
M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 486

submitted to ICCV'99

A Consistent Method for Function Approximation in Mesh-based

Applications
Sumit Basu*, Kentaro Toyamay, and Alex Pentland*

*MIT Media Laboratory and yMicrosoft Research

fsbasu,sandyg@media.mit.edu, kentoy@microsoft.com

http://www.media.mit.edu/~sbasu

Abstract

Most mesh-based tracking/modeling techniques face

a point at which they need to approximate the underly-

ing image function with a smoother, more regular func-

tion. This often occurs when gradients need to be com-

puted. The typical approach is to convolve the image

with a �xed kernel. This has a number of disadvan-

tages. First, a �xed kernel does not account for the

di�erent levels of detail in di�erent parts of the mesh

- small facets can be oversmoothed while large facets

are undersmoothed. Also, the size of the tracked im-

age may be changing dramatically in scale (as in head

tracking), and thus a �xed-size kernel again presents

problems. We present a method to approximate a func-

tion with a set of basis functions that are consistent

with the mesh (planar triangular patches above each

facet). The resulting approximation is piecewise ana-

lytic (with C0 continuity) and inherently at the same

level of detail as the mesh. We show how this approxi-

mation can be very e�ciently computed, touching each

pixel only once, and how multiscale representations can

be computed with minimal cost. We describe techniques

and applications for image coding, gradient computa-

tion, tracking, and adaptive remeshing. Examples of

image functions, object meshes, and the resulting ap-

proximations are shown.

1 Introduction

Computer vision is replete with a variety of mesh-
based techniques - deformable templates (see [3]),
physics-based vision (e.g., [1]), analysis by synthesis
(e.g., [5]), model-based coding, etc. Most of these
methods depend on meshes built up of triangular
facets. These meshes are often constructed to accu-
rately model the level of detail - areas with complex ge-
ometry/texture have many small facets, while smooth
areas have fewer and larger facets. This allows the
physics of the mesh to accurately represent the physics
of the body, because the level of physics complexity is
consistent with the geometry. However, these mesh-
based methods reach a point when this consistency is
lost. That comes when the methods need to derive in-

formation from an approximation of the image function
underlying the mesh, typically in the form of gradi-
ents. Because the image itself is noisy and local deriva-
tives are noisier still, the general practice is to smooth
the image with a �xed-size kernel. Because the facets
and the underlying level of detail are of varying sizes,
though, a �xed kernel oversmooths in some places and
undersmooths in others. Furthermore, even though a
particular size of kernel can work reasonably well when
the mesh is at a particular scale (i.e., its projection cov-
ers a particular number of pixels in the image), when
the object being tracked changes in scale (i.e. moves
forward or back), the projection of the mesh becomes
smaller or larger and the �xed kernel is no longer the
right size.
In this paper, we present a method for approximat-

ing an image function in a manner that is consistent
with the mesh. Our method uses a function basis that
comes from the �nite element domain and is consistent
with the geometry and complexity of a given triangular
mesh. This has a number of strong features. First, it is
detailed where the mesh is detailed, and coarse where
the mesh is coarse. Next, the resulting approximated
function is C0 continuous (no step functions) and in
a piecewise analytic form. The approximation can be
found very e�ciently, touching each pixel only once.
Furthermore, we will show how multiscale versions of
the function can be found with minimal computation.
We will also show how the mesh can be adaptive to the
function, adding or removing nodes where necessary.
We �rst describe the origins of the function basis and

its form. We then show how to approximate a function
with this basis, going from the continuous domain to
an account of how to compute things e�ciently with
real (i.e., discrete) images. We then show how multi-
scale representations can be formed with this method.
We end with some applications, examples, and future
directions.

2 The Function Basis

As we described earlier, the typical meshes used in
computer vision are made up of at, triangular ele-
ments. In �nite elements, this corresponds to a thin

1

Perceptual Computing
Sumit Basu, Kentaro Toyama, and Alex Pentland. "A Consistent Method for Function Approximation in Mesh-based Applications." MIT Media Laboratory Vision and Modeling Technical Report #486. January, 1999.

