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Abstract

We address the problem of tracking and reconstruct-
ing 3D human lip motions from a 2D view. This prob-
lem is challenging due both to the complex nature of
lip motions and the minimal data available from a raw
video stream of the face. We counter both of these
di�culties with statistical approaches. We �rst build
a physically-based 3D model of lips and train it to
cover only the subspace of lip motions. We then track
this model in video by �nding the shape within the
subspace that maximizes the posterior probability of
the model given the observed features. In this study,
the features are the likelihoods of the lip and non-lip
color classes: we iteratively derive forces from these
values to apply to the physical model and converge
to the �nal solution. Because of the full 3D nature
of the model, this framework allows us to track the
lips from any head pose. In addition, because of the
constraints imposed by the learned subspace of the
model, we are able to accurately estimate the full 3D
lip shape from the 2D view.

1 Introduction

The lips are a critical factor in human communication: they
are an important cue for speech recognition and are among
the primary components of facial expressions. As a result, the
detailed shape of the lips is an important input for systems
that wish to observe, process, and code human communication.
However, obtaining this input has proved to be quite di�cult.
When we are presented with a speaker's lips in a video stream,
there is not a lot of visual information to work with. This is
especially true given the complex ways in which lips can move.
Furthermore, while the head is typically moving about in 3D,
we have available only the 2D projection. Even the contours of
the lips are often obscured by the lighting, facial hair, or other
disturbances. Among the only features we can depend on is the
color content of the lips and surrounding regions, though even
this information is often noisy.

Our goal is to �nd a means of robustly estimating the 3D lip
shape despite these limitations. It has been clear from the be-
ginning of our work that in order to reach this goal, we would
need a 3D model so that the lips could be tracked from any
pose. In addition, we realized that this model would have to
conform to a strict subspace that would contain only the per-
missible lip shapes. Without these constraints on the shape,
the model could never estimate the full 3D shape from only
noisy 2D information. Lastly, we would like this model to be
physically based so that we can apply the standard tools of de-
formation and equilibrium to drive it from local observations.
To satisfy these needs, we have constructed an FEM model of

the lips and trained it with 3D data to conform to the subspace
of lip motions.

Even with this model, we are left with the formidable chal-
lenge of tracking the lips in video data. Again we choose a
statistical approach, modeling the color distributions of the lip
and non-lip regions. We are then able to compute likelihood
maps of each class over the relevant region of the input stream.
By then projecting our 3D model into the 2D camera view, we
can measure the posterior probability of the model shape us-
ing this information. This method allows us to �nd the correct
lip pose by matching the distributions of the observations and
those implied by the model, thereby maximizing the posterior
probability of the model shape given the observations.

In this paper, we will describe in detail how we have formu-
lated each of these techniques and how we apply them to this
problem. We will then show our results, demonstrating how our
statistical framework has allowed to us accurately and robustly
estimate and reconstruct the 3D lip shape from 2D video data.

1.1 Background

In looking at the prior work on lip modeling, there are two ma-
jor groups of models. The �rst of these contains the models
developed for analysis, usually intended for input into a com-
bined audio-visual speech recognition system. The underlying
assumption behind most of these models is that the head will be
viewed from only one known pose. As a result, these models are
only two-dimensional. Many are based directly on image data
[5],[7]; others use such low level features to form a parametrized
description of the lip shape [1].

Some of the most interesting work done in this area has been
in using a statistically trained model of lip variations. Bregler
and Omohundro's work and Luettin's work, for example ([4]
and [9]), model the subspace of lip bitmaps and contours re-
spectively. However, since these are 2D models, the changes in
the apparent lip shape due to rigid rotations have to be mod-
eled as complex changes in the lip pose. One goal of this paper
is to extend these ideas to 3D. By modeling the true three-
dimensional nature of the lips, variations that look complex
and nonlinear from a 2D perspective become simple and linear.
With a 3D model, we can simply rotate the model to match the
observed pose, modeling only the actual variations in lip shape.

