Pers Ubiquit Comput (2004) 8: 326-337
DOI 10.1007/s00779-004-0295-6

ORIGINAL ARTICLE

Timothy S. McNerney

From turtles to Tangible Programming Bricks: explorations in physical

language design

Received: 1 November 2003/ Accepted: 27 April 2004 / Published online: 29 July 2004

© Springer-Verlag London Limited 2004

Abstract This article provides a historical overview of
educational computing research at MIT from the mid-
1960s to the present day, focusing on physical interfaces.
It discusses some of the results of this research: elec-
tronic toys that help children develop advanced modes
of thinking through free-form play. In this historical
context, the article then describes and discusses the au-
thor’s own research into tangible programming, culmi-
nating in the development of the Tangible Programming
Bricks system—a platform for creating microworlds for
children to explore computation and scientific thinking.

Keywords Programming languages - Microworlds -
Tangible user interfaces - Education - Children -
History of computing - Construction toys - Hands-on
learning

1 Introduction

Over 35 years have passed since Seymour Papert co-
founded the MIT Artificial Intelligence Laboratory with
Marvin Minsky. However, the results of Papert’s re-
search continue to provide inspiration for researchers in
educational technology even today, at the dawn of the
third millennium. Papert’s groundbreaking insights into
how computers can help children to learn actively and to
create knowledge have firmly withstood the test of time.

This article provides a historical overview of educa-
tional computing research at MIT, from Papert’s pio-
neering work in the mid-1960s to the present day,
focusing on physical human—computer interfaces. It
discusses some of the laboratory prototypes as well as
commercial fruits of this research: electronic toys that

T. S. McNerney

ChipWrights, Inc., 230 Third Avenue—6th Floor,
Waltham, MA 02459, USA

E-mail: tim@tuva.us

Tel.: +1-781-8393210

Fax: +1-781-8902201

help children develop advanced modes of thinking
through free-form play. In the context of this historical
perspective, the article then describes and discusses the
author’s own research into tangible programming. His
work culminated in the development of the Tangible
Programming Bricks system—a platform that was used
to build the Digital Construction Set. This is a physical
microworld that children can use to understand the logic
of digital devices and explore scientific thinking. Issues
of language design that make such digital manipulatives
[1] easy to learn and use as powerful and concise digital
building blocks are also discussed.

Particular attention is paid to the continuation of
Papert-style educational computing research through
the efforts of his students at the MIT Media Lab. Their
work is bridging the gap between abstract computation
and the learning abilities of children by bringing com-
puter programming into the physical world as a creative
activity. This research on programmable bricks and
tangible user interfaces has led directly to innovative
commercial products. Many of these products were
manufactured and marketed by the LEGO Group—an
ongoing supporter, partner, and beneficiary of MIT’s
educational computing research for more than two
decades. During his tenure in the Learning and Episte-
mology group at the MIT Media Lab, Papert was ap-
pointed the LEGO Professor of Media Arts and
Sciences. As of this writing, Papert’s student, Mitchel
Resnick, now heads the “Lifelong Kindergarten™ group
at the Media Lab, and currently holds the LEGO Chair.

2 Historical background
2.1 Logo: a programming language for children

In the 1970s, Papert and his students at the MIT Al Lab
began researching methods of introducing children to
the world of computer science and bringing program-
ming into their physical world. This initial research led
to the creation of the Logo programming language and

Fig. 1 Two Logo floor turtles (Photo © 2004 Robert W. Lawler,
used with permission)

the Logo turtle—originally a basketball-sized, dome-
shaped robot (Fig. 1) that moved across the floor in
response to simple Logo commands like FORWARD,
BACKWARD, LEFT, and RIGHT.

Logo is a variant of the LISP programming language,
popular among artificial intelligence researchers. It is a
powerful yet simple language for exploring linguistic and
mathematical problem-solving. Logo is relatively free of
the syntactic rules that make so many programming
languages difficult for children to learn. At the same
time, Logo shares much of LISP’s power to create new,
domain-specific languages. These properties of Logo led
to the slogan: “low threshold and no ceiling.”

The Logo floor turtle, so-called because it lived on the
floor of the lab, could be fitted with a pen and be used to
draw pictures on a large sheet of paper placed on the floor.
Children learned to ‘“‘teach™ the turtle to draw basic
shapes, such as triangles, squares, circles, and even letters.
The turtle could also be instructed to draw complex Spi-
rograph'-like shapes by repeatedly drawing simpler
shapes, rotating the turtle slightly before each repetition.

2.2 The Logo turtle makes geometry physical

Papert espoused turtle geometry [2] as a new, more
accessible way to teach geometric concepts to children.
The core of Papert’s approach was the idea that children
learn abstract geometric concepts more easily if they can
model geometric forms in physical space. Papert found
that a child learned even more quickly if she was asked to
rehearse geometric forms using his or her own body. This
approach is sometimes called body-centered geometry.
For example, rather than immediately asking a child to
describe how she might instruct the turtle to draw a
square shape, she is asked to explore the creation of the
shape by moving her body; that is, actually “walking the

ISpirograph is a trademark of Hasbro, Inc.

327

square.” Through trial and error, the child soon learns
that walking a few steps, turning right 90°, and repeating
this four times makes a square. In the process, she might
be asked to notice whether she ended up about where she
started. After this exercise, the child is better prepared to
program the turtle to do the same thing. In Logo, this
series of actions can be expressed as follows:

TO SQUARE :STEPS

REPEAT 4 [FORWARD :STEPS
RIGHT 90]

END

In the end, the child is rewarded by watching the turtle
move around the floor in the same way as she acted out
the procedure beforehand.