1

2

3

x

s

r1.0

1.0

1 2

3

y

Figure 1. The mapping from world coordinates
to parametric coordinates

r

s

r s

1.0

r

s

h (r,s) = r h (r,s) = sh (r,s) = 1-r-s1 2 3

1.0
1.0

Figure 2. The interpolation functions of the
isoparametric triangular element

shell structure made up of isoparametric elements (see
the appendix of [1] for more details on the physics for-
mulation of these meshes, and [2] for background on
the �nite element method and isoparametric elements).
The \parametric" part of the term comes from the fact
that the elements are described in a parametric coordi-
nate system (see �gure 1). The \iso" part comes from
the fact that both the geometry and the underlying
functions (stress, strain, uid ow, an image, etc.) are
interpolated by the same set of interpolation functions

(also known as shape functions). These functions can
be represented as a matrix,H(r; s), that takes the func-
tion values at the nodes and produces the function value
at the parametric location (r; s). For the at triangu-
lar element, the shape functions are r, s, and 1� r � s

(see �gure 2). This means we can �nd a function value
f(r; s) given the values F1,F2, and F3 at the nodes (see
numbering in �gure 1) in the following way:

f(r; s) =
�
1� r � s r s

� 24 F1
F2
F3

3
5 (1)

where the �rst term is H(r; s). The geometry can
be represented in the same way, replacing Fi with Xi,
Yi, and Zi the locations of the vertices. This then
maps every point in (r; s) space to the actual location in
(x; y; z). Note that this simple interpolant preserves the
function values at the nodes and interpolates linearly
between them, resulting in simple, at triangular facets
for the geometry (as desired). This representation for a
function is thus a \natural" one for the meshes used in

vision applications. Since the function representation is
completely determined by the values of the nodes, there
is one basis function per node. Furthermore, since the
value at a given node inuences the function in all the
facets touching that node, the basis functions look like
the one shown in �gure 3.

iq (x,y)

Figure 3. The basis function at node i

Our task is thus to �nd the the values of Fi for all the
nodes i in the mesh. However, we cannot simply sample
the values of the function at the nodes - this would ig-
nore most of the underlying image and give suboptimal
results. We wish to �nd the set of function values that

minimize the error between our approximation and the
underlying function. The next section describes how
we �nd these values.

3 Computing the Approximation

As we described in the previous section, we now have
a basis of i functions, one for each node, all living in
the domain of the mesh, which is the area of the image
that is covered by the mesh. Note that we only have a
2D mesh to deal with at this point - once the mesh has
been projected onto the camera view, we do not need
to deal with the depth dimension. We are thus trying
to approximate the image on this 2D domain using the
basis functions. We will call the basis function involving
node i as qi(x; y). The problem we wish to solve is thus
�nding �i such that we minimize the error E:

E =

Z Z
(f(x; y) �

X
i

�iqi(x; y))
2dxdy (2)

where the integral is taken over the domain of the
mesh. Let us now consider the domain as being an
in�nite-dimensional vector space (see [8, 7] for more
about this perspective). We can then rewrite our prob-

lem in the following representation:

Q� = f (3)

where the columns of Q are the basis functions qi.
Since the vector space is in�nite-dimensional and we
have a �nite basis (with i entries), this is an over-
constrained problem. Since we want to minimize the
squared error (equation 2), the solution is identical to
the familiar least-squares case:

� =� Q;Q �
�1
� Q; f � (4)

Where � a; b � denotes the inner product between
a(x; y) and b(x; y), which is de�ned in this vector space
as the following integral over the domain:

� a; b �=

Z Z
a(x; y)b(x; y)dxdy (5)

The result of such an inner product is simply a scalar,
so when we apply equation 4, we end up with a numer-
ical matrix equation for �.