The other category of lip models includes those designed for
synthesis and facial animation. These lip models are usually
part of a larger facial animation system, and the lips themselves
often have a limited repertoire of motions [8]. To their credit,
these models are mostly in 3D. For many of the models, though,
the control parameters are de�ned by hand. A few are based
on the actual physics of the lips: they attempt to model the
physical material and musculature in the mouth region [6],[12].
Unfortunately, the musculature of the mouth is extremely com-
plicated and has proved to be very di�cult to model accurately.
Even if the modeling were accurate, this approach would still

1



result in a di�cult control problem. Humans do not have inde-
pendent control of all of these facial muscles: normal motions
are a slim subspace of the possible muscle states. Some models
have tried to approximate this subspace by modeling key lip
positions (visemes) and then interpolating between them (for
example [12]). However, this limits the accuracy of the result-
ing lip shapes, since only the key positions are learned from
data.

We hope to �ll the gap in these approaches with a 3D model
that can be used for both analysis and synthesis. Our approach
is to start with a 3D shape model and generic physics. We
then deform this initial model with real 3D data to learn the
correct modes of variation, i.e., all of the deformation modes
that occur in the observations. In this way, we not only address
the problem of parametrizing the model's motions, but also that
of control. Because we learn only the modes that are observed,
we end up with degrees of freedom that correspond only to
plausible motions.

2 The Model

In the following section, we give a brief description of the choice
of model shape and the physics used. A much more detailed
account is given in [2].

The underlying representation of our initial model is a mesh
in the shape of the lips. The mesh is constructed from a linear
elastic material modeled by the Finite Element Method (FEM).
The initial shape for the model was obtained by extracting a re-
gion surrounding the lips from a Viewpoint Data Labs model of
the human head. Some small changes were made in this initial
model to make it suitable for the �nite element framework.

The FEM is a numerical method for approximating the
physics of an arbitrarily complex body. The individual stress-
strain matrices of the elements can be assembled into a single,
overall matrix expressing the static equilibrium equation

KU = F (1)

where the displacements U and forces F are in a global coordi-
nate system. The details of this method are described in many
references (e.g., [3]).

For this application, a thin-shell model was chosen. We
constructed the model by beginning with a 2D plane-stress
isotropic material formulation and adding a strain relationship
for the out-of-plane components (see [2] for further details).

It is important here to understand the di�erence between
a physically-based and a physiological model. We are not at-
tempting to construct a physiological model, and thus we do
not claim that our model has any simple relation to the actual
sti�nesses of the skin, muscle, and other tissue that make up
the mouth region. Our model is a thin shell structure, while the
actual lips are clearly volumetric in nature. What we do claim
is that our model (after training) can accurately account for the
visible observations of the mouth. The \learned physics" that
we discuss here corresponds to learning the modes and distribu-
tions of deformations that account for these observations. The
framework of the physical model is simply a means of model-
ing these observations that allows us to conveniently model the
interrelations between di�erent parts of the structure.

3 The Observations

To train this model to have the correct 3D variations of the lips,
it was necessary to have accurate 3D data. Also, in order to
observe natural motions, it was not acceptable to a�x reective
markers or other cumbersome objects to the lips. To satisfy

these criteria, seventeen points were marked on the face with
ink: sixteen on the lips and one on the nose. The placement
of these points is shown in �gure 1. The points were chosen to
obtain a maximally informative sampling of the 3D motions of
the lips.

Figure 1: Locations of marked points on the face

Once the points were marked, two views of the points were
taken by using a camera-mirror setup to ensure perfect synchro-
nization between the two views. The points were tracked over
150 frames at a 30Hz frame rate using supervised normalized
correlation. The two views were then used to reconstruct the
3D location of the points. Finally, the points were transformed
into a head-aligned coordinate system to prevent the rigid mo-
tion of the head from aliasing with the non-rigid motions of the
lips.

It was attempted to have as great a variety of lip motions
within this brief period as possible. To this end, several utter-
ances using all of the English vowels and the major fricative
positions were spoken during the tracking period. Clearly, 150
frames from one subject is still not enough to cover all possible
lip motions, but it is enough to provide the model with the ini-
tial training necessary to cover a signi�cant subset of motions.
Methods to continue the training using other forms of input
data will be discussed in a later section.

