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Abstract 
 
In the domain of intelligent systems, the management of mental resources is typical-
ly called “attention”. Attention exists because all moderately complex environments 
– and the real-world environments of everyday life in particular – are a source of 
vastly greater information than can be processed in real-time by available cognitive 
resources of any known intelligence, human or otherwise. General-purpose artificial 
intelligence (AI) systems operating with limited resources under time-constraints in 
such environments must select carefully which information will be processed and 
which will be ignored. Even in the (rare) cases where sufficient resources may be 
available, attention could help make better use of them. All real-world tasks come 
with time limits, and managing these is a key part of the role of intelligence. Many 
AI researchers ignore this fact. As a result, the majority of existing AI architectures 
is incorrectly based on an (explicit or implicit) assumption of infinite or sufficient 
computational resources. Attention has not yet been recognized as a key cognitive 
process of AI systems and in particular not of artificial general intelligence systems. 
This dissertation argues for the absolute necessity of an attention mechanism for 
artificial general intelligence (AGI) architectures. We examine several issues related 
to attention and resource management, review prior work on these topics in cogni-
tive psychology and AI, and present a design for a general attention mechanism for 
AGI systems. The proposed design – inspired by constructivist AI methodologies – 
aims at architectural and modal independence, and comprehensively addresses and 
integrates all principal factors associated with attention to date. 

 



 

 

 
 
 

Alhliða athyglisstýring fyrir gervigreindarkerfi 
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Útdráttur 
 
Stjórnun og ráðstöfun hugarafls í greindum kerfum er oftast kölluð "athygli". Athygli 
er til staðar þar sem öll flókin umhverfi – sérstaklega raunheimurinn – eru uppspretta 
margfalt meiri upplýsingamagns en nokkur vitsmunavera getur unnið úr í rauntíma. 
Kerfi með alhliða gervigreind, sem starfa með takmarkaða reiknigetu undir 
margvíslegum tímaskorðum, verða að velja vandlega hvaða upplýsingum þau vinna úr 
og hvaða upplýsingar þau leiða hjá sér. Jafnvel í þeim (sjaldgæfu) tilfellum þar sem 
næganleg reiknigeta gæti verið til staðar gæti athygli bætt nýtingu hennar. Öll verkefni 
í raunheiminum hafa tímaskorður og meðhöndlun þeirra skorða er eitt lykilhlutverk 
greindar. Fjöldi rannsakenda á sviði gervigreindar hafa þó hunsað þessa staðreynd og 
þar af leiðandi er meirihluti þeirra gervigreindarkerfa sem hafa verið smíðuð ranglega 
byggður á þeirri forsendu að kerfin búi yfir óendanlegri reiknigetu. Athygli hefur 
hingað til ekki fengið verðskuldaða áherslu sem lykilatriði í hönnun og hugarferli 
gervigreindarkerfa. Í þessari ritgerð er sýnt fram á að athygli er algjörlega nauðsynleg 
alhliða gervigreindarkerfum. Margvísleg málefni tengd athygli og stjórnun aðfanga 
(reiknigetu, minnis og tíma) eru rannsökuð, farið er yfir fyrri rannsóknir í hugfræði og 
gervigreind og hönnun alhliða athyglisstýringar fyrir gervigreindarkerfi er kynnt til 
sögunnar. Aðferðafræði sjálfsþróunar við gerð gervigreindarkerfa er fylgt í 
hönnuninni, og reynt er að fylgja leiðum sem eru óháðar arkitektúr og skynrása 
kerfisins, og jafnframt nálgast á heildrænan hátt alla helstu þætti sem hafa hingað til 
verið tengdir athygli. 



 

 

 

 

“Everyone knows what attention is. It is the taking posses-

sion by the mind, in clear and vivid form, of one out of what 

seem several simultaneously possible objects or trains of 

thought. Focalization, concentration, of consciousness are of 

its essence. It implies withdrawal from some things in order 

to deal effectively with others, and is a condition which has a 

real opposite in the confused, dazed, scatterbrained state 

which in French is called distraction, and Zerstreutheit in 

German.” 

 

- William James (James 1890, p. 403-404) 

 

 



 
 

 

 

 

 

 

 

at·ten·tion 

noun 

 

1. the act or faculty of attending, especially directing the 

mind to an object 

 

2. a concentration of the mind on a single object or 

thought, especially one preferentially selected from a 

complex, with a view to limiting or clarifying receptiv-

ity by narrowing the range of stimuli 

 

3. a state of consciousness characterized by such concen-

tration 

 

4. a capacity to maintain selective or sustained concen-

tration 
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Terms and definitions 

 

Artificial Intelligence (AI) 

Intelligence of an engineered non-biological system. As a field of scientific research, 

this refers to the study and design of intelligent systems. It should be noted that this 

field does not have a single commonly accepted definition of intelligence (Wang 2006, 

p. 3-10). 

 

General Intelligence 

Refers to the ability of an information-processing system, biological or engineered, to 

autonomously learn to solve novel tasks that were not directly part of its initial design, 

to deal with variations in regular tasks, and to adapt to changing environments. 

 

Artificial General Intelligence (AGI) 

Engineered (non-biological) general intelligence. As a field of scientific research, this 

refers to the study and design of engineered systems possessing some form of general 

intelligence. This has also been referred to as “strong AI”. 

 

AGI systems 

Engineered software systems designed to achieve some level of general intelligence, 

usually inspired to varying degrees by human cognition. Most share the goal of target-

ing human-like intelligence or behavior.  

 



1 
 

 

 

 

Chapter 1 

Introduction 

Most higher intelligences in nature have a built-in mechanism for deciding how to apply 
their brainpower from moment to moment. It is called attention, and refers to manage-
ment of cognitive resources. Human attention is a reasonably well studied subject with-
in the field of psychology (cognitive psychology in particular) and known to be a key 
feature of human intelligence. Every waking moment of our lives subjects our minds to 
an enormous stream of sensory data; the bandwidth of this stream is far beyond our ca-
pacity to process in its entirety (Glass & Holyoak 1986). Without attention we would 
constantly be overloaded with stimuli, severely affecting our ability to perform tasks, 
make decisions and react to the environment. As the real world is a source of much 
more information than any single intelligent agent can ever hope to cognitively ingest 
and process in any given period of time, even the smartest being must come equipped 
with attention mechanisms of some sort, selectively “drinking from the firehose of ex-
perience” as put by Kuipers (2005). 

Natural attention is a cognitive function – or a set of them – that allow animals to focus 
their limited resources on relevant parts of the environment as they perform various 
tasks, while remaining reactive to unexpected events. Without this ability, alertness to 
events in the environment while performing an important task, or multiple simultaneous 
tasks, would not be possible. Furthermore, when faced with many simultaneous tasks, a 
role of attention is to enable performance to degrade gracefully in light of information 
overload, where focus is maintained on tasks of greatest urgency while others are neces-
sarily ignored or delayed, as opposed to a complete failure of all tasks as is the most 
common case by far for existing software systems. 

In the present work, I argue that attention functionality is not only important but critical 
to all information processing systems of general intelligence that operate in everyday 
environments under time constraints. Considering that our brains have by most 
measures more processing capacity than currently existing computers, and yet require a 
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highly sophisticated attention mechanism to function, one could argue that attempts to 
create embodied artificial intelligence (AI) systems that operate in real-world environ-
ments are doomed without it. Thus, it stands to reason that attention should be the focus 
of considerable research in the field of AI. 

In the development of AI systems, however, attention has received surprisingly limited 
focus, and is not even commonly seen as a central cognitive function. This is surprising 
given that any system expected to operate in real-world environments will face exactly 
the same problem as living beings, and require a (functionally) similar solution. A likely 
explanation is that researchers have been working under the assumption of sufficient re-
sources, i.e. that the resources of the system will at all times be sufficient to allow it to 
operate successfully in the target domain. However, this is highly questionable when 
most natural intelligences do not rely on this assumption. In fact, as argued throughout 
this thesis, environments with complexities rivaling those of the real world are likely to 
render any cognitive agent, no matter how intelligent, with insufficient resources for 
significant parts of its operational time. In this dissertation we begin to raise attention to 
the level it deserves. 

From an engineering perspective, attention can be viewed as resource optimization, en-
abling systems to perform tasks in complex environments while requiring insignificant 
amounts of resources (compared to complexity of tasks and environments) and using 
existing resources only for information likely to be important or relevant. In this view, 
time itself can be treated as a resource. 

While a general-purpose attention mechanism, applicable to any AI architecture, could 
be a goal to strive for, a perfect and complete independence from architecture has been 
found practically impossible, as resource management touches on too many fundamen-
tal issues in the structure and operation of an architecture to make this a theoretical pos-
sibility. The goal of the present work is therefore not to develop an attention component 
that can be plugged directly in to existing AI architectures. As a result of the co-
dependence of the numerous cognitive functions related to resource management, we 
argue that any attempt to implement attention as an isolated architectural component is 
highly problematic due to the rich interaction of attentional functionality and all major 
cognitive functions, and furthermore that the best approach for endowing AI architec-
tures with attentional functionality is to address it at the level of architecture and core 
operating mechanisms. It is thus clear from the outset that attention is a pervasive, 
ubiquitous process that interacts with virtually all other cognitive functions and there-
fore requires deep, fundamental integration with the hosting architecture at multiple 
levels; this point will be give further support later. The holistic, inclusive approach to 
attention taken here includes top-down goal-derived control, bottom-up filtering and 
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novelty interruption processes, and includes internal process control as part of the 
mechanism’s operation. 

This work is motivated by the desire to create practical AI systems intended to perform 
real tasks in real-world environments rather than attempting to validate hypothesis or 
models relating to the functionality of the brain at any level. While clearly “biologically 
inspired” at a high level (by natural attention), this work is not biologically inspired in 
this sense: It does not target an accurate simulation or model of biological mechanisms. 
Where deemed useful and appropriate, inspiration from research on human attention 
will be taken, but it is not a goal to have the resulting components be constrained in de-
sign by what is known about the functionality of human attention.  

This dissertation proceeds to motivate why attention is more critical for artificial gen-
eral intelligence (AGI) systems than narrow AI systems in Chapter 2, followed by a 
survey of existing cognitive architectures and how they address attention in Chapter 3. 
Selected work from studies of biological attention in the fields of cognitive psychology 
and neuroscience is reviewed in Chapter 4, with useful ideas and concepts for imple-
menting attention for AI systems extracted. In Chapter 5, the constructivist AI method-
ology is presented and motivated as the core methodology of the present work. Re-
quirements for attention in context of design, function and architecture are presented in 
Chapter 6, followed by formalization of operational concepts implied by these require-
ments in Chapter 7. A design for a general attention mechanism intended for implemen-
tation in AI architectures is presented in Chapter 8, followed by an examination of to 
what degree selected existing architectures satisfy its architectural requirements in 
Chapter 9. Finally, issues relating to evaluation methodology for attention mechanisms 
in AI architectures are examined in Chapter 10, with conclusions and final discussions 
in Chapter 11. The remainder of this section looks at the theoretical and practical scope 
of attention as a subject of study, including the kinds of systems that this work may be 
relevant to, and describes briefly the theoretical framework on which it rests. 

1.1 Attention-Relevant Systems 

Any type of information processing system intended to operate in complex,  infor-
mation-rich environments without manual guidance, whether given during design or at 
runtime, requires sophisticated resource management mechanisms – addressed under 
the label of attention in the present work – to selectively process information and per-
form tasks while remaining reactive to changes in the environment. With the amount of 
digital information being produced by humanity, which is growing rapidly at an expo-
nential rate (Gantz 2011), the importance of artificial attention mechanisms for any kind 
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of information technology is already significant and will only continue to grow; a case 
in point is the rise of big data1 as a field of research and application. In particular, ambi-
tions for adaptive intelligent machines operating in everyday environments also require 
such mechanisms if those ambitions are to be realized. 

AGI is a relatively recent branch of AI (the first AGI conference was held in 2008) that 
has seen a small but growing group of researchers (re)focusing on one of the original 
ideas behind AI: human-level intelligence – and beyond. Since the beginning of AI as a 
research field, an event most commonly associated with the 1956 Darthmouth confer-
ence, some ambitious and well-known attempts have been made in the direction of this 
goal, such as the General Problem Solver (Newell 1961), CYC (Lenat 1990), Connec-
tion Machine (Hillis 1993)  and more.   

However, researchers mostly abandoned this goal as “too lofty”, since limited progress 
was initially made towards achieving it in spite of ambitious attempts, and moved on to 
solving isolated problems that captured much more limited parts of intelligence. Re-
search on more isolated sub-parts is now referred to as “narrow” or “classical” AI. This 
work deals with solving problems that are reasonably well defined at design time and do 
not assume drastic or even notable operational variations at runtime. Conversely, AGI 
targets systems that are designed to learn to solve novel tasks and adapt to changing en-
vironments. The fundamental difference is that AGI systems are designed to learn and 
adapt while narrow AI systems are designed to solve particular, isolated problems 
(which may or may not involve some degree of learning at runtime). 

