
To appear in the Proceedings of theInternational Conference on Pattern Recognition (ICPR’02), Quebec City, Canada, August, 2002.

Multilinear Image Analysis for Facial Recognition

M. Alex O. Vasilescu Demetri Terzopoulos
Department of Computer Science Courant Institute

University of Toronto New York University
Toronto, ON M5S 3G4, Canada New York, NY 10003, USA

Abstract

Natural images are the composite consequence of multiple
factors related to scene structure, illumination, and imag-
ing. For facial images, the factors include different facial
geometries, expressions, head poses, and lighting condi-
tions. We apply multilinear algebra, the algebra of higher-
order tensors, to obtain a parsimonious representation of
facial image ensembles which separates these factors. Our
representation, called TensorFaces, yields improved facial
recognition rates relative to standard eigenfaces.

1 Introduction

People possess a remarkable ability to recognize faces when
confronted by a broad variety of facial geometries, expres-
sions, head poses, and lighting conditions. Developing a
similarly robust computational model of face recognition
remains a difficult open problem whose solution would have
substantial impact on biometrics for identification, surveil-
lance, human-computer interaction, and other applications.

Prior research has approached the problem of facial rep-
resentation for recognition by taking advantage of the func-
tionality and simplicity of linear algebra, the algebra of
matrices. Principal components analysis (PCA) has been
a popular technique in facial image recognition [1]. This
method of linear algebra address single-factor variationsin
image formation. Thus, the conventional “eigenfaces” fa-
cial image recognition technique [9, 12] works best when
person identity is the only factor that is permitted to vary.
If other factors, such as lighting, viewpoint, and expression,
are also permitted to modify facial images, eigenfaces face
difficulty. Attempts have been made to deal with the short-
comings of PCA-based facial image representations in less
constrained (multi-factor) situations; for example, by em-
ploying better classifiers [8].

Bilinear models have recently attracted attention because
of their richer representational power. The2-mode analysis
technique for analyzing (statistical) data matrices of scalar
entries is described by Magnus and Neudecker [6]. 2-mode
analysis was extended to vector entries by Marimont and

Wandel [7] in the context of characterizing color surface and
illuminant spectra. Tenenbaum and Freeman [10] applied
this extension to three different perceptual tasks, including
face recognition.

We have recently proposed a more sophisticated math-
ematical framework for the analysis and representation
of image ensembles, which subsumes the aforementioned
methods and which can account generally and explicitly for
each of the multiple factors inherent to facial image for-
mation [14]. Our approach is that of multilinear algebra—
the algebra of higher-order tensors. The natural generaliza-
tion of matrices (i.e., linear operators defined over a vec-
tor space), tensors define multilinear operators over asetof
vector spaces. Subsuming conventional linear analysis as a
special case, tensor analysis emerges as a unifying mathe-
matical framework suitable for addressing a variety of com-
puter vision problems. More specifically, we performN -
mode analysis, which was first proposed by Tucker [11],
who pioneered 3-mode analysis, and subsequently devel-
oped by Kapteynet al. [4, 6] and others, notably [2, 3].

In the context of facial image recognition, we apply a
higher-order generalization of PCA and the singular value
decomposition (SVD) of matrices for computing principal
components. Unlike the matrix case for which the exis-
tence and uniqueness of the SVD is assured, the situation
for higher-order tensors is not as simple [5]. There are mul-
tiple ways to orthogonally decompose tensors. However,
one multilinear extension of the matrix SVD to tensors is
most natural. We apply thisN -mode SVDto the represen-
tation of collections of facial images, where multiple image
formation factors, i.e., modes, are permitted to vary. Our
TensorFacesrepresentation separates the different modes
underlying the formation of facial images. After review-
ing TensorFaces in the next section, we demonstrate in Sec-
tion 3 that TensorFaces show promise for use in a robust
facial recognition algorithm.