4 Training the Model

In order to relate the training data to the model, the correspon-
dence between data points and model nodes had to be de�ned.
This was a simple process of examining a video frame contain-
ing the marked points and �nding the nodes on the lip model
that best matched them in a structural sense. The di�erence
between the goal locations of these points (i.e., the observed
point locations) and their current location in the model is then
the displacement goal, Ug.

4.1 Reaching the Displacement Goals

The issue was then how to reach these displacement goals. The
recorded data points constrained 48 degrees of freedom (16
points on the lips with three degrees of freedom each). How-
ever, the other 564 degrees of freedom were left open. To solve
this underconstrained problem, we added the constraint of min-
imum strain. Given the set of constrained point displacements,
our solution minimized the strain felt throughout the structure.
This solution is thus a physically based smoothing operation:
we are using the physics of the model to smooth out the regions
where we have no observation data by minimizing the strain in

the model. We denote the the K�1 matrix with only the rows
pertaining to the constrained degrees of freedom as P. The
minimum strain solution can then be expressed as:

F̂ = P
T(PPT)�1Ug (2)

Details of the derivation can be found in [2].
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Figure 2: The mean displacement and some characteristic
modes

4.2 Modeling the Observations

Once we have all the displacements for all of the frames, we
can relate the observed deformations to a subset of the \cor-
rect" physics of the model. We began with the default physics
(i.e., fairly uniform sti�ness, only adjacent nodes connected)
and have now observed how the model actually deforms. This
new information can be used to form a new, \learned" K ma-
trix. Martin et al. [10] described the connection between the
strain matrix and the covariance of the displacements Ru: if
we consider the components of the force to be IID with unit
variance, we have

Ru =K
�2
s (3)

We can now take this mapping in the opposite direction. Given

the sample covariance matrix R̂u, we can �nd K�1 by taking
its positive de�nite square root, i.e., diagonalizing the matrix

into S�ST (where each column of S is an eigenvector and �
is the diagonal matrix of eigenvalues) and then reforming it
with the square roots of the eigenvalues. We can then use the

resulting \sample K�1" to represent the learned physics from
the observations. Forces can now be applied to this matrix to
calculate the most likely displacement given the observations.

However, because we only have a small number of training
observations (140) and a large number of degrees of freedom
(612), we could at best observe 140 independent degrees of free-
dom. Furthermore, noise in the observations makes it unreason-
able to estimate even this many modes. We thus take only the
10 linear modes that account for the greatest amount of vari-
ance in the input data (i.e., those with the largest eigenvalues of
the covariance matrix). These modes are found by performing
principal components analysis (PCA) on the sample covariance
matrix. We can then reconstruct the modal covariance and
K�1 matrices using these modes. We thus have a paramet-
ric description of the subspace of lip shapes (the modes) and
a probability measure for the subspace (the modal covariance
matrix).

The sample covariance was computed using only the �rst 140
frames so that the last ten could be used as a test set. The mean
displacement (�U) and some of the �rst few modes are shown in
�gure 2 below. It was found that the �rst ten modes cover 99.2
percent of the variance in the data. We should thus be able to
reconstruct most shape variations from these modes alone.

5 Tracking the Lips in Raw Video

Now that we have the model, we turn to the task of tracking the
model in raw video. By \raw" we mean that there are no longer
any special markings on the lips or the face. We have only the
minimal features described in the introduction. Among these,
the color content of the various regions is a robust and easily
computable candidate. However, it will not directly give us any
kind of shape information - it will only give us the likelihoods
of membership in the color classes, lmodel = f(colorjmodel). If
we view the problem from a statistical perspective, it becomes

clear how this data should be used. Essentially, we want to
�nd the set of parameters p� for our model that maximizes its
posterior probability given the observations:

p
�

= arg max
p

f(pjO)) = arg max
p

f(Ojp)(f(p))

f(O)
(4)

we can neglect the denominator in the last expression, since it
will be the same for all p, leaving us with

p
�

= argmax
p

f(Ojp)(f(p)) (5)

Another piece of information we have is the color class of each
point on our model. As shown in the �gures above, the model
contains the lips and some surrounding skin, and we know a
priori which triangular faces belong to which class. If we now
project the model in state p into the camera view, we can com-
pute the term f(O(x; y)jp) for each point in the visible surface
of the model. This value is simply the likelihood of the ob-
served color value at (x; y) belonging to the same class as the
point in the model that is projected onto it. To �nd the overall
probability of the model in this state, we simply integrate these
values over the visible surface area A and postmultiply by the
prior value of the model being in state p:

f(pjO) =

Z
A

f(O(x; y))jp)f(p) (6)