2.3 Programming by example

Over years of teaching Logo, it became clear to
researchers that most children were not ready to start
programming computers in the traditional manner (i.e.,
typing Logo code into a computer using a keyboard)
until at least 10-14 years of age. Radia Perlman, a
graduate student at the MIT Logo Lab in the mid-1970s,
believed that the major impediments to children’s access
to computer programming were not only the language
syntax, but also the user interface. Perlman [3] pro-
ceeded to design interfaces that would allow even pre-
schoolers to learn to program a turtle. She came up with
two novel input devices, informally called the Button
Box and the Slot Machine.

The Button Box was her first creation. One prototype
was a 50x50x10 cm transparent, plastic box with four
groups of buttons:

1. The Number Box: 1-10

2. The Action Box: FORWARD, BACKWARD,
RIGHT (turn clockwise), LEFT (turn counter-
clockwise), PENUP, PENDOWN, plus “turn your
light on,” ““turn your light off,” and ““‘toot your horn”
(the clear favorite among the three- and four-year-old
test subjects)

3. The Memory Box: “Start remembering,” “Do it,”
and “Forget it”

4. The Four Procedure Box: YELLOW, RED,
GREEN, and BLUE The Button Box, in its most
basic form, had buttons for numbers and actions (i.e.,
turtle commands). Young children could use it as a
kind of TV remote control to tell the turtle what to do
without having to learn how to type commands on a
keyboard. With the addition of the Memory Box, the
system could record a transcript of the child’s turtle
commands, and later play them back.

The Memory Box innovation made the Button Box
perhaps one of the earliest illustrations of programming
by example [4]. Rather than creating a list of commands
for a computer to perform, which requires a child to
translate concrete actions into abstract directives, the

328

Fig. 2 Rehearsing Curlybot’s motion (Photo © 2000 MIT Media
Laboratory, used with permission)

child could physically show the computer what to do
and have it memorize the sequence for later playback.

It is interesting to compare Perlman’s early work with
more recent research done in the 1990s by Phil Frei and
Victor Su in Hiroshi Ishii’s Tangible Media Group at the
MIT Media Lab[5]. Affectionately called Curlybot
(Fig. 2), Frei and Su’s digital manipulative looks like a
typical one-button computer mouse and fits comfortably
in your hand. Its operation is wonderfully simple: press
the button and guide Curlybot through a series of mo-
tions or gestures. Press the button again, and the
motorized Curlybot faithfully repeats your motions. To
instruct Curlybot to move in a circle, press the button,
move it forward a bit, turn it a bit, and press the button
again. Attach a pen, and Curlybot will draw a circle on
the table, just like a turtle instructed using the Logo
command sequence:

FOREVER [FORWARD 5 RIGHT 3]

Teaching the Curlybot to move about is not really
programming in the traditional computer science sense,
but a more direct form of communication that Brenda
Laurel might call programming by rehearsal [6].

2.4 Playing the Slot Machine

Perlman soon discovered two major problems with her
Button Box system. First, the concept of procedure
calling, as implemented by the Button Box’s “Four
Procedures Box,” was too abstract for younger children.
Second, the system provided no way for a child to
modify a program once it was recorded. If the child
found a mistake, he had to re-record the entire sequence
from the beginning. This last issue did, however, mean
that children were not presented with the somewhat
complex task of editing ““buggy’ programs.

Perlman’s next system, the Slot Machine (Fig. 3), ad-
dressed both issues. Instead of controlling the turtle using

Fig. 3 Radia Perlman’s Slot Machine (Photo © 2004 Robert W.
Lawler, used with permission)

buttons, as with the Button Box, the Slot Machine em-
ployed plastic cards that could be inserted into one of
three colored racks (red, yellow, and blue). On the left side
of each rack was a “Do it” button. When the child pressed
this button, the turtle performed the actions pictured on
each card in the rack, in sequence from left to right. As an
action was being executed, a lamp under the card illumi-
nated.

The Slot Machine design offered a major advantage
over the Button Box: the ability to manipulate a program
directly, by adding, rearranging, and removing cards by
hand. To address the procedure-calling issue, Perlman
introduced special cards whose colors corresponded to the
colored racks. For example, if a blue card was encoun-
tered, program execution continued at the beginning of
the blue rack and returned to the original rack (i.e.,
the “caller”) after the last card on the blue rack was
completed. The colored cards could also be used to
create FOREVER loops via tail recursion, by building a
procedure that called itself. For example:

Forward| | Right Red

Red 5 5 Card
Rack
\

2.5 The turtle goes to school

The Logo programming language acquired unprece-
dented popularity in the early 1980s when personal
computers (particularly the Apple II) became common
in schools. However, few robotic turtles made it to
school—although fine for pioneering laboratory re-
search, the robots proved expensive, unreliable, and
unsuitable for exploring complex geometric patterns.
Educational computing researchers at MIT temporarily
moved away from this approach, and instead developed
the screen turtle, a representation of the floor turtle on
the computer’s video display. The screen turtle became
the standard for Logo-style computational geometry.
The notion of physically rehearsing geometric ideas was

s s8s 808 sas | Ib‘
. ,
e 8ot et Y

LILTRE S

Fig. 4 The evolution of programmable bricks: early Gray Brick
(top); later Red Brick (bottom); and commercial LEGO RCX
(right) aka Yellow Brick (Photo by F. Martin)

certainly not abandoned, but the practice of using the
floor turtle as a physical thing to think with lay dormant
for a number of years.