2 TensorFaces

We have identified the analysis of an ensemble of images
resulting from the confluence of multiple factors related
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to scene structure, illumination, and viewpoint as a prob-
lem in multilinear algebra [14]. Within this mathematical
framework, the image ensemble is represented as a higher-
dimensional tensor. This image data tensorD must be de-
composed in order to separate and parsimoniously repre-
sent the constituent factors. To this end, we prescribe theN -mode SVDalgorithm, a multilinear extension of the con-
ventional matrix singular value decomposition (SVD).

Appendix A overviews the mathematics of our multilin-
ear analysis approach and presents theN -mode SVD algo-
rithm. In short, an orderN > 2 tensor orN -way arrayD is
anN -dimensional matrix comprisingN spaces.N -mode
SVD is a “generalization” of conventional matrix (i.e., 2-
mode) SVD. It orthogonalizes theseN spaces and decom-
poses the tensor as themode-n product, denoted�n (see
Equation (4) in Appendix A), ofN -orthogonal spaces, as
follows:D = Z �1 U1 �2 U2 : : :�n Un : : :�N UN : (1)

TensorZ , known as thecore tensor, is analogous to the
diagonal singular value matrix in conventional matrix SVD
(although it does not have a simple, diagonal structure). The
core tensor governs the interaction between themode matri-
cesU1; : : : ;UN . Mode matrixUn contains the orthonor-
mal vectors spanning the column space of matrixD(n) re-
sulting from themode-n flatteningof D (see Appendix A).

The multilinear analysis of facial image ensembles leads
to the TensorFaces representation. To illustrate Tensor-
Faces, we employed in our experiments a portion of the
Weizmann face image database: 28 male subjects pho-
tographed in 5 viewpoints, 3 illuminations, and 3 expres-
sions. Using a global rigid optical flow algorithm, we
aligned the original512� 352 pixel images relative to one
reference image. The images were then decimated by a fac-
tor of 3 and cropped as shown in Fig. 1, yielding a total of
7943 pixels per image within the elliptical cropping win-
dow.

Our facial image data tensorD is a28�5�3�3�7943
tensor. Applying multilinear analysis toD, using ourN -
mode decomposition algorithm withN = 5, we obtainD = Z�1Upeople�2Uviews�3Uillums�4Uexpres�5Upixels; (2)

where the28� 5� 3� 3� 7943 core tensorZ governs the
interaction between the factors represented in the 5 mode
matrices: The28 � 28 mode matrixUpeople spans the space
of people parameters, the5�5 mode matrixUviews spans the
space of viewpoint parameters, the3�3 mode matrixUillums

spans the space of illumination parameters and the3 � 3
mode matrixUexpres spans the space of expression parame-
ters. The7943 � 1260 mode matrixUpixels orthonormally
spans the space of images. Reference [14] discusses the at-
tractive properties of this analysis, some of which we now
summarize.

(a)

(b)

Figure 1: The facial image database (28 subjects� 45 images
per subject). (a) The 28 subjects shown in expression 2 (smile),
viewpoint 3 (frontal), and illumination 2 (frontal). (b) The full
image set for subject 1. Left to right, the three panels show images
captured in illuminations 1, 2, and 3. Within each panel, images of
expressions 1, 2, and 3 are shown horizontally while images from
viewpoints 1, 2, 3, 4, and 5 are shown vertically. The image of
subject 1 in (a) is the image situated at the center of (b).

Our multilinear analysis subsumes linear, PCA analy-
sis. As shown in Fig. 2(a), each column ofUpixels is an
“eigenimage”. These eigenimages are identical to conven-
tional eigenfaces [9, 12], since the former were computed
by performing an SVD on the mode-5 flattened data ten-
sorD which yields the matrixD(pixels). The advantage of
multilinear analysis, however, is that the core tensorZ can
transform the eigenimages inUpixels into TensorFaces, which
represent the principal axes of variation across the various
modes (people, viewpoints, illuminations, expressions) and
represents how the various factors interact with each other
to create the facial images. This is accomplished by simply
forming the productZ�5Upixels. By contrast, the PCA basis
vectors or eigenimages represent only the principal axes of
variation across images.