This gives us a measure of the posterior probability of the model
being in a given state. We will show in a later section how
this integral can be decomposed for e�cient computation. This
still leaves the problem of �nding the optimal state without
searching the entire subspace. We approach this using a form
of stochastic gradient ascent that makes use of the physical
basis of the model. Based on the likelihoods and the gradients
thereof, we derive forces to \push" the model state in a direction
that will increase its overall likelihood.

In order to apply these ideas to our tracking problem, we
�rst train models of the color classes for the skin and lips. We
then detect and �nd the face within the image frame. Next, we
�nd the lips within the face and compute the detailed likelihood
maps for the skin and lips classes. The model is then positioned
to match the coarse statistics of the lip distribution projected
into the camera view. From this initial �t, we iteratively derive
forces from the observations as described above and apply them
to the model. We then measure the probability of the resulting
states and stop the algorithm when we reach a local maximum.
We will describe each of these steps in detail in the following
sections.

5.1 Training the Color Classes

We derive the statistical models of the lip and skin (face) classes
using the LAFTER system [11], a real-time active-camera face
tracking system. This system uses examples of lip and skin
pixels to build models of the probability distributions of each
class in color space. The distributions are modeled as mixtures
of Gaussians and are estimated using the EM algorithm.

Past studies ([13]) have shown that use of normalized or chro-
matic color information (~r = r

r+g+b
; ~g = g

r+g+b
) can be reliably

used for �nding \esh areas" present in the scene despite wide
variations in lighting. By training the model on this normalized
space on thousands of skin color samples, we have obtained a
model that is valid for a broad spectrum of users.

Typically, only two to three mixture components are needed
to accurately characterize the face. Lip models are even more
densely distributed in the chromatic space since they have a
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considerably smaller color variance. One or two mixture com-
ponents (in color space) are typically su�cient to accurately
describe lips.

Once we have these models, we can apply them to the rele-
vant regions of the image to produce probability maps for the
lip and the skin classes. The accurate modeling of the skin
and lip classes result in sharp boundaries between high and low
probability regions for each class (see �gures 3 and 4). As a
result, the probability maps have a very high gradient at the
boundary and very low gradients everywhere else. Because we
wish to derive forces from the gradients to push the model to-
wards the maximally probable point in the subspace, we need
to spread their region of inuence to a larger area. To do this,
we convolve the probability maps with a 2D Hamming win-
dow, resulting in smoothed probability maps (see �gures 3 and
4). In addition, the values of the raw probability maps in the
highly probable region tend to have high variance, resulting in
fairly noisy gradients. The smoothing counteracts this prob-
lem as well. Figures 3 and 4 show the original and smoothed
likelihoods of lips (llips(x; y)) and skin (lskin(x; y)) for a typical
input image.
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Figure 3: Original image, lip PDF, and smoothed lip PDF

Figure 4: Skin PDF and smoothed skin PDF

5.2 Detecting and Finding the Face and Lips

To estimate the location of the face and the lips in the image,
the LAFTER system makes use of 2-D blob features, spatially-
compact clusters of pixels that are statistically similar in terms
of low-level image properties. See [11] for the motivation and
history of blob features.

In our implementation, feature vectors are computed at each
pixel by concatenating the (x; y) spatial coordinates and the
color components at that point. These features are then clus-
tered so that image properties such as color and spatial simi-
larity combine to form coherent connected regions, or \blobs,"
in which all the pixels have similar image properties.

Once the pixels are clustered into blobs, the largest blob of
skin-class pixels is tested for size. If it is of su�cient size, the
blob is considered a face. The probability model for the lip
color is then applied to the pixels in this face blob along with
the prior model for lip location within the face. The resulting
lip blob with the highest a posteriori probability is then taken
to be the subject's lips. The location of the lips (i.e., the mean
of the blob) is then tracked from frame to frame with a Kalman
�lter.