The benefits of AGI systems run to several dimensions. An AGI system that continu-
ously learns from experience can theoretically achieve more robust, flexible and adap-
tive performance than any traditional software system, including the sum of existing 
narrow AI work. In contrast to narrow AI systems that are manually implemented to 
handle a set of pre-specified situations, such systems could automatically make sense 
of, and react rationally to, new situations and changes in the operating environment – 
including changes that system developers never foresaw. In an AGI system a new sepa-
rate (sub-)system would not need to be designed for each target domain that the system 
applies itself to: The same system architecture can deal with different domains with 
minimal or no manual work from the human designers. This would of course result in a 
significant increase in reusability when compared to current software systems. It is gen-
erally assumed that AGI systems must be capable of dealing with goals and instructions 
at a much higher level of abstraction than existing software systems, most of which re-
quire all operational knowledge necessary to achieve goals to be specified in detail as 
part of each goal or supplied to the system at an earlier time.  
                                                 
1 http://en.wikipedia.org/wiki/Big_data 
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1.2 Theoretical and Scientific Framework 

AGI architectures (also referred to as cognitive architectures) are engineered systems 
inspired by human cognition that are designed to control artificial agents that solve 
problems or execute tasks. While “AGI” mostly refers to the engineering of artificial 
systems, “cognitive architectures” is typically a more encompassing term that refers al-
so to the scientific investigation of cognition in natural systems.  Here we will use these 
interchangeably to refer to engineered systems aiming for human-level intelligence. Ex-
isting architectures target different sets of cognitive functions and are based on different 
theoretical assumptions and motivations, but most share the goal of targeting human-
like intelligence and behavior. Some of the most common cognitive functions targeted 
are learning, reasoning, planning and memory. Implementation details vary greatly be-
tween architectures; some are based on artificial neural networks or other types of non-
symbolic processing while others are based on logic and symbolic methods. Hybrid ar-
chitectures that contain both types of processing also exist (c.f. Duch et al. 2008). 

Ideally, a cognitive architecture implements a complete perception-action loop where 
inputs from the environment are processed to find an appropriate action to perform. The 
agent is usually goal-driven with goals being supplied externally or created autono-
mously. Some type of memory is most often present and is segmented in some architec-
tures to different types such as semantic, procedural and episodic. It is common for an 
architecture to contain special working memory into which information relevant to cur-
rent tasks and situations is copied from long-term memory structures. Existing architec-
tures are almost without exception architecturally static, in the sense that the architec-
tural configuration of processes does not evolve over time, limiting learning which takes 
place exclusively at the data level rather than the structural level. Recently, a new ap-
proach to cognitive architectures and AI has been proposed, constructivist AI (Thórisson 
2012a, 2009), which emphasizes self-organizing and self-growing systems, and high-
lights several issues that must be addressed to achieve these kinds of architectures. 

The most critical properties of human cognition that are usually neglected in existing 
architectures are attention and real-time processing, both of which are central to the pre-
sent work. Here we address the fundamental differences between narrow AI and AGI 
that concern their operational functions and architectural construction. A holistic archi-
tectural view, coupled with a strong constructivist perspective (Thórisson 2012a), gives 
the present work its theoretical and scientific framework.  
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1.3 Real-Time Processing 

While obvious, it is important to keep in mind that humans are real-time information 
processing systems. There is no option for us to pause time and go off-line for delibera-
tion – the real world moves on whether we like it or not. While sleep can be seen as a 
type of off-line processing, sleeping is clearly not a rational reaction when faced with 
complex situations that require immediate action. The same must hold true for embod-
ied AI systems that operate in our environment and interact with us. Real-time pro-
cessing has more often than not been ignored in the development of AI architectures. 
However, its importance becomes obvious when we consider embodied AI systems op-
erating in and reacting to complex real-world environments. For such systems, like hu-
mans, there clearly is no opportunity for off-line processing during operation: Decisions 
must be made in tight synchronization with the flow of time. Such environments pro-
duce more sensory information than can be processed at real-time, be it by current state-
of-the-art hardware or human brains. In the case of machines the problem of infor-
mation overload is more severe than for humans, as the human perceptual systems per-
form vast amounts of preprocessing on sensory data before it even reaches the brain and 
is introduced to awareness. Currently this sort of processing can only be very roughly 
approximated in software, as the exact nature of this processing in the brain is not fully 
known. Effectively, machines have to deal with raw sensory data. In the case of our vis-
ual system, our awareness (in the intuitive sense of the term) is only exposed to highly 
processed information (such as features or objects) while a machine would potentially 
need to deal with millions of pixels. Of course preprocessing of sensory data in AI sys-
tems is possible and desirable, but we are presently far from being able to approach the 
sophistication of this processing as performed in the brain. As the passage of time can-
not be controlled, the only option is to select and process only important information. 
We can thus say that when we have a requirement of real-time operation in complex en-
vironments, attention is really an extension of this requirement as we have little chance 
of meeting the real-time requirement without it. Given infinite processing power we 
could in theory meet the real-time requirement without any sort of attention mechanism, 
although the result would be considerably different from human cognition and intelli-
gence as we know it. 

In the context of AI architectures and intelligent machines it is worth stopping for a 
moment to consider what exactly we mean by real-time. In engineering the term usually 
refers to guaranteed completion of a processing task before a deadline, with any delay 
past the deadline being considered a critical error (Ben-Ari 2006, p. 287-288). In other 
words, a functionally correct result that arrives late (past its deadline) is considered 
wrong. However, for AI systems, this meaning can be problematic as we can expect de-
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lays to occur frequently, especially early in the lifetime of the system, when the system 
is learning a lot. It is also not practical to halt autonomous systems in cases of delay as 
they are built for continuous operation and we can expect a majority of delays not to 
have a large irreversible negative impact on system operation, particularly in systems 
with effective resource management. This makes “soft real-time” processing more ap-
propriate, where the system is expected to be on time most of the time while acknowl-
edging that delays can occur, although such cases should be handled in specific ways 
and sought to be minimized. This paradigm also allows for operations that have more 
flexible time restrictions than explicit deadlines (e.g. “as soon as possible”). In contrast 
to conventional real-time processing, this means that a correct result arriving late is not 
rong, but less valuable – while still correct – than one that arrives on time. 

1.4 Scope of Dissertation 

Considering that AI – and especially AGI – is itself a relatively new field of study with 
vast regions of unexplored possibilities, and that the subject of attention is relatively un-
explored in the context of synthetic systems, it is important to be explicit about the 
scope of the present work. There are several different possibilities available for viewing 
the role of attention in context of AI architectures and a vast range of issues related to 
attention that could be targets of investigation, as attention interacts in some way with 
all other cognitive functions. Furthermore, there are a great number of possible sources 
for inspiration. 

Rather than focusing on specific modalities or types of data, the present work approach-
es attention as the general topic of system-wide resource management and control, and 
targets all data and processes of the complete system. Related cognitive functions are 
addressed and discussed as required for the purposes of attention, but diversions into the 
numerous details of the many peripheral cognitive functions affected by and related to 
attention are avoided to the extent that is possible. 

The primary fields of inspiration for the present work are cognitive psychology and ex-
isting AI architectures. Limited reference is made to research results and theories from 
neuroscience, as this tends to be at a significantly lower level than the level of computa-
tional abstraction that guides the present investigation. The present work especially tar-
gets systems designed under constructivist AI methodologies possessing advanced ca-
pabilities of introspection and self-modification that are well beyond what is known to 
exist in nature. From cognitive psychology key pieces of work of relevance to this dis-
sertation are the work of Knudsen (2007) and Desimone & Duncan (1995). Other mod-
els and theories, such as the neurologically-grounded CODAM model of attention (Tay-
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lor 2007) and Baddeley’s model of working memory (Baddeley 2000), are interesting in 
that they view attention from relevant but limited perspectives. Generally speaking, 
however, they are not comprehensive enough to be taken as a fundamental basis for the 
work in the context of holistic cognitive architectures. 

While the present work is targeted towards architectures for artificial general intelli-
gence systems, as this is the most demanding type of system in the context of attention, 
the functionality under investigation is highly relevant to several other types of systems, 
particularly those dealing with large data streams in real-time. This includes (functional-
ly) distributed systems in which a large number of processes must be coordinated and 
controlled as well as embedded systems responsible for real-time control of large, multi-
component systems. Furthermore, the present work relates directly to information pro-
cessing systems that must adapt to substantial variations in complex tasks and environ-
ments over time in an autonomous fashion. 

The functions of the proposed attention mechanism that deal with information selection 
and filtering are relevant to systems that must monitor large data streams in real-time 
for task-related and/or unusual information. Attentional functions described in the pre-
sent work for detecting task-relevant information – i.e. concerning top-down attention – 
rely on the goals of the system being explicitly stated and represented in the surround-
ing system. For non-AGI systems without explicit internal goal representations, some 
might be outfitted with such explicit goal representations, possibly with little effort, in 
which case the attentional mechanism presented in this thesis will become relevant and 
applicable. 

To illustrate this, a hypothetical example with financial trading systems shows how the 
present work can benefit a wide class of systems. These systems trade selected financial 
instruments on multiple markets in real-time, continuously monitoring activity of these 
markets. All these systems have explicit goal representation, where strategies are repre-
sented as high-level goals that involve a number of sub-goals. The trading systems 
come in three flavors, where the difference between flavors reflects varying levels of 
autonomy: The basic trading system executes manually pre-programmed trading strate-
gies on manually selected instruments at manually designated times; the learning trad-
ing system executes the same strategies, but decides what strategies to apply to which 
instruments during which time itself (the quality of this system improves over time as 
the system learns to make better decisions from experience); the autonomous trading 
system performs all the functions of the learning trading system in addition to generat-
ing novel strategies, likely to be profitable based on the experience of the system, in a 
directed fashion at runtime without human intervention. As far as the requirements for 
attention are concerned, this third variant of the trading system may be considered an 
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AGI-level system, while the first two may be viewed as different shades of narrow AI 
systems, and thus the attention mechanism presented here will be less relevant to the 
first two than the third type. 

As already mentioned, attentional functions for task-relevant information selection re-
quire explicit goal representation, meaning that the system must represent its goal in a 
format accessible to the attention mechanism. Capacity to process larger data streams 
with fixed resources is one of the benefits of the task-relevant selection for all of the 
trading systems. In case of the basic trading system, task-relevant information can only 
come from instruments referenced by active trading strategies; this is the smallest total 
data stream that any of the trading systems must process. While the system could em-
ploy task-relevant information selection on complete streams of market activity, the 
benefits of this approach are insignificant in contrast to subscribing to smaller data 
streams specifically targeting strategy-related instruments when a strategy is activated. 
A more challenging problem faces the learning trading system, which must allocate re-
sources not only to active strategies, but also for evaluation of inactive strategies in pre-
sent market conditions across potentially all possible instruments. For this system, all 
market activity may be task-relevant to some degree. As the sum of all available data 
streams represents a large magnitude of information, and a large number of possible de-
cisions exist in terms of number of possible strategy-instrument pairs, this resource-
bounded system is unlikely to afford the resources to consider each possibility. This 
system can leverage the attentional functions for task-relevant information selection to 
solve this problem, selectively processing information from the larger data stream in de-
creasing order of task-relevance as allowed for by available resources. One possible 
way to determine degree of task-relevance in this case is to assign maximum relevance 
value for information directly related to active strategies and instruments, while infor-
mation related to inactive strategies and instruments is rated relative to their success 
(profit) in the past. This ensures active strategies receive necessary resources while the 
most promising inactive possibilities are considered to the extent allowed for by system 
resources. Finally, the autonomous trading system can leverage these attentional func-
tions in the same way while additional factors, too in-depth for discussion here, related 
to strategy learning influence the information selection process. 

Detection of novel, unexpected events using the bottom-up attentional processes is di-
rectly applicable to any information processing system as this functionality does not re-
ly on the state of the surrounding system. Novelty-detection may benefit the basic trad-
ing system by alerting human supervisors when unusual events are observed. In case of 
the learning trading system, unusual events may be treated as triggering events to re-
evaluate currently active strategies or give more weight to consideration of inactive pos-
sibilities related to the source of these events. For the autonomous trading system, unu-
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sual events may serve the same purpose in addition to potentially identifying new op-
portunities for pursuing the generation of new strategies. 

Process prioritization and control is not relevant for the basic trading systems as all pro-
cessing decisions are directly and indirectly dictated by human control. However, these 
attentional processes are relevant to the learning trading system, especially when each 
strategy is viewed as a process (or a functional unit composed of several smaller pro-
cesses). In this case, the result of leveraging these functions may allow the system to 
manage its resources in a rational way and control consideration of inactive possibilities 
while learning to improve these aspects of its own operation over time. For the autono-
mous trading system, the same benefits may be realized in addition to control of pro-
cesses related to directed strategy generation. 