Our facial image database comprises 45 images per per-
son that vary with viewpoint, illumination, and expres-
sion. PCA represents each person as a set of 45 vector-
valued coefficients, one from each image in which the per-
son appears. The length of each PCA coefficient vector is28 � 5 � 3 � 3 = 1260. By contrast, multilinear analy-
sis enables us to represent each person with a single vector
coefficient of dimension 28 relative to the bases comprising
the28� 5� 3� 3� 7943 tensorB = Z �2 Uviews�3 Uillums �4 Uexpres�5 Upixels; (3)
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Figure 2: Some of the TensorFaces basis vectors resulting from
the multilinear analysis of the facial image data tensorD. (a) The
first 10 PCA eigenvectors (eigenfaces), which are containedin the
mode matrixUpixels, and are the principal axes of variation across
all images. (b,c,d) A partial visualization of the28� 5� 3� 3�7943 tensorB = Z �2Uviews�3Uillums�4Uexpres�5Upixels, which
defines 45 different bases for each combination of viewpoints, il-
lumination and expressions, as indicated by the labels at the top of
each array. These bases have 28 eigenvectors which span the peo-
ple space. The eigenvectors in any particular row play the same
role in each column. The topmost row across the three panels de-
picts the average person, while the eigenvectors in the remaining
rows capture the variability across people in the various viewpoint,
illumination, and expression combinations.

some of which are shown in Fig. 2(b–d). Each column in
the figure is a basis matrix that comprises 28 eigenvectors.
In any column, the first eigenvector depicts the average per-
son and the remaining eigenvectors capture the variability
across people, for the particular combination of viewpoint,
illumination, and expression associated with that column.

3 Recognition Using TensorFaces

We propose a recognition method based on multilinear anal-
ysis analogous to the conventional one for linear PCA anal-
ysis. In the PCA or eigenface technique, one decomposes a
data matrixD of known “training” facial imagesdd into a
reduced-dimensional basis matrixBPCA and a matrixC con-
taining a vector of coefficientsd associated with each vec-
torized imagedd. Given an unknown facial imaged, the
projection operatorB�1PCA linearly projects this new image

into the reduced-dimensional space of image coefficients.
Our multilinear facial recognition algorithm performs

the TensorFaces decomposition (2) of the tensorD of vec-
torized training imagesdd, extracts the matrixUpeople which
contains row vectorsTp of coefficients for each personp,
and constructs the basis tensorB according to (3). We in-
dex into the basis tensor for a particular viewpointv, illu-
minationi, and expressione to obtain a subtensorBv;i;e of
dimension28� 1� 1� 1 � 7943. We flattenBv;i;e along
the people mode to obtain the28�7943matrixBv;i;e(people).
Note that a specific training imagedd of personp in view-
point v, illumination i, and expressione can be written asdp;v;i;e = BTv;i;e(people)p; hence,p = B�Tv;i;e(people)dp;v;i;e.

Now, given an unknown facial imaged, we use the pro-
jection operatorB�Tv;i;e(people) to projectd into a set of can-

didate coefficient vectorsv;i;e = B�Tv;i;e(people)d for everyv,i, e combination. Our recognition algorithm compares eachv;i;e against the person-specific coefficient vectorsp. The
best matching vectorp—i.e., the one that yields the small-
est value ofjjv;i;e � pjj among all viewpoints, illumina-
tions, and expressions—identifies the unknown imaged as
portraying personp.

As the following table shows, in our preliminary ex-
periments with the Weizmann face image database, Ten-
sorFaces yields significantly better recognition rates than
eigenfaces in scenarios involving the recognition of people
imaged in previously unseen viewpoints (row 1) and under
a previously unseen illumination (row 2):

Recognition Experiment PCA TensorFaces

Training: 23 people, 3 viewpoints (0;�34), 4 illuminations
Testing: 23 people, 2 viewpoints (�17), 4 illuminations (center, left,
right, left+right)

61% 80%
Training: 23 people, 5 viewpoints (0;�17;�34), 3 illuminations
Testing: 23 people, 5 viewpoints (0;�17;�34), 4th illumination 27% 88%