Though the screen turtle was obviously more practical,
it added a layer of abstraction that may have caused
difficulty for some children, because the screen turtle was
removed from the floor, and thus removed from the
child’s everyday environment. Also, the distinction
between turning left and turning right was less intuitive,
since the turtle was on a vertical display screen, whereas
floors are horizontal. Nevertheless, the virtual nature of
the screen turtle offered new opportunities for learning
and exploration that were hard to resist.

2.6 Connecting with the physical world: LEGO
and Logo

It was not until the 1990s that educational computing
researchers at MIT returned in earnest to studying
interaction with the physical world. The LEGO TC
Logo? interface developed by Steve Ocko allowed young
inventors to write Logo programs on a personal com-
puter to control devices built out of LEGO building
blocks. Even though these contraptions were tied by an
“umbilical cord” to a computer, they could perform
simple yet amazing real-world tasks, for example, sort-
ing LEGO pieces by size.

Fred Martin, Randy Sargent’, and Brian Silverman
helped Logo break free of the umbilical cord. Whereas

4

2LEGO is a trademark of the LEGO Group.

3Fred Martin co-created the now famous 6.270 MIT LEGO robot
competitions with Randy Sargent, author of the “Interactive C”
robot programming language.

4Brian Silverman was one of Papert’s early students at MIT, who

went on to become a founder of Logo Computer Systems, Inc.
(LCSD).

329

Fig. 5 Dr. Legohead

Steve Ocko’s interface required a separate external
computer, Martin, Sargent, and Silverman built the
computer directly into special programmable LEGO
bricks (a.k.a. P-Bricks, shown in Fig. 4). Each P-Brick
contained a battery-powered microcomputer running a
Logo interpreter [7]. Like Ocko’s tethered interface, the
P-Brick could be used to sense its environment and
control motors. LEGO eventually commercialized the P-
Brick and sold it as the LEGO Mindstorms Robotics
Invention System.

2.7 Toys with “personality”

The P-Brick was the inspiration and ‘“‘brain” for a
number of “magical machines” [8], toys with “behavior”
[9], designed for children by children at heart. Rick
Borovoy created Dr. Legohead (Fig. 5), an interactive
character inspired by Mr. Potatohead®. Like Mr. Pota-
tohead, its eyes, ears, nose, and mouth are removable,
and in the spirit of “‘there is no wrong,” body parts can
be inserted in funny places. However, don’t expect the

SMr. Potatohead is a trademark of Hasbro, Inc.

Fig. 6 LEGO MyBot

good Doctor to tolerate facial modifications with as
much stoicism as his low-tech cousin. Unlike Mr. Po-
tatohead, high-tech Dr. Legohead talked, and manipu-
lating his removable body parts and accessories trigger
humorous responses. For example, the Doctor would
make silly comments if you inserted his eyes backwards,
and he would act vain if you took a picture of him with a
toy camera, making jokes about his nose being too big
[10].

The LEGO MyBot (Fig. 6) is another toy inspired in
part by research at MIT. This highly reconfigurable toy-
building system was released in 2000. It consists of
building blocks that can be used to make a racecar, an
airplane, a towering mechanical monster, or any number
of creative hybrids. Special code bricks give the child’s
creation additional personality. The toy emits different
sound effects in response to a tilt sensor. Optional
modifier code bricks can be used to configure the toy to
exhibit supplemental behaviors, such as ‘“‘car alarm,”
“laser tag,” and ‘“‘gas pump.” For instance, with the gas
pump code brick in place, the toy periodically “runs out
of gas” and waits for the child to “fill’er up.” When the
child inserts a hose into the gas tank receptacle, the car,
plane, or monster makes gratifying gurgling, “gas fill-
ing” sounds. Even young children quickly latch on to
this sort of activity because it mimics familiar concepts
from the world around them. In this case, that gasoline
makes cars ‘““‘go” and that one visits the gas station
periodically to buy more.

Fig. 7 MIT Cricket

While code bricks like “gas pump” definitely suggest
specific interaction, the main ‘“‘personality” bricks in the
MyBot system do not impose any explicit scripting on
the child’s play. These bricks simply make non-imposing
sound effects, variations on the timeless “vroom” (car)
and “‘neeaw’ (airplane) sounds.

2.8 P-Bricks “go mini’’: the cricket and its progeny
Continuing with the P-Brick concept, Martin, Silver-
man, and Robbie Berg of Wellesley College invented the
Cricket [11]. The Cricket (Fig. 7) is a scaled-down ver-
sion of the P-Brick based around the PIC microproces-
sor family®. The MIT “blue dot” Cricket is about the
size of a 9-volt battery’. It can control two motors, read
two analog sensors, and command peripherals via a se-
rial bus. It has a buzzer to beep and play tones. It can
communicate with other Crickets via infrared light.
Logo programs written on a personal computer can be
downloaded to a Cricket using the same infrared link.
The user can also interactively send Logo commands to
the Cricket by typing commands into a special window.
This last feature is extremely useful for debugging and
encourages incremental testing.

2.9 Tangible Mozart

Lackner, Dobson, Rodenstein, and Weisman used a
team of Crickets to build their Sensory Puzzles [12]
designed for tactile and auditory exploration of music. A
commercial toy of similar design is Neurosmith’s award-
winning Music Blocks (Fig. 8), one of the best toys to

°PIC is a trademark of Microchip, Inc.
"Fred Martin’s commercial version, called the Handy Cricket, is
about the size of 4XAA batteries.