As these examples show, attentional requirements are significantly higher for AGI sys-
tems than for other systems, motivating the emphasis on, and main relevance of, artifi-
cial general intelligence to the present work. In addition to other types of software sys-
tems, the contributions of this thesis may also have relevance to neuroscience as the 
human mind – when viewed as an information processing system – as it satisfies many 
of the architectural and functional requirements for attention (presented in Chapter 6). 
The relevance of neuroscience to the present work is limited, however, for numerous 
reasons: Neuroscience focuses on the operation of the brain at a low level of computa-
tional abstraction. Relying on this field as a primary source of inspiration would be 
somewhat like studying the low-level operation of a central processing unit in order to 
build a program to replicate some phenomena which may be observed directly. Fur-
thermore, biological attention is necessarily shaped by its physical medium and physical 
components, which are very different from those of computer hardware. Both varieties 
come with their benefits and limitations, but deliberately replicating the limitations of 
one in an architecture based on the other is not a rational approach to the task at hand 
here. 
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Chapter 2 

Attention: Importance for AGI 

This chapter examines the role and importance of attention for artificial intelligence 
(AI) systems, and in particular discusses how the importance of resource management is 
different – and greater – in the case of artificial general intelligence (AGI) systems than 
in “narrow” AI systems – sometimes called “classical” AI systems. Some solutions to 
resource management proposed in classical AI are also reviewed. 

2.1  Narrow AI and Attention 

Let us start by defining what is meant by a “narrow AI system”. While there are several 
possible ways to define such a system, it is necessary to establish precisely what is 
meant by the concept in the context of this work. 

 

Definition 2.1: A narrow AI system is a software system specifically 
designed to automatically perform specific, well-defined tasks in spe-
cific environments, whether using machine-learning, reasoning, statis-
tical processing, and/or targeting problems that have conventionally 
required some level of human control or intervention to perform. Nar-
row AI systems will not function in domains they were not designed 
for without substantial changes or re-design. 

 

For decades now, narrow AI systems have been successfully deployed in industry with-
out being designed to have any special attention capabilities. How can these systems 
solve real problems in complex environments, many of which generate more infor-
mation than said systems could ever hope to process in real-time, yet are necessary for 



12 General Attention Mechanism for AI Systems 

them to perform their tasks, when their design does not take attentional functions into 
account? 

To answer this question, let us consider fundamentally what a narrow AI system is. 
Such a system is purpose-built for certain specified tasks and environments that are not 
expected to vary significantly, hence the term “narrow”. An implication of this is that 
once the tasks and environments the system has to deal with are specified, a great deal is 
known about what kind of information will be useful for the system to process in order 
to make decisions and what kind of information can be safely ignored.  

Consider the following case: 

 

A chess-playing system is designed for an environment consisting of a 
discrete 8-by-8 grid, each cell being in one of a finite set of states at any 
given time. Such a system can effectively ignore its surrounding real-world 
environment as nothing outside of the chessboard is relevant; there is no 
need to process information from any human-like modalities (vision, 
hearing, etc.). As the task of playing chess is fully pre-specified by the rules 
of the game and the structure of the game board, there is no chance for these 
modalities or information coming from other sources to ever become 
relevant to the system. Furthermore, any possibility that new states will at 
some point be added to the set of possible states is precluded, as the rules of 
the game (and thus the operational requirements of the system) are fully 
pre-specified and static. A new type of chess piece is never expected to 
appear on the board and new ways to move chess pieces will never be 
allowed for. The end result is that the chess-playing system operates in a 
closed world; it is never required to learn about new entities or new 
fundamental ways of perceiving or acting in the environment. Any learning 
performed by such a system targets ways to effect and react to this closed 
deterministic environment with the goal of improving performance, 
measured for example by the ratio of games won. The chess-playing task is 
likely to include time constraints, but these are also specified in advance as 
part of the rules of the game and are static in nature. The environment will 
not change while the system is taking its turn in the game; any reaction to 
the environment beyond taking turn within some pre-specified time limit is 
precluded. 
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In the chess-playing example, the environment provides a very small amount of infor-
mation (the minimum for encoding the state of the board is 192 bits). As the game pro-
ceeds, the environment changes only when each player takes turn and the each change is 
small; with each move no more than 6 bits (the state of two squares) of information can 
change. While the state-space of the game is huge (upper-bounded by 647), perception 
and action processing for this task are simple and do not require information filtering or 
prioritization. Resource management may be required to determine the next move of the 
system, but this only applies to internal processing and is solely controlled by the 
amount time allowed for when deciding the next turn. During each move, the maximum 
amount of time available for action decision is known in advance, greatly simplifying 
internal resource management as opposed to an interruptible resource management 
scheme. 

While the chess environment has low complexity by any measure, many existing nar-
row AI systems deal directly with real world environments. The following presents an 
example of such a system. 

 

In a video security surveillance system, the task at hand is to detect humans 
and attempt to identify them. Sensory input to the system consists of video 
streams from several cameras, each targeting different parts of the target re-
al-world environment that the system is meant to monitor. Let us assume 
that the system has to monitor 20 such video feeds where each video frame 
is a 720p image and each feed provides 24 such frames per second. This re-
sults in a sensory stream of roughly 1.3 GB of information per second, 
clearly a substantial amount of information to apply complex processing to 
in real-time. However, as the operational requirements of the system are 
static and known at design time, it is possible to greatly reduce incoming in-
formation very early in the sensory pipeline by immediately searching every 
new frame for features that indicate the presence of a human, for example, 
using well-known computer vision techniques (e.g. Haar cascade classifiers 
(Viola 2001)). These features, once detected and extracted, could then form 
a basis for identifying the particular individual. At no time will such a sys-
tem be expected to recognize novel features, such as finding a new type of 
garment worn and classify it in the context of previously seen garments, un-
less explicitly programmed to do so. In any case, any and all information 
that does not imply the presence of a human is irrelevant to the system and 
may be immediately discarded after initial processing as it will have no im-
pact on the operation of the system. Assuming that there is a 0.1 probability 
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that there is a human in each frame of video, and that when detected, the 
features necessary to identify the individual are roughly 1/8 the amount of 
information contained in a single frame, the sensory stream of the entire 
system amounts to a mere 16,5 MB per second. The effects of designing 
static attention into the system, made possible by detailed specifications at 
design time and implemented by focusing the resources of the system to-
wards information known to be relevant, results in an 80-fold decrease in 
the input stream of the system, making its task significantly easier to ac-
complish without any form of, dynamic or otherwise, advanced resource 
management. The resource requirements of the system are highly constant 
and predictable at design time. It is worth reiterating that this kind of reduc-
tion in complexity could not have been achieved without the existence of 
detailed pre-specified operational requirements of the system. Any time 
constraints that the system shall meet (e.g. performing recognition of a new-
ly appeared individual within 2 seconds) can be addressed by optimizing 
code or adjusting the hardware resources of the system to fit expected re-
source requirements. 

 

This example demonstrates how a narrow AI system can superficially appear to be deal-
ing with real world environments, while they are in fact dealing with greatly simplified 
and filtered representations of such environments, with the representations being nar-
rowly dictated by the operating requirements and limited, pre-determined tasks. It is left 
to the reader to extend this idea to other examples of narrow AI, such as: 

 

x Routing emails and cell phone calls 

x Automated image-based medical diagnosis 

x Guidance for cruise missiles and weapon systems 

x Automatically landing airplanes 

x Financial pattern recognition 

x Detection of credit card fraud 

 

When a complete specification of tasks and environment exists, the operating environ-
ment of the system becomes a closed world consisting only of task-relevant infor-
mation. Narrow AI systems have – in a sense – a tunnel vision view on the environment, 
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with static fixation points. A complete specification of task-relevant information can be 
derived from a complete operating specification without much effort. As a result, the at-
tention of the system can be manually implemented at design and implementation time 
(as seen in the example above), with the concrete implementation being that the system 
processes particular information coming from particular types of physical or artificial 
sensors, while ignoring others known to be irrelevant – all dictated by the operating 
specification and pre-defined tasks. This results in an enormous reduction in the com-
plexity and amount of information that the system needs to deal with, in contrast to con-
stantly perceiving through all possible sensory channels in the target environment. Im-
portantly, the frequency of which the environment needs to be sampled by the system 
(rate of incoming sensory information), and time constraints involved with the target 
tasks, may also be derived from the specification in the same fashion. 

2.2� Notable�Efforts�Towards�Resource�Management�in��
Classical�AI�

While narrow AI has – to a large extent – ignored resource management and thus not 
provided adequate solutions to the core problem being addressed in this work, namely 
to allow general AI systems to operate under varying time constraints and resource lim-
itations in real-world environments, some notable exceptions are reviewed in this sec-
tion that, although they do not address resource management under the flag of attention, 
are nonetheless relevant to the topic. 

Russell et al. (1989) present a framework for meta-reasoning as a design approach for 
AI agents operating with limited resources. Rather than targeting optimal behavior of 
agents, they take steps towards resource-bounded rationality. While this work is over 
two decades old, the authors clearly recognized some of the problems that were instru-
mental in inspiring the present work and remain largely unresolved as of yet. We con-
sider these problems even more relevant today: 

 

“… existing formal models, by neglecting the fact of limited resources for 

computation, fail to provide an adequate theoretical basis on which to build 

a science of artificial intelligence.” (page 1) 

“A view of artificial intelligence as a constrained optimization problem may 

therefore be profitable. The solutions to such a constrained design problem 
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may look very different from those provided by the deductive and decision-

theoretic models for the unconstrained problem.” (page 2) 

“Since the time at which an action can be carried out depends on the 

amount of deliberation required to choose the action to be performed, there 

is often a tradeoff between the intrinsic utility of the action chosen and time-

cost of deliberation (…). As AI problems are scaled up towards reality, vir-

tually all situations will become ‘real-time’. As a result, system designs will 

have to be sufficiently flexible to manage such tradeoffs.” (page 3) 

“Standard algorithms in computer science either maximize intrinsic utility 

with little regards for the time-cost, or minimize the time-cost for achieving 

some fixed level of intrinsic utility. Work in real-time AI has traditionally 

followed a variant of the latter approach, focusing on delivering AI capabil-

ities in applications demanding high performance and negligible response 

times. As a result, designers typically choose a fixed level of output quality, 

and then perform the necessary precompilation and optimization to achieve 

that level within a fixed time limit.” (page 3) 

(Quotes from Russell et al., 1989) 

 

In their work, “meta-reasoning” refers to deliberation concerning possible computation-
al state changes to the agent. As opposed to the traditional view of actions as belonging 
to an external environment, the authors take a more general view that includes internal 
computation as actions. Expected utility of actions is used to guide action selection, 
where such utility is determined by time-cost, associated changes in the external envi-
ronment and comparison with the agents pre-existing intent. The meta-reasoning 
framework is notable as it directly addresses the challenges faced by AI agents related 
to real-time processing and resource limitations, suggesting a methodology for such 
agents to introspectively manage their limited resources while factoring in time con-
straints and resource availability. However, the approach suggested by Russell et al. 
(1989) has some inherent practical problems. While basing decision-making on ex-
pected utility produces a plausible formal model for the desired intent, the problem of 
concretely estimating such expected utility is not trivial, even when scope is restricted 
to small, atomic operations and small, atomic steps along the temporal dimension. The 
framework does not directly address the fact that real-world environments are stochastic 
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to some degree; the potential effects of an action in the environment can be predicted 
with different levels of confidence, but the actual result cannot be guaranteed. For ex-
ample, in the real-world someone or something can appear suddenly and unexpectedly 
and interrupt the current operation of the agent. A proposed solution might be to incor-
porate uncertainty into the expected utility value, with higher uncertainty leading to 
lower expected utility. The larger problem is that of computing expected utility for all 
possible actions. Some practical applications of the meta-reasoning framework are de-
scribed in (Russell 1989) for search problems, which are generally reliant on state-space 
representations. But viewing real-world environments in terms of state-spaces is not 
likely to be a fruitful approach due to the vast – and in some cases infinite – number of 
possible states. Consider a state-space for an embodied AI agent operating in a real-
world environment. Even if the agent does nothing, a new state in the environment is 
highly probable to occur shortly. If the agent has human-like actuators like arms and/or 
legs, these must be controlled by real-valued motor commands, where each possible pa-
rameterized command produces different effects in the environment. The very process 
of decision-making based on expected utility involves a significant resource manage-
ment problem in which not all possible actions can be considered, so a selection of ac-
tions to compute – being an additional resource-consuming process – is necessary. 
While meta-reasoning in general is certain a capability worth pursuing in AI systems, 
the meta-reasoning framework proposed by Russell et al. does not provide adequate so-
lutions to these problems. 