4 Conclusion

We have approached the analysis of an ensemble of facial
images resulting from the confluence of multiple factors
related to scene structure, illumination, and viewpoint as
a problem in multilinear algebra in which the image en-
semble is represented as a higher-dimensional tensor. Us-
ing the “N -mode SVD” algorithm, a multilinear exten-
sion of the conventional matrix singular value decompo-
sition (SVD), this image data tensor is decomposed in or-
der to separate and parsimoniously represent the constituent
factors. Our analysis subsumes as special cases the sim-
ple linear (1-factor) analysis associated with conventional
SVD and principal components analysis (PCA), as well
as the incrementally more general bilinear (2-factor) anal-
ysis that has recently been investigated in computer vi-
sion. Our completely general multilinear approach accom-
modates any number of factors by exploiting tensor machin-
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ery and, in our experiments, it yields significantly better
recognition rates than standard eigenfaces.

We plan to investigate dimensionality reduction in con-
junction with TensorFaces (refer to the final paragraph=)
of Appendix A). See [13] in these proceedings for the ap-
plication of multilinear analysis to the recognition of people
and actions from human motion data.

A Multilinear Analysis

A tensoris a higher order generalization of a vector (first
order tensor) and a matrix (second order tensor). Tensors
are multilinear mappings over a set of vector spaces. The
order of tensorA 2 IRI1�I2�:::�IN is N . Elements ofA are denoted asAi1:::in:::iN or ai1:::in:::iN , where1 �in � In. In tensor terminology, matrix column vectors
are referred to as mode-1 vectors and row vectors as mode-
2 vectors. The mode-n vectors of an Nth order tensorA
are theIn-dimensional vectors obtained fromA by vary-
ing index in while keeping the other indices fixed. The
mode-n vectors are the column vectors of matrixA(n) 2IRIn�(I1I2:::In�1In+1:::IN ) that results bymode-n flattening
the tensorA (see Fig. 1 in [14]).

A generalization of the product of two matrices is the
product of a tensor and a matrix. Themode-n product
of a tensorA 2 IRI1�I2�:::�In�:::�IN by a matrixM 2IRJn�In , denoted byA �n M, is theI1 � : : : � In�1 �Jn � In+1 � : : :� IN tensor(A�nM)i1:::in�1jnin+1:::iN =Xin ai1:::in�1inin+1:::iNmjnin : (4)

The mode-n product can be expressed in terms of flattened
matrices asB(n) =MA(n).1

OurN -mode SVD algorithmfor decomposingD accord-
ing to equation (1) is:

1. Forn = 1; : : : ; N , compute matrixUn in (1) by com-
puting the SVD of the flattened matrixD(n) and set-
tingUn to be the left matrix of the SVD.2

2. Solve for the core tensor as follows:Z = D �1 UT1 �2 UT2 : : :�n UTn : : :�N UTN : (5)

1The mode-n product of a tensor and a matrix is a special case of the in-
ner product in multilinear algebra and tensor analysis. Note that for tensors
and matrices of the appropriate sizes,A�mU�nV = A�nV�mU
and(A �n U)�n V = A�n (VU).

2WhenD(n) is a non-square matrix, the computation ofUn in the

singular value decomposition (SVD)D(n) = Un�VTn can be per-
formed efficiently, depending on which dimension ofD(n) is smaller,
by decomposing eitherD(n)DT(n) = Un�2UTn and then computingVTn = �+UTnD(n) or by decomposingDT(n)D(n) = Vn�2VTn and

then computingUn = D(n)Vn�+.

Dimensionality reduction in matrix principal component
analysis is obtained by truncation of the singular value
decomposition (i.e., deleting eigenvectors associated with
the smallest eigenvalues). Unfortunately, this does not
have a trivial multilinear counterpart. According to [3], a
useful generalization to tensors involves an optimal rank-
(R1; R2; : : : ; RN ) approximation which iteratively opti-
mizes each of the modes of the given tensor, where each
optimization step involves a best reduced-rank approxima-
tion of a positive semi-definite symmetric matrix. This tech-
nique is a higher-order extension of the orthogonal iteration
for matrices.
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