Fig. 8 Neurosmith Music Blocks

date to feature a truly tangible user interface®. The toy
comes with five colored cubical blocks, each representing
a musical phrase from the opening of Mozart’s well-
known Eine Kleine Nachtmusik. The child arranges the
blocks on a music player. When a block is inserted, it
plays its musical phrase in isolation. Pressing the “play”
button on the player (the only button on the toy) plays
the entire sequence in whatever order the child has
chosen.

The musical phrases in the Music Blocks toy were
carefully chosen so that the music sounds ‘‘right,”
regardless of the order in which the phrase blocks are
arranged. The child can create new, entirely plausible
variations, or try to re-create the Mozart original.
Adding to the fun, the different faces of the cubical
blocks play different arrangements of the music, from
“doo wop” a capella to classical orchestral.

2.10 Tangible programming with trains

Genee Lyn Colobong and Martin’s unpublished 1998
research Tangible Programming with Trains (Fig. 9) was
commercialized by a number of toy companies. One
such progeny, the LEGO [ntelli-train comes with a
battery-powered locomotive whose actions can be pro-

8Their paper was accepted for publication concurrently with the
commercial release of the Music Blocks product, which was
developed independently by Neurosmith.

331

Fig. 9 Tomica train set augmented with a Cricket that heeds IR
beacon signs (prototype). Tomica is a trademark of TOMY
Company, Ltd

grammed by placing special, flat, code bricks on the
track. For example, when the train rolls over the “toot”
brick, it sounds its horn. When the train rolls over the
“reverse”” brick, it changes direction. When it encounters
a “‘stop” brick, the train halts and waits for the child to
press the green “go” button. By adding, removing, and
moving code bricks, the child can modify the “program”
even while the train is “running” it. Other code bricks
include “‘stop to pick up passengers” and “‘stop to get
fuel.” Again, these are important because they relate to
the child’s real world and because they encourage
storytelling.

In informal experiments, the author noticed that the
concept of preparing train tracks with instructions to be
executed later by the Intelli-train was initially not intu-
itive to four-year-olds. Shown how the code bricks affect
the train’s behavior, their first instinct was to place the
code bricks directly in front of the approaching train to
achieve immediate results. It is too bad that this
approach mostly results in derailments, because
providing a mechanism for “‘interactive” program exe-
cution would make a good transitional learning activity:
immediacy first, delayed “programming’ later.

2.11 The AlgoBlock system: a tangible video game

The term “tangible programming” was actually coined
by Suzuki and Kato, developers of the AlgoBlock system
(Fig. 10) [13] to study collaborative problem solving.
The AlgoBlock system consisted of a collection of rela-
tively large computational building blocks (approxi-
mately 15-cm cubes) that children used to direct a
submarine through an underwater maze. Their language
was very similar to Logo. Although the task of pro-
gramming was physical, the effect of running a program
was ‘“‘virtual”: guiding a submarine on the computer
screen.

332

Fig. 10 Children programming an on-screen submarine using the
AlgoBlock system

2.12 Tangible programming bricks

The author’s own research into tangible user interfaces
(TUISs) started with the Cricket technology. In 1999, the
author designed and built the Tangible Programming
Bricks system [14] as a platform for exploring tangible
programming languages. Once the hardware was de-
signed and built, the challenge was to find a tangible
programming language that met the following design
criteria:

Easy to understand

— Conducive to free-form play

— Small vocabulary—lexicon of building blocks
Large number of legal programs
Debuggable without external tools

In the interest of simplicity and accessibility, the au-
thor chose to build a 1-D system of stackable LEGO
bricks that could be used for building programs out of
simple, atomic token bricks. He quickly found that using
such simple bricks was too constraining. In particular,
there was no way to specify numeric parameters, like in
Perlman’s Slot Machine (the 30 and “60” in Fig. 3).
To make the set more powerful, he redesigned the
bricks, adding a card slot to the side of each brick. This
feature was added initially to support parameters, but it
soon became evident that the slot allowed a rich array of
accessories to be added, such as digital thumb wheels
and analog knobs, thus, providing additional manipu-
lability. Using Don Norman’s terminology in [15], the
Tangible Programming Bricks now had two affordances:
“insert card” (Fig. 11) and “‘stack bricks” (Fig. 12). The
connector system used for stacking bricks relies on the
plastic knobs and tubes of the LEGO SYSTEM for
physical clutching, and employs a “‘smart card” (ISO
7816) connector for electrical contacts. The bricks can be
stacked successfully in two orientations (0° and 180°).
They are physically prevented from snapping together in
other orientations (90° and 270°).

Fig. 11 Affordance: insert a card

2.12.1 Implementation

The technology inside a Tangible Programming Brick is
a close relative of the Cricket’s. They both have a PIC
microprocessor inside, each running a Logo interpreter,
and have a programmable memory to store a Logo
program. The program inside gives each brick its unique
computational behavior. There are no batteries inside
the bricks. They all receive power from a single battery
brick at the base of the stack. Each brick has connectors
on the top and bottom used for power and communi-
cation, three colored lights, and a peripheral card slot. In
the final implementation, the card connector provided
electrical circuits for:

— Power and ground
— 1°C serial bus
— Buzzer or capacitive touch sensor

Fig. 12 Affordance: add/stack a brick

— IR transceiver
— Serial Cricket bus
— Analog sensor input.

A brick can communicate with its neighbors. It can
send messages containing events or data to its neigh-
boring brick above, and it can receive (and answer)
messages from its neighbor below. This asymmetry leads
to a natural upward data flow. Because each brick can
only communicate with its immediate neighbors, passing
data from the bottom brick to the top brick in a stack
requires the cooperation of all the bricks in between to
form a ““bucket brigade.”