Fortunately, the basis functions all have compact
support (they are non-zero over small regions, see �g-
ure 3), so the integrals are all over small regions as
well. Furthermore, we do not need to compute nearly
as many integrals as equation 4 implies. We can com-
pute � Q;Q � without doing a single integral.
To see how this is possible, we need to go back to the

interpolation equations for the geometry and rewrite
the mapping from (r; s) to (x; y) as follows:

�
x

y

�
=

�
X2 �X1 X3 �X1

Y2 � Y1 Y3 � Y1

��
r

s

�
+

�
X1

Y1

�
(6)

where the matrix multiplying [rs]0 is J , the Jacobian
relating (r; s) space to (x; y) space (note that the deter-
minant of this Jacobian, jdetJ j, is the scaling factor for
the area from (r; s) space to (x; y) space, and is thus
twice the area of the triangle). An integral of a func-
tion f over the actual triangle in (x; y) space can then
be equivalently written in (r; s) space as follows:

Z Z
f(x; y)dxdy =

Z Z
f(r; s)drdsjdetJ j (7)

Note that the basis functions' triangular patches over
each facet can be simply represented as r, s, and 1�r�s
as in equation 1 above (see also �gure 2). Furthermore,
since jdetJ j is constant, we can take it outside the in-

tegral. Now consider the integrals we need to com-
pute - they are the inner products of each basis func-
tion qi with each other basis function qj. Let us split
this into two cases: where i 6= j and where i = j. In
this �rst case, the only places where the inner product
qi(r; s)qj(r; s) is nonzero is where the two correspond-
ing nodes share one or more facets. For each such facet
in the domain, the integral over the facet is:Z Z

rsdrdsjdetJ j =
jdetJ j

24
(8)

Note that we could have chosen the product r(1�r�

s) or s(1� r� s) and would �nd the same result. This
is necessary because our choice of node numberings was
arbitrary - any product of two shape functions for two
di�erent nodes will have this integral over the facet.

We thus compute the entry Qi;j = Qj;i by summing
up jdetJ j=24 for all the overlapping facets in the basis
functions for node i and node j.
In the case where i = j, we have a similar situa-

tion, but now all the facets overlap. Furthermore, the
integral for each facet is now:Z Z

r2drdsjdetJ j =
jdetJ j

12
(9)

We thus compute the entry Qi;i by summing up
jdetJ j=12 for each facet in the basis function for node
i. We can make this computation even more e�cient
by precomputing both the triangle areas and the map-
ping between nodes and the facets which are attached
to them, preventing the need to iterate over all of the
facets for each Q entry.
We do need to compute integrals for the second term,

� Q; f �, but we can do this quite e�ciently since
the basis functions have compact support. Speci�cally,

this means that for each qi, the inner product function
qi(r; s)f(r; s) is non-zero only over the facets touching
node i. As a result, each integral necessary for � Q; f �

is quite small - it is the sum of the integrals over these

facets. However, note that since the basis functions
overlap, we will be iterating over each facet multiple
times. We can avoid this by considering � Q; f � in
terms of the facets. The integral of the inner product
of the function with interpolation function p (where
p = 1,2, or 3) for a given facet contributes to the �
Q; f � entry for the node corresponding to node p for
this facet. We can thus compute the integral with all
three interpolation functions at the same time, visiting
each pixel only once. We then iterate over the facets
(only once), accumulating the entries of � Q; f � in
this manner.
The next question is how to compute these integrals

in terms of the pixels. The typical approach in �nite
elements is to take a �xed sampling in (r; s) space [2]
due to the di�culty of inverting the shape functions in
the general case. This approach has the failing of get-
ting the same number of samples from every triangle,
regardless of size. From the perspectives of both e�-
ciency and information content, we would like to iterate
uniformly over the pixels in (x; y) space. Fortunately,
in the case of the at triangular element, we can easily
invert the shape functions from equation 6:

�
r

s

�
=

1

jdetJ j

�
Y3 � Y1 X1 �X3

Y1 � Y2 X2 �X1

��
x�X1

y � Y1

�

+

�
X1

Y1

�
(10)

This maps the values in (x; y) for a particular facet
to (r; s). Thus, to numerically compute an inner prod-

uct integral of an interpolation function h(r; s) with the
target function, we �rst rewrite the interpolation func-
tion in (x; y) space as

h(x; y) = h(r(x; y); s(x; y)) (11)

and then iterate over the pixels, approximating the in-
tegral with a summation:

Z Z
h(r(x; y); s(x; y))f(x; y)dxdy (12)

�

X
facet

h(r(x; y); s(x; y))f(x; y) (13)

(14)

We have now seen how to compute both � Q;Q �

and � Q; f �, which allows us to solve for �, the ap-
proximated function values at every node. We then
have a piecewise analytic representation of the function
over the facets.