Anytime algorithms (Boddy & Dean 1989) are another approach that has been suggested 
for resource-bounded decision-making. Such algorithms return some solution for any al-
location of computation time (when computation time is viewed in atomic iterations of 
the algorithm) and are expected to generate better quality of solutions as they are given 
more time. This kind of algorithm has been shown to be useful in some types of time-
dependent planning problems (routing problems in particular), but requires a decompos-
able top-level problem – that can be solved in a divide-and-conquer fashion – in order to 
work. The idea of anytime algorithms is relevant to the construction of AGI systems, 
and may prove valuable for some aspects of their operation. For example, this kind of 
functionality may be useful in generating predictions, as an AGI system will be depend-
ent on available resources in searching (in the general sense) – by generating new pre-
dictions – for events with higher utility than ones that are previously predicted. Howev-
er, they do not represent a viable top-level resource control policy for AGI systems, as 
decision-making is unlikely to be entirely based on functions that consist of uniform it-
erations. But even if that were the case, the question of how to achieve anytime behav-
ior for the multitude of functions that an intelligent mind must be capable of performing 
in complex environments remains unanswered. Essentially, any AGI operating in envi-
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ronments of real-world complexity must, as a unit, have anytime operational character-
istics. Pointing out the relevance of anytime computation to AGI systems is a necessary 
first step, which the early work of Boddy & Dean did, but the hard problem of design-
ing AGI systems in this way remains unaddressed. 

Some work has also been done on reasoning under resource constraints. In particular, 
(Horvitz 1988 & 1989) describes strategies based in decision theory for logical infer-
ence that exhibit some qualities of anytime algorithms where uncertainty is factored for 
in moment-to-moment resource availability. He proposes an approach to probabilistic 
inference using belief networks called bounded conditioning. The work of Horovitz and 
its general research direction have a close relationship with the Non-Axiomatic Reason-
ing System (NARS) architecture discussed in chapter 3. 

There are some problems inherent in decision-theoretic approaches to attention for AGI 
systems. Functionality such as finding an action with the maximum expected value is 
next to impossible to implement in practical AGI systems; the problem of enumerating 
all possible actions alone is not insignificant as the system may have several actuators 
that accept real-valued (continuous) parameters. Even if such enumeration could be ac-
complished, the set of possible actions is likely to be very large and possibly infinite; 
resource-bounded systems could not realistically be expected to compute an expected 
value for each possible action. Furthermore, decision-theoretic approaches are common-
ly based on assumptions that appear too dubious for systems operating in real-world en-
vironments; namely assumptions of perfect information and a predictable environment. 
Another criticism of decision theory referred to as the ludic fallacy (Taleb 2007), is 
highly relevant in context of the present work: Statistical and mathematical models have 
inherent limitations in predicting future events due to the impossibility of perfect, com-
plete information and the fact that historical data does not directly help to explain or 
predict events that have not occurred before without reasoning processes being applied. 
In this sense, decision theoretic approaches can be said to focus on the expected varia-
tions while not accounting for unexpected events, focusing on “known unknowns” 
while ignoring “unknown unknowns”.  

2.3� AGI�and�Attention�

Moving beyond narrow AI systems to AGI systems requires some fundamental thought 
be given to the meaning of intelligence. It is no longer sufficient to work from a vague 
definition of the phenomenon. While there is no single widely accepted definition of in-
telligence, anyone doing research in the field of AI needs to choose his or her definition 
in order to specify research goals, engineering requirements, and to evaluate progress. 
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Wang (2006) gives an in-depth discussion of competing definitions for intelligence, list-
ing some well-known (but not universally accepted) examples. These include: 

x Passing the Turing test. (Turing, 1948) 
x Behavior in real situations that is appropriate and adaptive to the needs of the 

system and demands of the environment. (Newell & Simon, 1976) 
x The ability to solve hard problems, without any explicit consideration of time. 

(Minsky, 1985) 
x Achieving goals in situations where available information has complex charac-

teristics. (McCarthy, 1988) 
 

Before proceeding, I present my working definition of intelligence, in the sense that this 
is the general capability to be achieved in AGI systems that the present work is intended 
to contribute to. Rather than reinventing the wheel, I have chosen to adopt Wang’s defi-
nition of intelligence (Wang 2013) as it matches my own views. Adopting this defini-
tion necessitates a rejection of all incompatible definitions, including the ones listed 
above. Furthermore, Wang’s definition describes a measurable operational property of a 
system, which greatly facilitates evaluation. 

 

Definition 2.2. “Intelligence, as the experience-driven form of adapta-
tion, is the ability of an information system to achieve its goals with 
insufficient knowledge and resources.”  

(Wang 2013: p. 16) 

 

The distinction between narrow AI and AGI is very important with regards to attention. 
In the case of narrow AI systems, the task and operating environment are known (or 
mostly known) at design time. In such systems the world is mostly closed, in the sense 
that everything the system will ever need to know about is known at design time (in an 
ontological sense). While the operation of the system may involve learning, exactly 
what is to be learned is also specified in detail at design time. Using the specification of 
the task, narrow AI systems can implement attention by combining the following meth-
ods: 
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x Completely ignoring modalities (in a general sense, i.e. data streams) that are 
available yet irrelevant to the task as specified. 
 

x Filtering data for characteristics that are known, at design time, to be task-
relevant. 
 

x Sampling the environment at appropriate frequencies (typically the minimum 
frequency that still allows for acceptable performance). 
 

x Making decisions to act at predetermined frequencies that fit the task as speci-
fied. 

 

A combination of these methods could allow narrow AI systems to effectively filter in-
coming information to deal with information overload, as well as being alert to pre-
defined interrupts. As the task and environment are known, operational boundaries are 
also known to some extent, including boundaries with regards to how much information 
the system will be exposed to. A fixed type of attention based on the methods described 
above, along with proper allocation of hardware resources, would be sufficient for most 
narrow AI systems. 

The previous section discussed examples of narrow AI tasks. In contrast, in AGI sys-
tems the luxury of knowing these things beforehand is out of question – by design and 
requirement. To illustrate, the following is an example of an AGI-level task in a real-
world environment: 

 

Let us imagine an exploration robot that can be deployed, without special 
preparation, into virtually any environment, and move between them without 
serious problems. The various environments the robot may encounter can 
vary significantly in dynamics and complexity; they can be highly invaria-
ble like the surface of Mars or the Sahara desert and dynamic like the Ama-
zon jungle and the vast depths of the ocean. We assume the robot is 
equipped with a number of actuators and sensors and is designed to physi-
cally withstand the ambient environmental conditions of these environ-
ments. It has some general pre-programmed knowledge, but is not given 
mission-specific knowledge prior to deployment, only high-level goals re-
lated to exploration, and neither it nor its creators know beforehand which 
environment(s) may be chosen or how they may change after deployment. 



Helgi Páll Helgason  21 
 

For the purposes of this example, missions are assumed to be time-
constrained but otherwise open-ended. The robot has the goal of explora-
tion, which translates into learning about the environment, through observa-
tion and action.  

Immediately upon deployment, the robot thus finds itself in unfamiliar situ-
ations in which it has little or no knowledge of how to operate. Abilities of 
adaption and reactiveness are critical requirements as the environment may 
contain numerous threats which must be handled in light of the robot's per-
sistent goal of survival. Specific actuators may function better than others 
in certain environments, for example when moving around or manipulating 
objects, and this must be learned by the robot as quickly as possible. Re-
source management is a core problem, as the robot's resources are limited. 
Resources include energy, processing capacity, and time: Time is not only a 
resource in terms of the fixed mission duration, but at lower levels as well 
since certain situations, especially ones involving threats, have inherent 
deadlines on action. The resource management scheme must be highly dy-
namic as unexpected events that require action (or inaction) can occur at 
any time. 

(Thórisson & Helgason 2012, p. 4)�

 

This example represents a case where the benefits of having a detailed operational spec-
ification at design time are not available. The goals of the AI system’s design are ex-
pressed at a high level of abstraction, precluding such a specification. Here the methods 
for reducing information and complexity for narrow AI systems, discussed above, do 
not help. For the exploration robot to accomplish its high-level goals, any of its sensory 
information may be relevant. At the same time, its resources are limited; giving equal 
treatment to all information is not practically possible. Goals specified at a high level of 
abstraction are not unique to this example; they are a unifying feature of all AGI sys-
tems. Such systems must learn to accomplish their own (high-level) goals by relating 
them to their sensory experience as collected in complex, real-world environments.  

Already several references to “real-world” environments have been made. Some clarifi-
cation is in order to disambiguate this concept. First, it is possible to build on the work 
of Russell & Norvig (2003) in classifying environments for AI agents. The following 
discusses each of the environmental properties proposed by them in the case of the tar-
get, real-world environments that are of interest to this project. 
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1) Fully observable / Partially observable 

This property is not critical to what is considered a real-world environment, but does 
raise an important issue. A core goal of the present work is generality – as a result it is 
undesirable to limit the focus to the three-dimensional environments that people live 
their lives in and sense in a very particular way, a result of the biological sensory system 
of humans. Such environments can be abstracted to environments where the 
agent/human must perform proactive, goal-directed sensing, meaning that not all as-
pects of the environment are observable simultaneously at any given time. If particular 
aspects of the environment are not observable, reorienting sensors (as allowed for by the 
mobility of the system) can make other aspects of the environment observable. Howev-
er, in the process of making new things observable the scope of what was observable 
before may change. Additionally, a partially observable environment does not imply 
that the environment is fully observable if all possible agent positions and sensor orien-
tations were somehow simultaneously possible, as there may be aspects of the environ-
ment that are relevant to the agent but can never be observed directly.  

Environments where all information is visible at any time would be called “fully ob-
servable” by Russell & Norvig. But this definition becomes less clear when we consider 
systems that perform active sensing where the system decides what senses to sample, 
and at what temporal frequency. One reason active sensing may be desirable is that real 
world environments contain such enormous amounts of information, that while in theo-
ry a system could observe the entire environment, practical issues such as available re-
sources would make this completely impossible, as perception – even of just a small as-
pect of the environment – may demand significant processing resources. Consider also 
that time may be so fine-grained in the operating environments that no system will at-
tempt to, or be able to, sense it at the lowest theoretical level of temporal granularity, 
inevitably causing it to miss some information. This is not to say that such extremely fi-
ne-grained temporal processing would be useful for the system, but rather to point out 
that any practical system is virtually guaranteed to miss some high-speed events that oc-
cur in the environment. 

In a practical sense, our conclusion from all of this can only be that an AGI system must 
be expected to operate in partially-observable environments and that fully-observable 
environments are likely to be exceptions.  
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2) Deterministic / Stochastic 

In a deterministic environment, as defined by Russell & Norvig, any changes to the 
state of the environment are dictated only by the current state of the environment and 
the actions of the system. This implies that no other entities can make changes to affect 
the environment, and also that the behavior of the environment is fully predictable to the 
system. In stochastic environments, there is uncertainty and unpredictability with re-
gards to future states of the environment and many different outcomes are possible. An 
AGI system will in all but the most trivial cases be dealing with stochastic environments 
because, whether the environment is truly stochastic in nature or not, there will be caus-
al chains not immediately accessible or obvious to the AGI system that affect it. Some 
aspects of the environment may be truly stochastic while others appear stochastic to the 
system because it does not have necessary knowledge to predict their behavior. This can 
be justified all the way down the working definition of intelligence that this work ad-
heres to, which incorporates uncertainty and incomplete knowledge. Based on this, an 
AGI system must be expected to operate in stochastic environments. 

 

3) Static / Dynamic 

Static environments are not governed by the passage of time. When dealing with such 
environments, the system can take an arbitrary amount of time to decide the next action; 
the environment will not change meanwhile. This is clearly not the case for real world 
environments, where changes are driven by the clock of the environment regardless of 
the actions of the system. The present focus on real-world environments dictates that an 
AGI system must be expected to operate in dynamic environments. 

 

4) Discrete / Continuous 

Discrete environments offer a finite number of perceptions and actions that can be taken 
by the system. A chessboard is a good example of a discrete environment, where there 
are limited ways to change and perceive the environment. Environments that do not 
have discrete actions and perceptions are called continuous; typically this involves real-
valued action parameters and sensory information. Hence, we must assume continuous 
environments for AGI systems, while noting that continuous aspects can be approximat-
ed with fine-grained discrete functionality. 

 

 



24 General Attention Mechanism for AI Systems 

5) Single agent / Multi-agent 

Choosing between these properties is not necessary for AGI systems. Many conceivable 
operating scenarios involve some type of interaction with other intelligent entities (e.g. 
humans) while there are perfectly valid and challenging scenarios that are of the single 
agent variety (e.g. space exploration). 

 

Summary 

 

The conclusion from the above analysis is that the types of environments that must be 
targeted for AGI systems are: 

 

x Partially observable 
x Stochastic 
x Dynamic 
x Continuous 

 

From this an attempt can be made to define more formally the types of environment that 
AGI systems target. 