2.12.2 Early experiments

Early experiments with the Tangible Programming
Bricks focused on programming external devices, like
toy cars and kitchen appliances, using a sequential,
procedural language. The building blocks shown in Figs.
11 and 12 were from an early experimental language
aimed at the end-user programming of microwave ovens.

2.13 Functional programming is well suited
to physical interfaces

In the spring of 2000, a more successful tangible pro-
gramming language emerged. Previously, the author had
been working in much the same direction as his prede-
cessors: researching physical media for imperative pro-
gramming. The author began exploring the physical
expression of another programming style, functional
programming.

An imperative program describes an algorithm, or
“how to” do something. When a child programs a Logo

333

turtle or Intelli-train, he sets up a sequence of commands
(a.k.a. imperatives) that the device executes one-at-a-
time, in the order that it encounters them. A functional
program denotes “‘what is” being computed. The most
familiar example of a functional programming system
(although unbeknownst to many of its users) is an
electronic spreadsheet program. Each cell of a spread-
sheet describes a piece of the computation. The order of
evaluation is not explicitly specified; rather, it is derived
from the relationships between the cells. For instance, if
cell B2 depends on the value of A4, then A4 will be
computed before B2.

The new language created by the author, dubbed the
Digital Construction Set (see Fig. 13 and corresponding
legends in Table 1), was inspired by the functional pro-
gramming concepts of combinators [16] and streams [17],

=y

ct l

W N

S Subtra

—

Fig. 13 Digital Construction Set: vocabulary

Table 1 Digital Construction Set for Bricks and Cards (refers to Fig. 13)

Generates a stream of discrete events triggered when the analog sensor data rises above a threshold (no event

Allows the user to download Logo code into a brick to give it its own distinct behavior; can be used to

Used for entering numbers that are not available in the limited set of CONSTANT cards (seen showing

Function
Brick
BATTERY This provides a computationally passive foundation for building a stack of bricks (the unlabeled
brick in top right of figure)
MEASURE Generates a continuous stream of samples from analog SENSOR, KNOB, THUMBWHEEL, or
CONSTANT cards
TRIGGER
is generated when sensor data falls)
MULTIPLY Multiplies input data stream by a value supplied by card
SUBTRACT Subtracts from input data stream a value supplied by card
COUNT Tallies events (ignores data associated with each event)
COUNTS/T Counts the number of events in a specific period of time (e.g., 10 s)
DISPLAY Displays, in succession, each element of input stream
CLICK Clicks whenever it receives a new data element (a.k.a. event)
Card
TOUCH/CONSTANT Used either as a push-button, or as a symbolic or numeric parameter
KNOB Used to enter a variable input parameter
BEEPER Gives the CLICK brick its ““voice,” or can be used for other sound, music, or noise-making
IR/BUS
communicate with Crickets, other stacks of bricks, or peripherals (e.g., display)
THUMBWHEEL
©0259” in figure)
SENSOR Used to sample analog data from sensors (e.g., to measure light, temperature, magnetism, etc.)

334

and introduces the concept of sequencers. In traditional
functional programming parlance, a combinator is a
function that creates a new function out of existing
functions (e.g., compose: (fog)(x) = f(g(x))). In this
context, a function is constrained to be a mathematical
transformation whose output is dependent solely on its
input (e.g., MULTIPLY and SUBTRACT). In other
words, for a given set of input value(s), a function always
computes the same output. By contrast, a sequencer is
allowed to remember previous data (i.e., state) and
incorporate this history into the calculation of its output
(e.g., COUNT and COUNT/T, described in Table 1).
Both types of linguistic building blocks can be used in
isolation or together to transform a stream of input data
(e.g., sensor data) into an output data stream that can be
used in turn as input by another brick. This is similar in
spirit to how a Unix/Linux shell command can be piped to
another command. A major advantage of the streams
programming model is that control flow is implicit.
Programs using streams are naturally concise, and the
building blocks can easily be recombined to solve new
problems.

The message-passing architecture of the Digital
Construction Set uses a variation of the ‘“bucket bri-
gade’ concept described above. Here, a brick is allowed
to modify each element of the data stream as it passes it
up the chain. For example, a MULTIPLY brick with a
©“2” card takes each number received from its lower
neighbor, multiplies it by two and passes the result up to
its upper neighbor. So, if the brick receives a 21 from
below, a 42 is passed up the chain.

2.14 Building physical microworlds

The Digital Construction Set was designed for children to
explore the logic of everyday electronic devices through
hands-on learning. In his seminal book, Mindstorms [18],
Papert introduces the concept of a microworld, a deliber-
ately simplified computational environment that allows
students to explore ideas that are not normally demon-
strable in an average classroom setting. Papert describes
how microworlds can be used to learn aspects of Newto-
nian mechanics that students never experience in their
everyday lives, such as the motion of objects in a vacuum.
Children, programming a Dynaturtle (dynamic turtle,
a.k.a. sprite) in Logo, can design experiments not only to
model traditional Newtonian mechanics, but also alter-
nate laws of motion (e.g., Aristotelian), or even fictional
universes whose natural laws are defined entirely by the
student. Papert’s theory is that, when a child creates a
simulation by herself, she has “made it her own,” it be-
comes personal, and thus, more powerful.

2.14.1 “Getting under the hood”

Fifty years ago, home appliances and scientific instru-
ments were made from individual components and
invited amateur disassembly, experimentation, and
learning—but the microprocessor changed all that. Even

if you did open the case of a modern gadget, there is
almost nothing to see that can be used to understand its
inner workings. The National Science Foundation
funded the Beyond Black Boxes initiative [19] to explore
the theory that children more readily learn scientific
concepts by building their own scientific equipment.