4 E�ciency and Accuracy Considera-

tions

We have already seen how we can compute � Q;Q �

analytically and � Q; f � with a minimum of com-
putation (in fact, fewer than with a convolution of
any reasonably-sized kernel). One expensive step that
we have not yet discussed is the computation of �
Q;Q �

�1. This is an n by n matrix, where n is the
number of nodes in the mesh (often quite large). There-
fore, this inversion is quite expensive. Unfortunately,
every time the mesh deforms, � Q;Q � changes and
thus its inverse changes as well. To be exact, we would
have to re-invert the matrix with every mesh deforma-
tion. Remember, though, that this term encodes the
overlap of the facets in the mesh. Since the topology of
the mesh is not changing, the overlap will not change

very much with reasonable deformations of the mesh.
Our preliminary experiments have shown that we can
approximate functions accurately without recomputing
� Q;Q �

�1. There are some cases that would change
� Q;Q � drastically. The �rst of these is uniform scal-
ing of the mesh. This is easy to deal with, though,
since it ends up scaling � Q;Q � by a constant and
thus its inverse by the reciprocal. The second case is
when there is a change in the 3D pose of the model.
This will signi�cantly change areas and change the ba-
sis set as well, since new facets will come into view
while others are culled out of view. One approach to
these situations is to precompute � Q;Q � and its
inverse for a range of views. Another approach is to
never �nd � Q;Q �

�1 explicitly but instead to solve
� Q;Q � � =� Q; f � iteratively with a method such

as the biconjugate gradient algorithm [6], which works
well here since � Q;Q � is nearly diagonal (it has a
very limited bandwidth due to the compact support of
the basis functions). Furthermore, since we know the
topology of the mesh, we can be very e�cient about
the order we choose to solve the resulting equations
(i.e., how we traverse the nodes in the computation).
This method is preferable where the geometry/basis is
changing dramatically from frame to frame.
Another consideration is the accuracy to which equa-

tion 14 approximates the integrals over the facets. If a
facet only covers one and a half pixels, the computed
integrals can have signi�cant errors (though the over-
all contribution to � Q; f � will be minimal because
of its small size with respect to the domain). We can
increase the accuracy of the integrals by oversampling
the image, a common practice in computer graphics (as
in antialiasing).
A last issue concerns the use of the resulting function

approximation. We have a piecewise analytic form over
the facets, but if we want to evaluate the function at
a point (x; y), we �rst need to �nd which facet it is
in. This can be an expensive process. A simple way
around this is keeping a reverse mapping of (x; y) to
facet numbers. This is simply an image of the same
size as the function, where each entry is the number
of the facet of that covers that point (or -1 if no such
facet exists). We can \render" this image while going
through the pixels in our computation of � Q;Q �.

5 Techniques and Examples

In this section, we describe several useful techniques
with the resulting function approximation. This in-
cludes image coding, �nding function gradients, com-
puting multiscale representations of a function, and
adapting a function representation (by adapting the
underlying mesh). We have included a few prelimi-
nary �gures, and are in the process of applying these
techniques to several other problems.

5.1 Basic Examples and Image Coding

Figure 4 shows an example of a target function (an
intensity image), a mesh, and the approximation of the
function on that mesh. The mesh has 206 nodes and
has a domain of 6580 pixels for the image shown. The
mean absolute error per pixel using this approxima-
tion was 1.021 units (the original grayscale image had
a range from 0 to 255). As expected, the approxima-
tion smooths the image, but now in the desired way -
as opposed to a �xed kernel, it preserves detail where
the mesh is detailed, and smooths it where the mesh
is coarse. Furthermore, since the resulting description
of the function is extremely compact (one value per
node), this technique could be very useful for image

coding. This may have great potential given that most
model-based coding techniques depend on mesh repre-
sentations.

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

60 80 100 120 140 160 180 200 220

150

160

170

180

190

200

210

220

230

240

20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

90

Figure 4. An example of approximating an im-
age function with a mesh: the original image,
the image with the mesh overlaid, and the im-
age with the mesh domain approximated by our
method.