 

Definition 2.3. A real-world environment is a partially observable, 
stochastic, dynamic and continuous environment that is governed by its 
own temporal rhythm and contains vast amounts of continuously 
changing information. 

 

As AGI systems are by definition unable to use the kind of techniques previously de-
scribed for narrow AI systems, which rely on design-time domain-dependent 
knowledge, a fundamentally different approach must be adopted that involves making 
complex resource management decisions at run-time rather than design-time and grad-
ually learning to adapt such decisions to actual tasks and environments that the system 
is faced with. Implementing such attention mechanisms is thus a key research problem 
that must be solved in order to realize practical AGI systems operating in real-world en-
vironments.   
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Chapter 3 

Prior Work / Artificial Attention  
Systems 

 

This chapter surveys selected AGI architectures and other related work that has at-
tempted to implement some form of attention functionality. The architectures reviewed 
are selected due to their particular approach to attention or to show how lack thereof 
limits their potential. While development of AGI architectures has largely ignored atten-
tion mechanisms, some notable exceptions are discussed here. However, virtually all 
implementations of attention discussed are incomplete in various ways, such as focusing 
solely on data-filtering (ignoring control issues, e.g. how prioritization affects pro-
cessing of selected data) and the external environment (ignoring internal states). Limita-
tions and other performance considerations related to attention, such as real-time pro-
cessing, is also discussed as applicable in each case. First, some of the relevant architec-
tural work will be reviewed, while more isolated and focused efforts to implement at-
tention are discussed at the end. 

3.1 Ymir 

The Ymir cognitive architecture was created with the goal of endowing artificial agents 
with human-like interaction capabilities in the form of embodied multimodal dialog 
skills that are task oriented and function in real-time (Thórisson 1996, 1999). Ymir-
based agents are intended for face-to-face scenarios where users communicate with the 
agent in a natural fashion without artificial protocols, i.e. as if communicating with an-
other human. A complete perception-action control loop is implemented, with higher 
level cognitive functions effecting low level perception, and vice versa, in a layered 
feedback-loop model. Lower layers deal directly with perceptual information and oper-
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ate at faster time scales than higher layers, in which more advanced cognitive functions 
occur. Time is handled in an explicit fashion within the system, with every piece of data 
received and produced being time stamped. The architecture contains three layers: Re-
active (RL), Process Control (PCL), Content (CL) and a resource control system run-
ning across these called Action Scheduler (AS). Each layer contains a set of processing 
elements, including perceptual modules, with unimodal perceptors focusing each on a 
specific modality, while multimodal integrators are responsible for fusing data from dif-
ferent modalities. Deciders are another type of module that makes decisions based on 
available data. Sharing of information between modules and layers is accomplished us-
ing blackboards, eliminating the need for direct connections between modules. The RL 
performs initial processing of perceptual data and produces low-level reactions. The 
PCL handles the flow of dialog and performs various processing relevant to turn-taking 
and task-level actions. The CL contains knowledge bases, with one being dedicated to 
general dialog knowledge and others being topic-specific. It controls the production of 
topic-relevant actions, based on available perceptual data, in conjunction with its 
knowledge bases. The process control and content layers have the ability to influence 
processing in lower layers by turning modules on and off, enabling mixed bottom-
up/top-down control within the system. The AS accepts behavior requests from these 
three layers and is responsible for translating those to low level motor movements. To 
this end, a behavior lexicon is used that contains specifications of supported behavior, 
allowing for run-time composition of actions, and also provides a clear separation be-
tween behavioral intent and behavior execution. Action scheduling is a complex prob-
lem, highly dependent on time and context, as execution of simultaneous behaviors is 
allowed and some of them may be conflicting. A scheduling scheme that provides fast 
response versus optimality is adopted. Long, incremental behavior sequences are a regu-
lar part of operation but interruption of these can also be expected at any time.  

The way in which control in Ymir is simultaneously bottom-up and top-down can be 
said to give rise to an attention mechanism in which irrelevant things are ignored by 
turning off specific modules that produce or consume the irrelevant data. The layered 
architecture of Ymir, with layers operating at different time scales, is inspired by cogni-
tive psychology in the sense that human cognition is known to have different time 
scales for different processes. The architecture has been shown to give rise to some hu-
man-like qualities as well in implemented systems. Like many of its predecessors, 
Maes' task network (Maes 1991) and Brook's subsumption architecture (Brooks 1991), 
Ymir-based systems are completely static at the module level, as modules and their 
connection potential in the architecture is manually specified a priori; they do not them-
selves change during operation. This has been referred to as a constructionist approach 
to building AI architectures (Thórisson et al. 2004). Constructionist architectures rely 
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exclusively on the limits of human programmers, and thus represent a limitation for the 
complexity such architectures can reach, as interactions and side effects of run-time op-
eration can get exponentially more complex with greater number of modules. The con-
structionist approach dominates the cognitive architectures reviewed here; contrast this 
with the constructivist AI approach (Thórisson 2012a, 2009) underlying the present 
work. 

Ymir implements a primitive-top-down controlled filtering attention through its mecha-
nism of enabling turning off certain modules, resulting in certain raw data or intermedi-
ate-level perceptual computations being ignored. The system also implements primitive 
bottom-up attention by tracking indicators of human attention: the Gandalf (Thórisson 
1996), for instance, used its interlocutor’s real-time gaze, head direction, and body 
stance, to infer where the other’s attention was directed, and using this information to 
control its own internal cognitive processing. This is e.g. how Gandalf resolved ambig-
uous references to external objects via gesture and speech. 

3.2 ICARUS 

ICARUS is a cognitive architecture for embodied agents that has shown promising re-
sults on a number of classic AI toy problems in terms of generality (Langley 2005, 
Langley 2006). The distinguishing features of the architecture are a separation of 
memory to conceptual and procedural parts and incremental hierarchical knowledge ac-
quisition for concepts and skills. The conceptual memory stores Boolean concepts and 
their relations. Skills are composed of more primitive sub-skills that bottom out in actu-
ator manipulation, allowing new skills to be acquired by composition of existing ones. 
This works similarly for concepts where new concepts can be encoded in terms of exist-
ing ones. Memory is also subdivided to long-term and short-term sections. Short-term 
memory holds intentions and beliefs and is composed of constructs from long-term 
memory allowing for correspondence that is vital to relate concepts from long-term 
memory to short lived goals. Symbolic processing is prevalent in the architecture and 
sensory input is idealized compared to real-world complexity in the examples presented. 
Pattern matching is employed to determine relevant skills and knowledge for a given 
situation using start states and other types of constraints. The control loop of the archi-
tecture starts with a bottom-up pass from sensors generating high-level beliefs at the 
end. Next, a top-down pass is made from beliefs that includes skill selection and termi-
nates in action. In cases where skills do not exist to reach a goal mean-ends analysis is 
performed. Cognitive processing is controlled by an attention mechanism that is goal-
driven and focuses on a single goal at a time.  
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The attention mechanism in ICARUS is one of the simplest that can be implemented in 
cognitive architectures. It does not have reactive aspects and can essentially be reduced 
to selection from active goals. In other words, attention is only controlled in a top-down 
fashion. 

3.3 CHREST 

CHREST (Chunky Hierarchy and and REtrieval STructures) is a cognitive architecture 
with a psychological focus that has been used to simulate human cognition in specific 
domains, such as expert behavior and verbal learning (Gobet 2005). It is based on an 
earlier architecture called EPAM. The theoretical assumptions CHREST is based on in-
clude that there should be close interaction between perception, learning and memory as 
well as that the mind is caused by a collection of emergent properties produced by the 
interaction of short- and long-term memory, learning, perception and decision-making 
processes. In this architecture, operational experience of the system is encoded into 
chunks, an aggregate structure composed of concepts, schemata and production rules. 
The developers of the architecture consider constraining the number of possible archi-
tectures, i.e. strong architectural limits, important in the design of cognitive architec-
tures. 

The architecture contains three components: An input/output module which receives 
and processes sensory information and controls actuators, long-term memory where op-
erational experience and knowledge are stored and finally short-term memory which is 
essentially working memory. The operation of CHREST-based systems follows a step-
lock cognitive cycle in which input is processed (I/O module), matched with long-term 
memory with matches being copied to short-term memory for further processing. Final-
ly, the I/O module takes over again, performing any prescribed actions and the process 
then repeats. The long-term memory is the most complex of these components imple-
menting a "chunking network" (discrimination network) that stores different types of 
items including chunks (patterns), concepts, schemata and production rules. Learning 
and retrieval operations are used on the chunking network to form and store chunks and 
retrieve existing ones.  

Among other phenomena, CHREST has been used to study human attention, particular-
ly visual attention where a region of an image is selected for detailed processing includ-
ing feature extraction (Lane 2009). Detected features are used to match elements in 
long-term memory, with matching elements being copied to short-term memory. Con-
tents of short-term memory, domain-specific knowledge and visual information residing 
outside the selected image region subsequently guide movements of the systems "eye", 
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effectively guiding attention. The most sophisticated known domain used for evaluation 
of the architecture is chess playing. In this case, the input image was a crisp, noise-free 
diagram of a chess table with chess pieces occupying appropriate squares. While the 
work is interesting and potentially useful in terms of cognitive sciences, it is unclear 
how this would scale to noisy and highly dynamic environments, especially as real-time 
operation was not a requirement and the system operates in atomic cognitive cycles. 

3.4 NARS 

The Non-Axiomatic Reasoning System (NARS) is a general-purpose intelligent reason-
ing system designed for operation in real-time under conditions of insufficient 
knowledge and resources (Wang, 1995). Knowledge in a NARS system is grounded in 
its experience, both in terms of meaning and reliability. However, a NARS system is 
only embodied and situated in the sense of its actual experience, rather than the more 
traditional sensory-motor sense as NARS does not address sensory-motor issues. 

In stark contrast to conventional reasoning systems, most of which exclusively use 
Boolean truth-values, beliefs in NARS are real-valued numbers based on the experience 
of the system. This allows a NARS-based system to manage different types of uncer-
tainty such as randomness, fuzziness, and ignorance. NARS is based on a term-oriented 
formal language called Narsese, which has experience-grounded semantics and a set of 
inference rules. Thus, knowledge and beliefs contained within the system have associat-
ed non-Boolean truth-values that are shaped by operational experience. Learning is 
achieved by reasoning upon this experience, generating beliefs that grow stronger as 
they are repeatedly confirmed or weaker if they are contradicted. 

Unlike most cognitive architectures, NARS was designed with real-time operation as a 
requirement from the start. The logic of Narsese is embedded with time, making truth-
values of appropriate statements time-dependent, in contrast with traditional logic lan-
guages that are completely timeless. Time is represented primarily in a relative fashion, 
with the timing of one event being defined in terms of the timing of another. Temporal 
logical relations and operators are present in the language as well, providing some nec-
essary tools for temporal reasoning and inference. Core mechanisms in NARS, such as 
learning – and meta-learning by extension – are fixed. 

The control strategy for computation in NARS systems is called controlled 
concurrency: the execution of tasks is controlled by two special prioritization 
parameters, urgency and durability. The urgency value gradually decays over time, with 
the strength of the decay being determined by the durability value. The values depend 
on both the environment and internal state of the system. These parameters are used to 
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implement dynamic resource management, allowing the system to spend most of its 
time on what is most important, giving rise to a type of attention mechanism. 
Effectively, tasks constantly compete for processing within the system, with losers 
being eventually removed from the task pool. An interesting property of this mechanism 
is that resource allocation is context-dependent, (i.e. the same task with the same 
urgency and durability values will vary in execution time depending on other active 
tasks at any given time). 

Wang (1996) examines the implications of real-time operation under insufficient 
computational resources, concluding that Turing machines and traditional models of 
computation are not applicable for such scenarios. The author makes a convincing case 
that deadline-based task management is not appropriate for intelligent, reactive systems. 
Instead, he suggests using problem solving algorithms that generate solutions or 
answers after each iteration with solutions improving as the number of iterations 
increases, iterations being the atomic processing unit of the system or what has been 
called an anytime algorithm (Boddy & Dean 1989). Resource management needs to be 
highly dynamic in these scenarios, influenced by, among others, the intermediate 
progress of problem solving processes and exploration of multiple solution paths 
concurrently and at different speeds, although not necessarily at the hardware level. 
Space is also addressed, with bag-based memories being suggested, as memory is finite 
and items will need to be added and removed frequently during operation. 