2.15 Bricks at work: a bicycle trip computer

The Digital Construction Set was designed to be used as
a tool for learning the relationships between physical
concepts of time, distance, and velocity, as well as the
relationship between Celsius and Fahrenheit tempera-
ture scales. Figure 14 shows the Digital Construction Set
in action. This physical microworld was inspired by one
of Brian Silverman’s anecdotes. His daughter wanted to
understand how a bicycle trip computer works inside.
Silverman knew that nothing inside the device would
help his explanation, so together, they built one from
scratch using a Cricket. They mounted a magnet to the
rim of her bicycle, attached a Hall-effect (magnetism)
sensor onto the bicycle frame. Then, they programmed
the Cricket using Logo to count wheel revolutions, to
compute and finally display the bicycle’s speed and
distance traveled.

The Digital Construction Set provides all the building
blocks required to make a simple bicycle trip computer. In
the simplified example shown here, the Hall-effect sensor
on the toy bicycle is wired to the TRIGGER brick. Every
time the bicycle wheel goes around, the magnet on the
wheel rim moves past the sensor. When TRIGGER de-
tects this, it sends a message representing an event up to
CLICK, which beeps once per message, and forwards the
message to COUNTS/T. This brick tallies messages
within a 10-s interval and passes the total count to DIS-
PLAY. In the full example, MULTIPLY would be used to
compute velocity (e.g., MPH or KPH).

A second DISPLAY (shown in the lower right of
Fig. 14) is connected directly to COUNTS/T. It is used
to view the state of its internal counter. This was added

Fig. 14 Bicycle trip computer microworld

because, in early versions of the Digital Construction
Set, the counter’s internal state was invisible during the
10 s between clock ticks. This made it difficult to explain
the operation of COUNTS/T to children. The lesson
here: “Avoid hidden states. Make everything visible.”

2.16 Features of the Digital Construction Set

2.16.1 Self-debugging

A valuable aspect of the Digital Construction Set is that
it naturally encourages the user to start simple and to
add complexity on top of already working structures. As
the system becomes more complex, users spend more
and more time debugging—figuring out why things do
not work as expected. For this, it is important to be able
to see what is going on inside the computation [20].

The Digital Construction Set offers the ability to
debug itself. The CLICK and DISPLAY bricks can be
used to examine intermediate results in a stack of bricks,
as well as to understand the internal message-passing
architecture. These special bricks do not have any
computational effect on the values passed up the stack.
For example, the CLICK brick can be used to learn the
difference between TRIGGER and MEASURE. When
CLICK is placed above MEASURE, CLICK beeps
rapidly. Put it above TRIGGER, and it beeps only after
high—low transitions of the input data. Before an exter-
nal sensor is connected, TRIGGER can be tested in
isolation by using the KNOB card. Each time the knob
is turned clockwise, CLICK beeps once. When the knob
is turned counter-clockwise, no beep is heard.

This self-debugging feature turned out to be very
useful when the author was first programming the bricks
that make up the Digital Construction Set. Later, when
the KNOB and THUMBWHEEL cards were added, the
CLICK brick was used to listen for bugs in the internal
message-passing system. Children can debug their
creations in the same manner.

2.16.2 Consistency and simplicity

A fundamental design tenet of the Digital Construction
Set is simplicity through consistency. In particular, the
CONSTANT, KNOB, SENSOR, and THUMBWHEEL
cards can be used interchangeably. For example, if a child
wants to understand how the THUMBWHEEL works,
she can simply insert it in the MEASURE brick and attach
a DISPLAY brick above it. It becomes a game to
manipulate the digits of the THUMBWHEEL and watch
the DISPLAY change. The design of the Digital
Construction Set makes it easy for users to understand the
behavior of individual building blocks and small
assemblies before moving to bigger projects.

2.16.3 Programmability

Perhaps the most powerful feature of the Digital Con-
struction Set system is its ability to allow researchers and

335

even young programmers to “‘get under the hood” of the
bricks themselves and reprogram the behavior of any
brick. In Papert’s spirit of technology that children can
“make their own,” children are offered the opportunity
to design their very own physical microworlds by
inventing new, domain-specific vocabulary—a new set of
building blocks suited to a particular task.

2.17 Why not allow different topologies?

Many constructive tangible user interfaces (e.g., [21, 22])
use computational building blocks to specify a wide
range of geometric and topological structures. However,
the Tangible Programming Bricks only stack in one
direction—up. One cannot build 2-D or branching
structures using the Digital Construction Set. The
author deliberately chose this approach to avoid adding
layers of complexity. Two of the main goals of this
research were ease of explanation and ease of learning.
Although the linear stacking constraint does limit
expression, the overall simplicity of the Digital Con-
struction Set is a clear benefit for the novice. Simplicity
is an important feature of a Papert-style microworld.

2.18 Evaluating the Digital Construction Set

The Tangible Programming Bricks were demonstrated
to hundreds of adults in the course of testing the suit-
ability of various types of physical programming lan-
guages. Compared to the prototype languages based on
an imperative programming model, the author found the
streams-based programming model of the Digital
Construction Set to be dramatically easier to explain to
adults with both technical and non-technical back-
grounds.

A few users were confused by the physical similarity
of the connector systems used for stacking bricks and
inserting cards. This was because the same gold “‘smart
card” pattern appeared on both the bricks and the cards.
Also, there was nothing to prevent cards from being
inserted upside down. This would be easy to fix in a
commercial implementation.