5.3 Projecting the Model into the Camera
View

The rigid pose of the model is related to the camera view by
six rigid parameters: three for rotation and three for transla-
tion. The 2D projection of the model into the camera view
is found using a pinhole camera model with a calibrated focal
length. The location of the lip blob gives us enough information
to estimate the in-plane translation automatically (in the near
future, we plan to have the out-of-plane rotation and depth pa-
rameters determined automatically by a visual head-tracking
system). To do this, we match the centroid of the visible area
of the lip region of the model to the centroid of the blob esti-
mate. This is a �rst-order alignment of the observed statistics
and the statistics implied by the model. From this initial �t, we
can iteratively deform the model to maximize the probability
of the model state given the observations.

5.4 Measuring the Model Probability

In order to measure the probability of the current model state
given the observations, we need to now compute the expression
in equation 6, which integrates the probability of each point
over the visible area of the model. We can break this expression
up into a sum of integrals over the faces (the triangular facets)
of the model:

f(pjO) = f(p)
X
i

Z
facei

f(O(x; y)jp) (7)

Furthermore, we can evaluate the integral over each face using
Gaussian numerical integration with a single sample point [3].
In the one point case, the approximation to the integral of a
function over a triangular patch is the area of the patch Ai mul-
tiplied by the value at the center of the patch f(O(�xi; �yi)jp).
Note that this scheme approximates the function as being con-
stant over the face. This is reasonable for our situation because
of the small size of the faces (and thus the small variation in
the function surface over them - see �gure 5). The resulting
approximation to the total integral is:

f(pjO) = f(p)
X
i

Aif(O(�xi; �yi))jp) (8)

We can now simplify f(O(x;y)jp) to llips(x; y) or lskin(x; y),
depending on whether the given face in the model is a lip face
or a skin face. This thus breaks the result into two pieces:

f(pjO) = f(p)
X

lipfaces

Aillips(�xi; �yi)

+ f(p)
X

skinfaces

Ailskin(�xi; �yi) (9)

Lastly, to evaluate the prior term f(p), we use a Gaussian model
with the learned covariance Ru;modal. Because we already have
the parameters p in the modal coordinate system, the exponent
term can be simpli�ed to the sum of ten terms (for the ten
modes).

10X
i=1

f2i

�i
(10)

The scaling factor for the Gaussian can be omitted since it is
the same for all values of p.

With these simpli�cations, the �nal expression in equation 9
can be quickly computed from the available quantities.
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Figure 5: From initial image to �nal �t

5.5 Iterating to a Solution

Now that we can compute the posterior probability of the model
pose, we need a means of improving it. The method we have
developed is a form of stochastic gradient ascent. For each face,
we �nd the local direction in which its likelihood would increase
the most (i.e., the gradient of the appropriate probability map).
We then compute a force proportional to the gradient to apply
to the face pushing it in this direction. Mathematically, we
want to integrate the inuence of the gradients over the entire
face:

fi = �

Z
facei

rfclass(x; y) (11)

where class is lips or skin depending on the face and � is a
constant that scales the force to match the physics of the model.
We numerically evaluate this integral, again using the one point
Gaussian model:

fi = �Airfclass(�xi; �yi) (12)

We wish to apply this force to the center of the face, which
results in spreading the force in equal portions to the three
nodes of the face. When the forces for all of the faces have
been computed, we transform the values back into the model's
coordinate sytem. We then apply the resulting force vector

to the modal K�1
s matrix, which projects the force and the

resulting displacement into the subspace learned by the model:

U = S�
1

2S
T
F (13)

Because of the modal form of the matrix, this is a computa-
tionally inexpensive operation.

After the force has been applied, we project the new shape
into the camera view and recompute the posterior probability
of the model. We then iterate the process above until the prob-
ability converges to a local maximum. The resulting estimated
shape is then used as the initial shape for the next input frame.

Another approach to �nding this solution would be to di-
rectly compute the gradient in the parameter space and move
in the direction of steepest ascent. This is the more traditional
form of gradient ascent, and is typically much more expensive
than stochastic ascent. However, with a small number of pa-
rameters, this method may prove more e�cient due to its more
accurate estimate of the gradient. We are currently exploring
this alternate technique and will report on its characteristics in
a future paper.