The next set of �gures (�gures 6 and 7 show the
e�ects of approximating a function with a series of in-
creasingly detailed meshes. Figure 6 shows the original
image, while �gure 7 shows the meshes used (level 0,
level 1, and level 2) and the resulting approximations.
Note that the eye and lip regions were not approxi-
mated by the mesh, since for accurate reconstruction,
a model developed speci�cally for these areas should be
used (as in �gure 4). The number of nodes and the
mean absolute error for each mesh are shown in table
1 below.

This approximation was for a domain of 55,948 pix-
els. This further demonstrates the potential of our tech-
nique for image coding - at the level 0 mesh, this is a
compression factor of 708.2; at the level 1 mesh, a factor
of 255.5; and even at the level 2 mesh, it is a factor of
74.5. Furthermore, if the mesh were subdivided adap-
tively (we propose a method for doing this in a later
section), it should be possible to achieve the same er-
ror with even fewer nodes.

Table 1. Number of nodes and mean absolute
error (per pixel) for face image reconstruction
example

Mesh Level Number of Nodes MAE (per pixel)

0 79 3.80

1 219 2.29

2 751 1.45

5.2 Computing Gradients

As we stated in the introduction, one of the moti-
vations for this function approximation technique was
to be able to take gradients that would be \smoothed"
in a manner consistent with the mesh. Because our
approximation is linear within each facet, taking the
gradient within a facet is trivial:"

df

dx
df

dy

#
=

"
F2�F1
X2�X1

F2�F1
Y2�Y1

#
(15)

We thus have the gradients for the function over the
entire domain of the mesh at minimal cost.

5.3 Multiscale Representation

Another common need in computer vision and image
coding applications is representing functions at multi-
ple levels of detail. Typically this is done in the im-
age space with Gaussian pyramids [4] and related tech-
niques (wavelets, etc.). The problemwith this approach
for mesh-based methods is that we typically want to
change the spatial extent of the approximation in terms

of the mesh and not in terms of the image. In other
words, we don't want to double the spatial extent ev-
erywhere (as going to a new level in the pyramid im-
plies), but to go from small facets to large facets and
from large facets to even larger facets. A mesh topology

with which this is particularly convenient is a subdivi-

sion mesh, in which each facet at a higher level of detail
is made by splitting the lower level of detail facet into
two or more facets. An instance of this method splitting
each facet into three more is shown in �gure 5.

41

2

3

1

2

3

Figure 5. The subdivision of a facet
We then start out with the mesh at the �nest of detail

we are interested in (i.e., the highest level of subdivi-
sion). To then go to the next coarser level (combining

sets of three facets into 1), we need to �nd the inner
product integrals with a new set of basis functions for
the new � Q; f �. However, since the smaller facets
share boundaries with the new, larger facets (see �gure
5), the larger basis functions are linear over the smaller
facets as well. Furthermore, since any linear function
blin(r; s) over a facet can be represented exactly as com-
bination of the three interpolation functions, i.e.,

blin(r; s) = B1(1� r � s) + B2r + B3s (16)

the inner product integral with the function can be
written as Z Z

f(r; s)blin(r; s)drds (17)

=

Z Z
f(r; s)(B1(1� r � s)

+B2r + B3s)drds

= B1

Z Z
f(r; s)(1 � r � s)drds

+B2

Z Z
f(r; s)rdrds

+B3

Z Z
f(r; s)sdrds (18)

Where the integrals over (r; s) in equation 18 have al-
ready been computed (and presumably stored) when
�nding � Q; f � for the original, smaller facets. As a
result, we can compute the function approximation at
the coarser level from the detailed level without touch-
ing the function values again. Furthermore, we only
need to do three multiplies per small facet.

5.4 Mesh Adaptation

When going from the coarse level of the function ap-
proximation to a higher level of detail (i.e., subdividing
further than our original mesh), there is no such simpli-
�cation if we want an exact solution. We need to redo

all of the integrals with all of the facets. However, if we
are willing to accept an approximate solution (that we
can re�ne), we can not only do this e�ciently, but also
adaptively, subdividing some facets of the mesh but not
others based on the complexity of the underlying func-
tion. This brings us to our last application - adding
complexity to a mesh based on the complexity of the
function.
The basis for deciding whether to subdivide a facet

is a matter of choice, but the simplest one is to look at
the squared error between the target function and the
approximation over the facet. A threshold can then be
de�ned - either absolute, in terms of the error value, or
relative, in terms of the overall squared error - above
which the facet will be subdivided. Once the subdivi-
sion is made, a new node (and thus a new basis func-

tion) is introduced into the domain. Note that the sup-
port for this new node's basis function does not overlap
with any facets other than the one being subdivided.
However, the nodes of the original facet now have dif-
ferent support, which is why an exact solution requires
signi�cant computation.