Only limited testing was conducted with children. To
evaluate the Digital Construction Set, the author
arranged informal user sessions with four children
ranging from 6 to 13 years of age. A session consisted of
a 10-min demonstration of the Digital Construction Set,
followed by 10-20 min of free-form play and experi-
mentation. An 11-year-old girl and a 13-year-old boy
were successful at solving two problems posed to them
with little prompting. The girl also launched into an
impromptu activity using the bricks and the bicycle to
measure distance along a yardstick. The two younger
children did not really “take” to the activity. The author
speculates that a less scientifically advanced microworld
would have been more appropriate for younger children.

In fact, subsequent research studies by Wyeth and
Purchase into the usability of tangible programming

336

systems found that preschoolers can create simple pro-
grams and benefit from the physical immediacy of
stackable, electronic blocks [23]. The blocks of Wyeth
and Purchase were much simpler than the Digital Con-
struction Set. They employed on/off sensors, lights, and
Boolean logic functions similar to the commercial toy,
LogiBlocs.

2.19 Other related research

The research described in this paper is within an area
situated squarely between visual programming languages
[3, 24, 25], direct manipulation [26], tangible user inter-
faces [14, 27-31], and end-user programming [32]. It
focuses specifically on children as programmers. In
addition to the programming systems described in this
document, a number of other systems have been de-
signed for children: derivatives of Logo (e.g., StarLogo
[33]), ToonTalk [34], Cocoa (a.k.a. KidSim) [23], and
Agentsheets [35, 36], just to name a few. Martin’s Brai-
tenberg Bricks [37] demonstrated a physical embodiment
of Braitenberg’s behavior language described in [38].

3 Conclusion

The monumental work of Seymour Papert and his stu-
dents both at MIT and elsewhere have provided a rich
body of research into the field of educational program-
ming and tangible user interfaces. The author has used
this work as a foundation for the development of the
Digital Construction Set, exploring the feasibility of
expressing functional programming concepts in the
physical world. The Digital Construction Set allows
teachers and students alike to build physical microworlds
that children can use to model the behavior of digital
devices and to conduct scientific experiments involving
sensing and computation directly in the physical world.
Key properties of successful physical and language
design make this set of digital manipulatives easy to learn
and use. The author’s research suggests that, compared
to screen-based user interfaces, tangible user interfaces
make computation immediate and, thus, more accessi-
ble, and that they are appropriate for children learning
about computation and scientific exploration. Com-
pared to languages based on an imperative programming
model, the streams programming model is significantly
easier to explain to both children and adults.

There is now a growing body of research in tangible
user interfaces that focuses on traditional usability, as
well as a mature body of research in elegant program-
ming language design. The author hopes to inspire a new
breed of interdisciplinary researchers to combine tangi-
ble user interfaces with language design, so that today’s
tangible toys lead to tangible tools for tomorrow’s
professionals.

Acknowledgements The author’s research was funded by the MIT
Media Lab’s Things That Think consortium and the LEGO

Company (which had no editorial influence over this article). Many
thanks go to my thesis committee, Fred Martin, Mitchel Resnick,
Hiroshi Ishii, and Hal Abelson for their guidance and encourage-
ment; to Bakhtiar Mikhak and Rick Borovoy for their enthusiastic
collaboration; and to Bonnie Friedman, Colin Ferguson, and Shari
Goldin for their careful editing and help in preparing this article for
publication.

References

1. Resnick M, Martin F, Berg R, Borovoy R, Colella V, Kramer
K, Silverman B (1998) Digital manipulatives: new toys to think
with. In: Proceedings of the CHI'98 conference on human
factors in computing systems, Los Angeles, California,
April 1998. ACM Press, New York, pp 281-287. DOI
10.1145/274644.274684

2. Abelson H, diSessa A (1981) Turtle geometry: the computer as
a medium for exploring mathematics. MIT Press, Cambridge,
Massachusetts

3. Perlman R (1976) Using computer technology to provide a
creative learning environment for preschool children. Logo
memo no 24, MIT Artificial Intelligence Laboratory Publica-
tions 260, Cambridge, Massachusetts

4. Halbert DC (1984) Programming by example. PhD thesis,
Department of Electrical Engineering and Computer Science,
University of California, Berkeley, California

5. Frei P, Su V, Mikhak B, Ishii H (2000) Curlybot: designing a
new class of computational toys. In: Proceedings of the CHI
2000 conference on human factors in computing systems, The
Hague, The Netherlands, April 2000. ACM Press, New York,
pp 129-136. DOI 10.1145/332040.332416

6. Laurel B (1993) Computers as theater. Addison-Wesley,
Reading

7. Martin F, Resnick M (1993) LEGO/Logo and electronic
bricks: creating a scienceland for children. In: Ferguson D (ed)
Advanced educational technologies for mathematics and
science. Springer, Berlin Heidelberg New York

8. Martin F, Mikhak B, Resnick M, Silverman B, Berg R (2000)
To mindstorms and beyond: evolution of a construction kit for
magical machines. In: Robots for kids: exploring new tech-
nologies for learning. Morgan Kaufmann, San Francisco

9. Resnick M (1993) Behavior construction kits. Commun ACM
36(7):64-71. DOI 10.1145/159544.159593

10. Borovoy R (1996) Genuine object oriented programming.
Masters thesis, MIT Media Laboratory, Cambridge, Massa-
chusetts

11. Martin F, Mikhak B, Silverman B (2000) MetaCricket: a
designers’ kit for making computational devices. IBM Syst
J 39(34):795-815

12. Lackner TM, Dobson K, Rodenstein R, Weisman L (1999)
Sensory puzzles. In: Extended abstracts from the proceedings
of the CHI'99 conference on human factors in computing
system, Pittsburgh, Pennsylvania, May 1999. ACM Press, New
York, pp 270-271. DOI 10.1145/632716.632882