As for attention, NARS views tasks and goals in a fairly traditional way: A distinction is 
made between original goals, being input tasks originating outside the system, and de-
rived goals, being created within the system in response to original goals. While urgen-
cy and durability parameters are assigned by the system to derived goals, this is not the 
case for original goals which are supplied externally (e.g. by the system designers). 
However, the system can modify some task parameters at runtime according to its expe-
rience. As NARS is a reasoning system, and has not focused explicitly on perception 
and action up to the current implementation, it is intended to accept queries and tasks 
from an external entity. In this scenario, having priority values dictated by an external 
entity are not problematic, but a different approach must be used if the system is to con-
trol an embodied agent, which includes perception and action functionality. In that set-
ting, the frequency of system tasks will likely to be much greater and reliance on an ex-
ternal entity to provide priority values for each task is problematic as it results in a loss 
of autonomy. 
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3.5 LIDA 

The LIDA architecture (Franklin 2007 & 2012) is intended for intelligent and autono-
mous software agents and is based upon IDA (Intelligent Distribution Agent), which is 
an earlier architecture used in an autonomous US Navy software system that negotiates 
assignments for personnel based on US Navy policies, sailor preferences, and other fac-
tors (Franklin 2006). The architecture is an implementation of the Global Workspace 
Theory of consciousness (Baars, 1988). 

LIDA features several types of specialized memory: sensory, sensory-motor, perceptual 
(implemented as a slip net), episodic, declarative and procedural (implemented as a 
scheme net). The operation of LIDA-based systems is a series of cognitive cycles, each 
consisting of sense, attend and action selection phases. In the sensing phase, the current 
representation of the internal and external environment of the system are updated. 
Incoming sensory data activates low-level feature detectors as output from these are 
sent to perceptual memory, where higher-level feature detectors process the information 
further. Final processed sensory data is then sent to the local workspace and exposed to 
declarative memory and episodic memory to generate associations which are also 
copied to the workspace. This combined data constitutes the system's current 
understanding of its operating situation. In the attending phase, Attentional Codelets 
(essentially a collection of small programs) form coalitions of data from the Local 
Workspace and move these to the Global Workspace. A coalition may be viewed as a 
collection of functionally related data. In the Global Workspace, the most urgent 
coalition (only one is selected in each cycle) is selected by a competitive process, and 
broadcast throughout the system. The broadcast reaches several components of the 
architecture that are related to learning, memory and decision-making (Action 
Selection, Perceptual Memory, Procedural Memory, Episodic Memory, Local 
Workspace and Attentional Codelets) and triggers different types of learning that are 
performed in parallel: Procedural learning occurs as the data reaches Procedural 
Memory, attentional learning occurs as the data reaches the Attention Codelets, 
perceptual learning occurs as the data reaches Perceptual Memory and episodic learning 
occurs as the data reaches Episodic memory. Following the broadcast, possible actions 
given the current situation (encoded by the broadcast) are selected in Procedural 
Memory and sent to the Action Selection module where one action is selected for 
execution by a competitive process. 

The LIDA architecture does not address time in an explicit fashion, tasks can be 
scheduled in terms of “ticks” (operating cycles) but not in real-time. However, some 
promising steps are taken in real-time direction, such as learnable alarm structures, 
which are reflex-like mechanisms for reacting quickly (faster than the average operating 
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cycle) to certain events. While nothing prevents the system from performing temporal 
reasoning, there are no provisions for dealing with real-time operation in the control 
mechanisms of the system. An integrated approach to attention is followed by the 
architecture where attention is one of three central processes in the operating cycle. 
Attention is implemented as filtering/selection which potentially allows the architecture 
to gracefully handle situations of information overload. Availability of time and 
resources is taken into account when priorty of available information is evaluated. It 
should be noted that LIDA implements attentional learning, giving it the capability to 
improve its own resource management in terms of data filtering. This is significant 
especially in light of the many different types of learning supported by the architecture. 
The core learning mechanisms of the architecture are fixed but as internal data is 
handled identically to external (environmental) data, the architecture is well suited for 
introspection and self-improvement at the content level while the architectural level 
remains fixed.  

3.6 AKIRA 

AKIRA is a fully implemented open-source framework whose architecture is inspired 
by biological systems and is designed for parallel, asynchronous and distributed compu-
tation (Pezzulo 2007). The architecture consists of a number of modules (schemas) that 
are interconnected by weighted activation links. Each module contains procedural in-
formation as well as an activation value which determines how much resources the 
module has at its disposal. The activation value of a module can be changed by other 
modules, by positive or negative feedback via activation links, and itself. Together the 
modules and activation links form a network called the energetic network. Information 
exchange and synchronization are possible by the use of shared (global) variables, mes-
sage passing, and a global blackboard. The links in the network are fully dynamic, 
modules that succeed more often than others will develop strong links to many other 
modules while unsuccessful modules will have weak links to few modules. The dynam-
ic nature of activation links leads to functionally related modules becoming tightly con-
nected and forming coalitions, which can be considered to be functional units for solv-
ing composite tasks. This allows cooperation and competition to be realized over the 
collection of modules. Context awareness is an interesting property of the architecture 
as the structure and exchange of activation in the energetic network will typically ensure 
that modules that are relevant to the current situation (context) have high activation val-
ues while irrelevant modules will have lower values. The AKIRA framework has been 
used in a number of implemented experimental systems including a biological simula-
tion of the praying mantis (Pezzulo 2006).  
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AKIRA evolves and adapts through changes in activation links which are based on suc-
cess or failure of individual modules and coalitions. This process is continuous meaning 
that if the system performs some task perfectly it will adapt if the task changes and 
evolve towards a new configuration that allows perfect performance to resume. The 
main limitation of the framework is that procedural information is completely static, 
which implies that a problem that no combination of hard-coded procedures (stored in 
modules) can solve cannot be solved by the system. This limitation can be mitigated 
with granularity, i.e. by having many procedurally simple modules instead of few mod-
erately complex ones.  

The spreading activation functionality in AKIRA implements an emergent attention 
mechanism as there is constant competition among modules for processing resources 
with winners being determined by past and current inputs. Of the attention mechanisms 
reviewed in this chapter, AKIRA contains the most deeply integrated one, although it is 
virtually a by-product in the system. As the architecture is sub-symbolic, it is missing 
reasoning capabilities, which is a critical part of human cognition and has links to atten-
tion as well. Relying on machine learning, as in AKIRA, means that when presented 
with novel tasks involving irreversibility the system is not likely to fare well, due the 
trial-and-error nature of its learning. As with any other architecture, the design places 
limits on what the system can do and in AKIRA, these limits do in fact simplify atten-
tion requirements. It is also worth noting the AKIRA-based systems are architecturally 
static, their structure does not change over time. Removing those constraints would cre-
ate new challenges in terms of attention. 

3.7 OSCAR 

OSCAR is an implemented architecture for generally intelligent agents operating under 
uncertainty and incomplete knowledge (Pollock, 2008). The work is inspired by the fact 
that any human's knowledge of individuals, in the epistemological sense (e.g. individual 
grains of sand, individual apples on the trees on the planet, etc.), as well as general 
knowledge, is very sparse. Yet we manage to form beliefs and make decisions with rela-
tive ease in our daily lives. According to Pollock, the prevalence of operating under un-
certainty strongly suggests some form of statistical probability processing. For this to 
work, a mechanism is needed to resolve conflicting conclusions, as the introduction of 
probability into the reasoning process implies that incorrect and contradicting conclu-
sions will occur. This type of reasoning is called defeasible reasoning, and forms the ba-
sis of the OSCAR architecture.  
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Beliefs are encoded in OSCAR as first-order representations, and first-order logic is the 
basis of reasoning. Inference schemes supplied a priori are used for the reasoning pro-
cess, such as statistical syllogism. The correctness of inference schemes is evaluated 
over time; if a particular scheme has been found unreliable under specific circumstances 
this will be reflected in the reasoning process and conclusions based on that scheme will 
therefore less likely to be made in the future. The mechanisms for invalidating infer-
ences based on experience are called undercutting defeaters; they are processed in a dis-
tinct phase of the reasoning process called defeat status computation. For the sake of 
practicality, argument construction and defeat status computation are interleaved; oth-
erwise all knowledge that could possibly be relevant to present processing would need 
to be considered in the argument construction phase before defeat status computation 
could occur. However, the construction of new arguments can affect defeat status com-
putation with the side effect that not only the argument construction is defeasible but al-
so the defeat status computation itself; reasoning in OSCAR is said to be doubly defea-
sible. This produces important properties for generally-intelligent agents, as reasoning 
can be interrupted at any time, yielding the best conclusions available at that particular 
point in time and essentially implementing an anytime reasoning algorithm.  

The main modules of the architecture are called Practical Cognition and Epistemic 
Cognition. Practical Cognition has the responsibility of posing planning problems, eval-
uating and selecting plans as well as directing plan execution. Epistemic Cognition is 
responsible for constructing plans, generating and revising beliefs, as well as forming 
epistemic goals. The connection between these two modules forms a loop where epis-
temic cognition can supply practical cognition with the goal of learning some new in-
formation and practical cognition will in turn issue a corresponding goal to epistemic 
cognition. As plan construction relies on defeasible reasoning, it is a defeasible process 
and constructed plans can be expected to be invalidated at any time should relevant new 
information be acquired. Planning and learning are interleaved as forward reasoning 
(prediction) from perceptual inputs is coupled with backwards reasoning (planning) 
from goals or interests. 

The strength of the OSCAR architecture is its powerful time-bound symbolic reasoning 
with support for deadlines. The reasoning process, which includes planning, is inter-
ruptible at any time for the best available current information, making it suitable for re-
al-time operation. Some introspective capabilities are present, such as dynamic con-
struction of defeaters for inference schemes. However, work remains to be done for 
OSCAR to be able to control embodied agents.  

Weak points of the architecture include lack of attention mechanisms, which has prob-
lematic implications for real-time processing when available information exceeds pro-
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cessing capacity. Furthermore, the limitations of memory in the architecture are some-
what unclear from the literature available, for example whether any form of procedural 
or episodic memory has been implemented.  

Finally, how the architecture scales to multi-processor hardware and parallelization is 
an important question that relates directly to its scalability and practical use: The cen-
tralized nature of its operation may hint at problems in this regard. Nevertheless, 
OSCAR may offer valuable contributions for future work on cognitive architectures as 
it presents a practical way to implement time-bound reasoning under uncertainty. 

 

3.8 OPENCOG PRIME 

OpenCog Prime (OCP) is a cognitive architecture (Goertzel 2008, Goertzel 2009) that is 
closely related to the OpenCog framework (Hart 2008), which is an open source soft-
ware development framework intended for implementation of AI systems providing 
common knowledge representation schemes, process scheduling and I/O systems across 
different AI technologies running simultaneously. The architecture of the system com-
bines sub-symbolic methods such as neural network structures with symbolic pro-
cessing and can thus said to be truly hybrid in this sense. OCP is aimed at creating arti-
ficial general intelligence (AGI) systems and efforts focused on training such systems 
largely focus on embodiment in virtual environments. The architecture is based on Cog-
nitive Synergy Theory (Goertzel 2009) which contains a working definition of intelli-
gence centered on the ability to achieve goals in environments. The theory furthermore 
states that in order to achieve a high-level of AGI in virtual environments containing 
communicative agents, special cognitive processes need to be present for six different 
types of knowledge: declarative, procedural, sensory, episodic, attentional and inten-
tional. The theory also emphasizes that synergy or integration must be achieved across 
these processes. The architecture is deeply rooted in probabilistic logic and reasoning. 
However, the architecture might be criticized for lacking unification and containing a 
very heterogeneous collection of modules, which may make the goal of integration and 
synergy highly challenging to achieve. 

OCP addresses attention in a somewhat unique way compared to other existing architec-
tures as it approaches the phenomena in terms of attentional knowledge, which pertains 
to what information should receive resources from moment to moment. Attention is im-
plemented using a special type of attractor neural networks called Economic Attention 
Networks (ECAN) (Ikle 2011). An ECAN may be viewed as a graph with generically 
typed nodes and links, where each node and link has parameters representing its short-
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term and long-term importance. Using methods inspired by information-geometry, the 
networks learn over time to perform association and credit assignment used for resource 
allocation. This technique has been successfully implemented for small problems but 
some questions with regards to scaling of this method remain unanswered as of yet. 

3.9 CLARION 

The CLARION architecture is motivated by cognitive psychology and social simulation 
(Sun 2001, 2003, 2006). It is based on dual representations using both symbolic and 
sub-symbolic data, as well as the interaction between the two. Some often overlooked 
issues such as meta-cognition and agent-motivation are specifically addressed, making 
CLARION a fundamentally hybrid architecture that allows agents to learn autonomous-
ly without relying on knowledge supplied a priori. Symbolic knowledge is captured 
with data structures called rules and chunks, while sub-symbolic knowledge is encoded 
in connectionist networks. Both top-down and bottom-up learning are supported in such 
a way that low-level procedural knowledge develops first followed by higher-level de-
clarative knowledge at later stages. This gives CLARION the rather unique ability to 
generate symbolic knowledge from sub-symbolic knowledge, which is achieved by a 
combination of connectionist, reinforcement, and symbolic learning methods.  