6 Results

6.1 Tracking and Reconstruction Results

In this section, we show several examples of using the above
algorithm to estimate the 3D lip pose. We begin with a de-
tailed example (�gure 5): In the �rst frame, we see the mouth

image we are trying to �t. In the next frame, we see the initial
placement of the model on the image (the center of the model
was aligned with the centroid of the lip probability map). In
the third frame, we see the smoothed lip probability map cor-
responding to the image and the forces on the model points
resulting from it. In the fourth frame, we see the result of the
force applied in the �rst iteration. In the last frame, we see the
�nal, converged result after 15 iterations. The �gures below ( 6
and 7) show some other frames with the initial image, the �nal
converged �t, and the pro�le view of the estimated model.
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Figure 6: Initial image, �nal �t, and 3D reconstruction
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Figure 7: Initial image, �nal �t, and 3D reconstruction

The �gures below (8 and 9) show the lip shape estimated
from two partial-pro�le views.
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Figure 8: Initial image, �nal �t, and 3D reconstruction

From these images, it is clear that this algorithm can accu-
rately estimate the 3D shape of the lips from the 2D observa-
tions.

One of the main reasons we have used a small number of
modes (10) throughout this development is to be robust to
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Figure 9: Initial image, �nal �t, and 3D reconstruction

noisy data. When clean data is available, though, we expect
to be able to �t many more modes with high accuracy. This
points towards a much more convenient method of continuing
to train the model. Once we �nd the best �t in the modal
space, we can relax the modal constraints and allow the initial
full-rank structure to completely �t the available data. New
shapes obtained in this way can then be used for additional
training.

6.2 Reconstruction Capabilities

As we have previously discussed, one of the major arguments
behind the 3D representation was that we could use a small
number of observations from any viewpoint to �nd a good es-
timate of the model shape. We now demonstrate that we can
accurately reconstruct the full shape using only y-z data, only
x-y data, and x-y-z data from only a subset of the points. We
show this using a test set that is separate from the training set
used earlier. For the ten data frames that were not included
in the sample covariance, the mean-squared reconstruction er-
rors per degree of freedom were found for several cases and are
shown in the table below. The results are given in the coor-
dinate system of the model, in which the model is 2.35 units
across, 2.83 units wide, and 5.05 units deep. The table shows
the reconstruction error using only the �rst ten modes. The
rows of the table correspond to what measurements were used
to reconstruct the full 3D shape. In the �rst row, the �rst eight
3D points (shown in �gure 1) were used to reconstruct the re-
mainder of the displacements. Note that the model performs
quite well in this case, implying that it has learned to some
degree the permissible subset of lip motions. The second row
shows the results of using only the y and z components of the
data. This corresponds to the data that would be available
from a pro�le view. The last row contains the results using
the x and y components (i.e., a frontal view). It is interesting
to note that the y-z data provides much better performance
than the x-y case. This is understandable in that there was a
signi�cant amount of depth variation in the test frames. Be-
cause some x-y variations can occur with di�erent degrees of z
motion, the depth variation is not observable from the frontal
plane. As a result, the y-z data provides more information
about the lip shape in these cases. Since our model is a full
3D representation, it can take advantage of this disparity (or
any other advantageous 3D pose) when these observations are
available.

7 Conclusions and Future Directions

We have presented a method for estimating and reconstructing
the 3D shape of human lips from raw video data. We have
shown how we can accurately match the observations in raw
data, and have also demonstrated the ability of our model to
accurately reconstruct 3D shapes from sparse 2D data. We have
achieved these goals by using a statistical approach throughout,

Data Used 3D Reconstruction Error

xyz (8 points) 1.10e-3
yz (16 points) 7.13e-4
xy (16 points) 6.70e-3

Table 1: Reconstruction error per DOF (in normalized coordi-
nates)

from modeling the subspace of lip motions to describing and
�tting the observations in the video stream.

There are a number of directions in which we wish to con-
tinue this work. Foremost among these is integrating a 3D head
pose estimate with the tracking algorithm so that the tracking
can be robust to arbitrary changes in pose. We also plan to
evaluate how much new information is provided by a 3D es-
timate for tasks such as audio-visual speech recognition and
facial expression recognition.
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