of EECS. 2000,
MIT: Cambridge. p. 188.

4. Gerasimov, V., Selker, T., and Bender, W., Sensing
and Effecting Environment with Extremity Computing
Devices. Motorola Offspring, 2002. 1(1).

5. DeVaul, R. and Weaver, J.,MIT Wearable Computing
Group. 2002. http://www.media.mit.edu/wearables/.

6. Choudhury, T. and Clarkson, B., Reference Design
for A Social Interaction Sensing Platform,, Media
Lab Internal Design Document, 2002: Cambridge,
MA.

7. Choudhury, T. and A, P. The Sociometer: A
Wearable Device for Understanding Human
Networks. In Computer Supported Cooperative Work
- Workshop on Ad hoc Communications and
Collaboration in Ubiquitous Computing
Environments -. 2002. New Orleans, LA.

8. Basu, S., Conversation Scene Analysis, in Dept. of
Electrical Engineering and Computer science.
Doctoral. 2002, MIT. p. 1-109.

9. Schafer, R.D., An Introduction to Nonassociative
Algebras. 1996, New York: Dover.

10. Blimes, J., A Gentle Tutorial on the EM Algorithm
and its Application to Parameter Estimation for
Gaussian Mixture and Hidden Markov Models, 1997,
University of California, Berkely, ICSI-TR-97-021

11. Lauritzen, S.L. and Spiegelhalter, D.J., Local
computations with probabilities on graphical
structures and their application to expert systems.
Journal of the Royal Statistical Society, 1988. B50: p.
157-224.

12. Bertsekas, D.P., Nonlinear Programming. 1995,
Belmont: Athena Scientific.