An approximate solution, though, is easy to �nd. Let
us assume for the moment that the node values for the
rest of the mesh retain their optimality even when we
add the new node. Then all we have to do is �nd the
function approximation value for this node j. We then
want to minimize the following error, where all the �i's
are held constant and the only degree of freedom is �j:

Z Z
(f(x; y) � (

X
i 6=j

�iqi(x; y) + �jqj(x; y)))
2dxdy

Z Z
((f(x; y) �

X
i 6=j

�iqi(x; y)) � �jqj(x; y)))
2dxdy

The second form puts us back into the familiar frame-
work from equation 2, where are now trying to approx-

imate the function f �
P

�iqi with one basis function,
qj. Going through the same development as earlier,
this leads us to the following least squares solution:

�j =
� qj; f(x; y) �

P
i6=j

qi(x; y) �

� qj; qj �
(19)

Since our assumption that the other �'s are all at
their optimal values even after the new node is intro-
duced is false, the new approximation will not be least-
squares optimal in terms of our new basis. However,
we are clearly guaranteed the squared error will be less
than before the subdivision. Furthermore, we can re-
�ne our solution by applying the method in equation
19 to the nodes surrounding the new node, and then
the nodes surrounding these nodes, and so on. This
will propagate the e�ects of adding the new node and
move the �'s towards their optimal values.

50 100 150 200 250 300

50

100

150

200

Figure 6. Original Image

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

Figure 7. Level 0, 1, and 2 mesh and resulting approximation. Note that the eye and lip regions were
not approximated by the mesh.

6 Conclusions and Future Directions

We have presented a method for approximating a
function underlying a mesh that is consistent with the
mesh. We have shown how this approximation has a
number of advantages over smoothing with a �xed ker-
nel and other image-domain approximation techniques:
its basis is the natural one implied by at triangular el-
ements, it preserves level of detail in the function to the
same degree as the geometry of the mesh, and it can be
e�ciently computed (touching each pixel only once).
Furthermore, exact multiscale representations can be
found with minimal computation (three multiplies per
facet), and adaptive (though inexact) remeshing is pos-
sible with few computations as well.
We are currently working on employing this approx-

imation method for a variety of computer vision tasks,
including image coding (as shown in �gure 7), tracking
intensity images (computing gradients in time di�er-
ence images with the approximated function), maximiz-
ing model probabilities (computing gradients in likeli-
hood images), adaptively remeshing range data, and
�tting one mesh to another (e.g., �tting a low polygon-
count model to range data of a head). We also hope to
further explore the use of iterative solution techniques
to avoid ever having to compute � Q;Q �

�1.

7 Acknowledgements

Thanks to Jacob Strom for suggesting the application
of this technique to image coding.

References

[1] S. Basu, N. Oliver, and A. Pentland. \3D Lip Shapes
from Video: A Combined Physical-Statistical Model".
Speech Communication, 26:131{148, 1998.

[2] K.-J. Bathe. Finite Element Procedures. Prentice-Hall,
1996.

[3] E. Blake and A. Yuille. Active Vision. MIT Press, 1992.
[4] P. Burt and E. H. Adelson. The laplacian pyramid as a

compact image code. IEEE Transactions on Communi-

cation, COM-31:532{540, 1983.
[5] H. Li, P. Roivainen, and R. Forchheimer. 3-d motion

estimation in model-based facial image coding. PAMI,
15(6):545{555, June 1993.

[6] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.
Numerical Recipies in C. Cambridge University Press,
1992.

[7] G. Strang. An Introduction to Applied Mathematics.
Cambridge Press, 1986.

[8] G. Strang and T. Nguyen. Wavelets and Filter Banks.
Wellesley-Cambridge Press, 1996.