13. Suzuki H, Kato H (1993) AlgoBlock: a tangible programming
language, a tool for collaborative learning. In: Proceedings of
the 4th European Logo conference (Eurologo’93), Athens,
Greece, August 1993, pp 297-303

14. McNerney T (2000) Tangible Programming Bricks: an ap-
proach to making programming accessible to everyone.
Masters thesis, MIT, Cambridge, Massachusetts. Available at
http://www.media.mit.edu/people/mc/tangible-programming. html

15. Norman DA (2002) The design of everyday things. Basic Books
(Perseus), New York

16. Henderson P (2002) Functional geometry. Higher-Order Symb
Comp 15(4):349-365

17. Abelson H, Sussman GJ, Sussman J (1996) Structure and
interpretation of computer programs, 2nd edn. MIT Press,
Cambridge, Massachusetts

18. Papert S (1999) Mindstorms: children, computers, and power-
ful ideas, 2nd edn. Basic Books, New York

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Resnick M, Berg R, Eisenberg M (2000) Beyond black boxes:
bringing transparency and aesthetics back to scientific instru-
ments. J Learn Sci 9(1):7-30

Ungar D, Lieberman H, Fry C (1997) Debugging and the
experience of immediacy. Commun ACM 20(4):38-43
Anagnostou G, Dewey D, Patera A (1989) Geometry-defining
processors for engineering design and analysis. Vis Comput
5(5):304-315

Anderson D, Frankel JL, Marks J, Leigh D, Sullivan E,
Yedidia JS, Ryall K (1999) Building virtual structures with
physical blocks. In: Proceedings of the 12th annual ACM
symposium on user interface software and technology
(UIST’99), Asheville, North Carolina, November 1999. CHI
Letters 1(1):71-72

Wyeth P, Purchase H (2002) Tangible Programming
elements for young children. In: Extended abstracts from the
proceedings of the CHI 2002 conference on human factors
in computing systems, Minneapolis, Minnesota, April 2002.
ACM Press, New York, pp 774-775. DOI 10.1145/
506443.506591

Begel A (1996) LogoBlocks: a graphical programming language
for interacting with the world. SB thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge,
Massachusetts. Available at http://www.media.mit.edu/people/
abegel/begelaup.pdf

Smith DC, Cypher A, Spohrer J (1994) KidSim: programming
agents without a programming language. Commun ACM
37(7):54-67. DOI 10.1145/176789.176795

Repenning A, Ambach J (1996) Tactile programming: a unified
manipulation paradigm supporting program comprehension,
composition, and sharing. In: Proceedings of the IEEE sym-
posium on visual languages, Boulder, Colorado, September
1996 pp 102-109

Fitzmaurice G, Ishii H, Buxton W (1995) Bricks: laying the
foundation for graspable user interfaces. In: Proceedings of the
CHI'95 conference on human factors in computing systems,
Denver, Colorado, May 1995. ACM Press, New York, pp
442-449

Gorbet M, Orth M, Ishii H (1998) Triangles: tangible interface
for manipulation and exploration of digital information
topography. In: Proceedings of the CHI’98 conference on

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

337

human factors in computing systems, Los Angeles, California,
April 1998. ACM Press, New York, pp 49-56. DOI 10.1145/
274644.274652

Ishii H, Ullmer B (1997) Tangible bits: toward seamless inter-
faces between people, bits and atoms. In: Proceedings of the 8th
international conference on intelligent user interfaces, Orlando,
Florida, January 1997. ACM Press, New York, pp 234-241.
DOI 10.1145/604045.604048

Ullmer B, Ishii H, Glas D (1998) MediaBlocks: physical
containers, transports, and controls for online media. In:
Proceedings of the 25th annual conference on computer
graphics (SIGGRAPH’98), Orlando, Florida, July 1998. ACM
Press, New York, pp 379-386. DOI 10.1145/280814.280940
Underkoffler J, Ishii H (1998) Illuminating light: an optical
design tool with a luminous-tangible interface. In: Proceedings
of the CHI'98 conference on human factors in computing
systems, Los Angeles, California, April 1998.. ACM Press, New
York, pp 542-549. DOI 10.1145/274644.274717

Soloway E, Spohrer J (1989) Studying the novice programmer.
Lawrence Erlbaum, Hillsdale, New Jersey

Resnick M (1994) Turtles, termites, and traffic jams: explora-
tions in massively parallel microworlds. MIT Press, Cambridge,
Massachusetts

Kahn K (1996) Drawings on napkins, video-game animation,
and other ways to program computers. Commun ACM
39(8):49-59. DOI 10.1145/232014.232028

Gindling J, Ioannidou A, Loh J, Lokkebo O, Repenning A
(1995) LEGOsheets: a rule-based programming, simulation and
manipulation environment for the LEGO programmable brick.
In: Proceedings of the 11th international IEEE symposium on
visual languages, Darmstadt, Germany, September 1995. IEEE
Computer Society Press, pp. 172-179

Repenning A, Sumner T (1995) Agentsheets: a medium for
creating domain-oriented visual languages. IEEE Comput
28(3):17-25

Martin F, Resnick M, Silverman B (1990) Braitenberg bricks:
A LEGO-based creature-construction kit. In: Proceedings of
the workshop on artificial life conference (ALIFE’90), Center
for Nonlinear Studies, Santa Fe, New Mexico, February 1990
Braitenberg V (1984) Vehicles: experiments in synthetic psy-
chology. MIT Press, Cambridge, Massachusetts