As a result of its focus on social considerations, the architecture addresses the interac-
tion between cognition, environment, and motivation. CLARION has four main inter-
acting modules that handle different aspects of its operation, each of which has a dual 
symbolic/sub-symbolic representation: The Action Centered Subsystem (ACS) is re-
sponsible for managing the internal or external actions of the agent. The Non-Action 
Centered Subsystem (NACS) is responsible for managing system knowledge, including 
declarative symbolic knowledge as well as sub-symbolic knowledge. The Motivational 
Subsystem (MS) provides motivation for the system operation, namely perception, cog-
nition and action. This is performed using impetus, a particular type of motivation, and 
feedback based on evaluation of the actions results. The Meta-Cognitive Subsystem 
(MCS) is responsible for monitoring and dynamically modifying other modules, par-
ticularly the ACS. Action selection is a cooperative process between the symbolic and 
sub-symbolic aspects of the ACS and is based on sensory input, working memory items 
and current goals. Generated actions are either external, environmental or focused on in-
ternal aspects of working memory and goals. 

The CLARION architecture has a number of strengths. The way in which low-level 
learning of skills leads to high-level declarative knowledge is biologically plausible and 
goes beyond what has been attempted in most cognitive architectures to date. Some 
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steps are taken towards meta-learning, as the architecture contains a dedicated module 
for metacognition that handles introspective aspects and self-evaluation. However, the 
architecture cannot fundamentally improve its own learning capabilities in terms of 
functionality, as there is no reconfiguration possible at the structural level.  

In terms of resource management, the MCS module applies filter/selection to input and 
output data as well as selecting appropriate learning methods for each situation, imple-
menting attentional functionality that guides the operation of the system. CLARION has 
been successfully tested on tasks involving time pressures and is designed with some 
focus on time-related issues. However, available documentation indicates that this deals 
mostly with response times of individual modules rather than presenting an integrated 
approach to temporal management. The designers of this architecture have indicated 
that potential for real-time processing is significantly greater than can be deduced from 
currently published material2. 

3.10 ACT-R 

ACT-R3  is a cognitive architecture implementing a theory of human cognition that is 
heavily inspired by biology and cognitive psychology. The architecture is largely de-
signed as a production system in which rules are activated when their preconditions are 
met; human cognition emerges out of interaction between numerous declarative and 
procedural knowledge elements (Anderson, 1996, 1997, 2003). Declarative knowledge 
is represented by data structures called chunks, which encode relations and properties of 
objects. Procedural knowledge is represented by production rules, which may be acti-
vated when their preconditions are met to produce actions. The existence of a specific 
goal is one example of a precondition, while the generation of a sub-goal is an example 
of produced action. Working memory is implemented with data structures called buffers 
into which chunks and rules are retrieved based on the results of a special activation 
process that essentially determines which of them are important in light of the situation 
the system may find itself at any moment. While chunks and production rules are sym-
bolic constructs, the activation process is sub-symbolic in nature so ACT-R can be con-
sidered a hybrid architecture. The architecture operates in atomic processing cycles, 
where each cycle begins with the activation process. This is a parallel process that ad-
justs the activation of chunks and production rules according to their calculated, proba-
bility of usefulness (determined by Bayesian methods) in the current situation. Higher 
activation values translate into increased probability that the item in question will be re-

                                                 
2 Ron Sun, personal communication with H. P. Helgason, 2012. 
3 Discussion based on ACT-R 5.0. 
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trieved from working memory and then processed. Thus, the activation process can be 
said to guide the operation and performance of the system. 

Learning is performed on two levels: The activation process adapts to the system’s ex-
perience, and thus to the environment’s statistical structure, while new chunks and pro-
duction rules can also be learned. New chunks are created upon the completion of goals 
and introduction of new percepts, while new production rules can be created by combin-
ing existing ones. 

The perceptual module of the system implements attentional functionality, effectively 
filtering sensory data which is processed by the system. However, this selection is not 
influenced by the availability of resources, which is problematic for real-time operation. 
Process control and prioritization is not addressed by the attentional functions of the ar-
chitecture, which all focus on information filtering. 

It should be noted that ACT-R has the explicit goal of targeting human cognition and its 
limitations, and that one of its intended and realized uses is to explain and predict hu-
man performance on various tasks. It is therefore limited by design, and cannot rely on 
principles considered non-biological or on any performance dimension on which an arti-
ficial system could possibly exceed human capabilities. 

3.11 SOAR 

SOAR is one of the most mature cognitive architecture currently in development, and 
has been used by many researchers worldwide during its roughly 30-year life span 
(Laird, 2008). During this time it has also been revised and extended in a number of 
ways; the discussion here is limited to the latest version as this represents its present 
state of the art. SOAR operates on many of the same principles as ACT-R, but does not 
share the psychologically-grounded goals of the latter. 

The main operating principle of SOAR is its decision cycle: When a problem is present-
ed to the system, it searches its memory for knowledge relevant to related goals or re-
wards. If insufficient information is found it generates a sub-goal to split the problem 
into smaller ones, if no solutions are found then this recursive process continues. When 
a solution has been created, the system may compress the solution into a compact form 
that can be applied directly, and store it until a later time, if the same problem should be 
encountered, in a process called chunking. The pipelined decision cycle determines the 
temporal granularity of the system by defining the update frequency for accepting new 
sensory data. 
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The architecture consists of heterogeneous components that interact during each deci-
sion cycle. These are working memory and three types of long-term memory: semantic, 
procedural, and episodic. Working memory is where information related to the present 
is stored, with its contents being supplied by sensors or copied from other memory 
structures based on relevancy to the present situation. Working memory also contains an 
activation mechanism indicating the relevancy and usefulness of working memory ele-
ments when used in conjunction with episodic memory. Production rules are matched 
and fired on the contents of working memory during the decision cycle, implementing 
both an associative memory mechanism (as rules can fetch data from long-term memory 
into working memory) and action selection (as rules can evaluate and propose opera-
tors). One of the most recent additions to the SOAR architecture is sub-symbolic pro-
cessing which is used for visual capabilities, where sub-symbolic and symbolic pro-
cessing is bridged with a form of feature detection.  

In SOAR, operators are the building blocks of all actions, both internal and external. 
The application of an operator is carried out by a production rule and either causes 
changes in the working memory or triggers an external action. Problem solving is based 
on search spaces, and operators can be seen as ways to move between states. In cases 
where operator selection fails due to insufficient or conflicting knowledge, an impasse 
event occurs and the recursive sub-goal creation process described above is started. The 
results of this process are then converted to production rules by use of chunking. It is 
worth noting here that this works identically for parent goals and sub-goals, which helps 
with the transfer of learning as different parent goals may share identical sub-goals.  

The symbolic and production-based approach has recently been extended with rein-
forcement learning, which is used for relating production rules to operator selection to 
maximize future rewards in similar situations. As the SOAR working memory can con-
tain execution traces, introspective abilities are possible. As the architectural learning 
mechanisms of the system are fixed, however, self-reconfiguration (e.g. improving own 
learning capabilities) is not achieved, but it is worth noting that reinforcement learning 
gives the architecture a method of managing knowledge more effectively over time, for 
example by choosing which type of memory is most appropriate for certain situations. 

The SOAR architecture provides one of the largest collections of simultaneously run-
ning cognitive processes of any cognitive architecture so far. Interestingly, however, 
there is no explicit mechanism for control of attention; this is not seen as a central cog-
nitive capability by its authors, but as “processing that belongs to the perceptual side”4. 
This seems like a problematic view of attention for numerous reasons, many of which 
have already been detailed above; suffice it to say that attention will not be very useful 
                                                 
4 John E. Laird, personal communication with H. P. Helgason, 2010. 



40 General Attention Mechanism for AI Systems 

if it cannot be meaningfully influenced by the active goals of an agent, and several other 
properties of its internal state.  

Not containing attention-like functionality, the architecture is based on the assumption 
of abundant computational power, in the sense that it is assumed that all incoming data 
from the environment can always be processed. This is problematic, and, not surprising-
ly, the execution in SOAR is done in a strict step-lock form. In particular, the duration, 
or amount of computation, in each decision cycle can vary greatly due to impasse events 
that occasionally arise. At its core, the architecture is based on a single step-lock sense-
decide-act control cycle, and it is theoretically not designed to operate in parallel; there-
fore, were it to encounter situations in which the assumptions of sufficient resources 
does not hold, it would not help significantly to add computing power (e.g. adding more 
processors). While production rules can be fired in parallel, this is just one phase within 
the operating cycle. Although it is not clear how fast the single processor that runs a 
SOAR system must be for it to approach human levels of intelligence, it is safe to spec-
ulate that this stage has not been reached yet, even on the fastest supercomputer to date. 
Performance of the architecture’s particular implementations is not being faulted here, 
but rather the core of the architecture’s operating principles, which assumes sufficient 
computational resources at all times. SOAR has essentially not been designed to cope 
with situations for which it does not have computational power to process “everything”.  

SOAR’s lack of attention mechanism(s) presents problems for practical operation, as 
the architecture’s only available response to insufficient knowledge is essentially delay-
ing its operation in the environment. While SOAR has certainly made contributions to 
the fields of AI and cognitive psychology, the design of this architecture seems to be 
quite detached from operation in everyday environments, which are highly complex 
from the perspective of existing cognitive architectures, and march to the beat of their 
own time. Finally, one might argue that the development of SOAR has been somewhat 
characterized by “adding boxes”, or components, to the architecture when it might have 
been better to follow a more unified approach, putting integration at the forefront. 

3.12 IKON FLUX 

The IKON FLUX architecture is aimed at creating autonomous systems that adapt and 
evolve in open-ended environments with incomplete knowledge (Nivel 2007). From a 
manually constructed initial state, continuous self-directed growth takes over; this pro-
cess is aimed at maximizing current and future performance by targeted real-time evolu-
tion of architectural system structure and process source code as well as generation of 
knowledge. Observation is the key component to knowledge construction, the external 
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environment is constantly observed as well as the internals of the system which gives 
rise to self-reflective properties. An IKON FLUX based system can be called cognitive 
in the sense that it senses and reasons upon events in the external and internal environ-
ments. Knowledge is encoded as models which may have multiple levels of detail. 
Models in IKON FLUX fall in one of two categories, forward models and inverse mod-
els. Forward models deal with prediction using present states to determine what states 
are likely to follow. Inverse models have explanatory power as they deal with explain-
ing how states were brought about in terms of previous states. They effectively contain 
a recipe for reaching a target state from a starting state. Models are continuously modi-
fied to maximize their correctness in light of the systems experience. The model-based 
approach creates the opportunity to perform simulations which are leveraged to find 
new or better solutions for problems without acting in the external environment. The 
models are grounded as they are expressed in native terms of operation and observation. 
Models are the key to the adaptive and evolutionary nature of the architecture as desired 
future states of the system are expressed as target models. Goal achievement works in a 
similar way where goals are also expressed as target models. Rather than using tradi-
tional planning methods, IKON FLUX is designed for reactive planning at multiple lev-
els where many solutions compete for execution. An anticipation mechanism is imple-
mented using simulations with forward models and is useful for plan optimization and 
constructing complex composite plans. IKON FLUX implements attention control with 
control values and thresholds that define a focus of attention5. This process is critical to 
system operation as IKON FLUX systems are intended to contain a very large number 
of programs, making constant execution of all programs infeasible for real-time pro-
cessing. In the system, internal objects and input data both have control values. For an 
input to be processed by the system, the input must have sufficiently large activation 
values and the same has to hold true for at least one program (model) that accepts inputs 
of that type. It is worth noting that input data does not only mean information coming 
from the external environment but may also be generated by the system itself. This is a 
novel approach as attention acts not just as a filter on input data but is also responsible 
for selecting what objects within the system are important at any time.  

IKON FLUX is one of the few cognitive architectures that features learning at the archi-
tectural level (self-growth) and thus adheres to constructivist AI methodology (Thóris-
son 2009). While a thorough evaluation (learning ability, scalability, performance, re-
source requirements) of the architecture is not available, experience from the extensive 

                                                 
5 Based on personal communication with Eric Nivel. 
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use of the architecture in a real-world setting6 suggests that it may be a promising direc-
tion for cognitive architectures. 

3.13 Other notable efforts 

Considerable work has been performed to build computational models for visual atten-
tion (cf. Frintrop 2010, Schmidhuber 1991). While this is a highly practical domain, es-
pecially for computer vision, the work is limited to a single modality and makes limited 
theoretical contributions to a holistic, complete attention mechanism targeting all mo-
dalities in addition to internal system states. 

Attentional functionality has also been investigated within the limited scope of working 
memory. Skubic (2004) presents an adaptive working memory for robots that exhibit at-
tentional qualities. Philips (2005) presents a software toolkit for creating working 
memory based on a neurocomputational account of biological working memory that is 
evaluated for a visual attention task. While attention and working memory are closely 
related, this is a restrictive context to study attention within as working memory can in 
most cases be modeled as a cognitive function rather than an architectural component. 

Novianto (2009) proposes an approach to attention based on self-awareness called 
ASMO (Attentive Self-Modifying Framework), where self-awareness of robots is de-
fined as the capability to direct attention to their internal states. This view of attention 
overlaps somewhat with constructivist AI methodologies (discussed in Chapter 5). 
However, this work does not vigorously address the resource management aspects of at-
tention, focusing instead on self-awareness and consciousness. 

 

                                                 
6 An implementation of Ikon Flux, Loki, was used to control various aspects of a public play running for 
several weeks, including lights, cameras, sound effects, and various sensors. 
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Chapter 4 

Natural Attention Systems 

This chapter surveys selected works on natural attention systems; namely human atten-
tion. While many animals besides humans are known to also possess attention mecha-
nisms (Zentall 2004), it is well outside the scope of the present work to determine or 
speculate on which of Earth’s life forms possess attention systems, of which kind, and 
to what degree. Nevertheless, the fact that attention is not a uniquely human capability 
is suggestive evidence that attention is a critical cognitive process for surviving in com-
plex and dynamic environments. It seems reasonable to make the assumption that no 
other species on the planet has more sophisticated or complex attention mechanisms 
than human beings, or at the very least that human attention presents a sufficient super-
set of existing attention mechanisms to suffice for the present discussion. This allows 
discussion of biological attention to focus on human attention as the most interesting 
case in the theoretical, practical and technological sense, which also makes sense in 
light of the fact that the vast majority of attention research so far has been focused on 
human attention. 

From an evolutionary point of view, it is highly probable that attention is the result of 
our limited processing capacity coupled with complex and dynamic environments in 
which frequent changes occur. Being attuned to our environments and able to shift our 
attention quickly has enormous survival value. The human attention mechanism is fre-
quently viewed as an information reduction process that decides what sensory infor-
mation is allowed access to our awareness, performing selective analysis of stimuli (c.f. 
Wolfe et al. 2006, p. 177-181). Neurological and psychological research strongly sug-
gests that this process is quite elaborate, deciding not only what to process but to what 
degree. Increased awareness of a sensory stimulus is considered indicative of greater 
levels of processing while other stimuli are still processed to varying degrees with or 
without our conscious involvement (Glass & Holyoak 1986, p. 33-34). This suggests is 
might be clearer to consider attention to be a dynamic resource management process, at 
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least for the purposes of the present work, allocating our processing capacity to incom-
ing sensory stimuli and other types of information. The control of attention has been 
shown to be simultaneously reactive and deliberate (Glass & Holyoak 1986b, p. 47-48). 
Humans can selectively focus their attention while remaining alert and reactive to unex-
pected and potentially important changes that occur in the environment. The deliberate 
operation of attention is referred to as top-down attention, as it is directed from cogni-
tion towards the environment, while the reactive operation of attention is referred to as 
bottom-up attention as it is directed from the environment towards cognition (c.f. Sarter 
2001) 7. The overall effect of our attention mechanism is that we are able to concentrate 
on information related to our current tasks while being reactive to unexpected events at 
the same time. This is of no small value in terms of survival, as we are constantly alert 
to potential threats while being able to perform complex, demanding tasks. As we learn 
to perform new tasks, part of such learning includes how we orient our attention (John-
son & Proctor 2004). The fact that control of attention is part of learned procedural 
knowledge hints at the pervasive and distributed nature of attention as it shows the in-
volvement of attention in other critical cognitive functions. 

In attention research, visual attention has been studied in greatest detail. This is not sur-
prising given that the visual modality is likely to provide much greater amounts of in-
formation than other modalities, perhaps by orders of magnitude, and thus requires 
highly complex and sophisticated attention mechanism. Unlike other modalities, it also 
provides the opportunity to observe some attention effects externally; eye movements in 
particular. It is also an example of active attention as we seek out specific things in the 
environment with our eyes, unlike hearing, for example, which is more passive and does 
not directly allow for the sensor (ear in this case) being actively oriented. 

The rest of this chapter is devoted to a survey of notable or relevant attention research.  
Two fields of study are the source of such work: Cognitive psychology and neurosci-
ence. The main emphasis will be on cognitive psychology in this chapter, while neuro-
science has limited relevance to the present work as discussed in the Introduction. 

                                                 
7 In cognitive psychology, top-down attention is also refferred to as endogenous attention and bottom-up 
attention as exogenous attention. These terms are not as intuitive in the context of artificial intelligence 
systems as top-down and bottom-up, which are used throughout this thesis. 
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4.1   Cognitive Psychology 

4.1.1 Cocktail Party Effect 

The beginning of modern attention research in psychology is commonly associated with 
Colin Cherry’s work on what has been called the “cocktail party effect” (Cherry 1953), 
referring to the human ability to focus on particular sensory information in the presence 
of distracting information and noise, such as following a single conversation at a cock-
tail party in the presence of many other conversations and background noise. This prob-
lem is also sometimes referred to as selective attention. By using a set of dichotic listen-
ing experiments (where different spoken messages are simultaneously fed to each ear of 
the subject using stereo headphones), it was shown that subjects were able to complete-
ly block out unattended messages in the sense that they could not report any information 
from those messages afterwards, although primitive characteristics (such as gender of 
speaker) of the unattended messages were sometimes recalled. There were cases when 
unattended messages interfered with the attended message, particularly if the two mes-
sages were related in content. 

In another set of dichotic listening experiments performed later on, some interruptive ef-
fects of the content of unattended messages were investigated (Wood 1995, p. 255-260). 
In particular, the experiments focused on what happens when content highly salient to 
the subject was present in the unattended message: the subject’s name. Consistent with 
prior, less rigorous experiments, roughly a third of the subjects reported noticing their 
name in the unattended message. Interestingly, subjects who noticed their names in the 
unattended messages had problems following the attended message for a brief period of 
time after occurrence of their name. The cocktail party effect is sometimes extended to 
include this phenomena of remaining alert to unexpected important information while 
deliberately focusing on unrelated aspects of the environment, for example following 
and participating in a conversation at a cocktail party in the presence of many other 
conversations and background noise, and still be able to catch when someone calls our 
name in the background. We are capable of noticing our own name being called from 
across the room in such a situation – although such recognition does not consistently 
and reliably occur if the results of these experiments are any indication. 

The cognitive operation described above seems to call for a selective filtering mecha-
nism of some sort while at the same time requiring deliberate steering of cognitive re-
sources. The cocktail party scenario is a good illustration of the dual nature of attention, 
which simultaneously targets specific, task-related information in a top-down manner 
while monitoring all sensory channels to some degree for unexpected events of rele-
vance in a bottom-up manner. 
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4.1.2 Stroop Effect 

The Stroop effect refers to a delay in reaction time of a task due to interference of senso-
ry stimuli (Stroop 1935). This is demonstrated in what is commonly referred to as the 
Stroop test, where subjects are asked to name the (text) color of a word when the word 
itself also refers to a color. The task of naming the color of the word is more error-prone 
and takes longer when then the text color does not match the color referred to by the 
word.  This task has been widely used as a psychological test for clinical and research 
purposes.  

As implied by the Stroop effect, the semantic meaning of the word being displayed is 
automatically extracted without conscious effort on part of the subject, however the sub-
ject must apply conscious effort to separate the meaning and color of the word to give a 
correct answer. This constitutes some evidence for a single memory representation as-
sociated with a particular color being activated by both the color and meaning of the 
displayed word and also highlights some limits with regards to how humans are able to 
control their perception. In this case, another role of attention can be seen as manage-
ment of representational meanings. 

4.1.3 Early Selection vs. Late Selection 

The cognitive performance characteristics discussed before imply simultaneous opera-
tion of a selective filter and deliberate steering mechanism which together perform allo-
cation of cognitive resources. A number of psychological models for attention have 
been proposed that typically fall into one of two categories: Early selection models are 
models where selection of sensory information occurs early in the sensory pipe-line and 
is based on primitive physical features of the information (shallow processing) and little 
or no analysis of meaning. In other words, early selection models assume that attention 
influences perceptual processes. The Broadbent filter model (Broadbent 1958) is one of 
the best known early-selection (filter) models. It assumes information filtering based on 
primitive physical features, with information that is not selected by the filter receiving 
no further processing.  
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Figure 4.1: Diagram depicting the operation of the Broadbent filter model. All 
sensory information enters a sensory store from which a selective filter chooses 
information on the basis of low-level physical characteristics to receive further 
processing. Information not chosen by the filter is completely discarded. 

Late selection models are models where selection is performed after some level of non-
trivial analysis of meaning at later stages of the sensory pipeline, assuming further anal-
ysis of incoming sensory information must be performed in order to determine its rele-
vance and carry out efficient selection. Implicit in this view is that attention operates on-
ly after perceptual processes are completed. The Deutsch-Norman model (Norman 
1969) is a prime example of a late selection model. In contrast to the filter model, it 
proposes gradual processing of information to the point where memory representations 
are activated. Competitive selection is performed at the level of these representations, 
with the most active ones being selected for further processing. The model also assumes 
an attentional bottleneck at this point, where only one representation can be selected for 
processing at a time. 

The early vs. late section issue has resulted in considerable debate in the cognitive psy-
chology community. Some obvious problems are apparent for early selection models; 
they fail to account for commonly-observed human behavior such as noticing unex-
pected but relevant information – the cocktail party effect. The acoustic features alone 
of someone calling our name from the other side of a crowded room are not likely to be 
sufficient to attract our attention – some analysis of meaning must be involved. Recent 
work in neuroscience has found evidence that further validates late selection models: 
“In and near low-level auditory cortices, attention modulates the representation by en-
hancing cortical tracking of attended speech streams, but ignored speech remains repre-
sented. In higher-order regions, the representation appears to become more selective, in 
that there is no detectable tracking of ignored speech.” (Zion 2013: 980). This work also 
found evidence of simultaneous involvement of top-down and bottom-up attentional 
processes in the Cocktail Party Effect and selective auditory attention. 

4.1.4 Visual Attention 

While the models of attention discussed earlier relate to auditory attention, a significant 
number of models for visual attention have been proposed as well. Vision is a particu-
larly interesting modality in context of attention, most notably because vision provides 
orders of magnitude greater information per unit of time than any other human modali-
ty. Moravec (1998) estimates that the human retina processes ten one million point im-
ages per second. Based on this estimate, the total input of the visual modality is around 
60 megabytes per second. In contrast to this, traditional compact audio discs (CD’s, 
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used here as indicative of the bandwidth of the human auditory modality) store audio 
with 0.18 megabytes per second. If both estimates are roughly accurate, this indicates 
that the visual modality supplies over 300 times as much information as the auditory 
modality. There are further notable differences between the visual modality and the au-
ditory modality: Unlike hearing, vision involves sensors that can be physically oriented 
towards different aspects of the environment and these orientations can be observed ex-
ternally. 

The two most prominent classes of models for visual attention are space-based and ob-
ject-based. Space-based models assume that stimuli occurring within an attended spatial 
region are selected for deeper processing while stimuli occurring outside such regions 
require attention to be reoriented in order to receive deep processing. Two examples of 
spaced-based models are the spotlight model (Posner et al., 1980), in which attention is 
assumed to be directed to stimuli occurring in an attentional spotlight, and the zoom-
lens model (Eriksen & James, 1986), in which the analogy of a variable-power lens is 
used to account for the capability of attended regions (spotlights) to change in size. As 
the attended area grows larger (zoom out), reaction times were shown to increase, sug-
gesting even distribution of processing resources within the attended region. Both mod-
els assume that information is extracted in detailed manner from the central focus of the 
spotlight, while information is processed in a cruder manner from the area surrounding 
the focus, called the fringe. The area outside the fringe is called the margin and receives 
little or no processing. Object-based models (c.f. Duncan 1984, Lavie & Driver, 1996) 
assume that processing occurs in two stages, where elements sharing properties are 
grouped into perceptual objects in the first stage and attention is located to such objects 
in the second stage. Processing of information within a single attended object is as-
sumed to be parallel while processing of information across objects is assumed to be se-
rial. While these two classes of models are directly relevant to investigation of a vision-
specific attention for AI systems, they are significantly less relevant to the design of a 
general, modality-independent attention mechanism. 

Feature integration theory (Treisman 1980) is another influential model of visual atten-
tion. In this model, the operation of visual attention is described as a two stage process 
where analysis and extraction of features is performed unconsciously in a pre-attentive 
stage, followed by a focused attention stage in which features from the former stage are 
combined to form complete representations of objects in the environment. Focus of at-
tention occurs within a master map, representing image space where each location is as-
sociated with features detected locally. Only features associated with attended locations 
in the master map are processed consciously. Two types of visual search tasks are iden-
tified: Feature search is described as a fast type of search occurring in the pre-attentive 
stage targeting only one feature while conjunction search is described as targeting two 
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or more features in a slower, serial process requiring focused attention. While the details 
of these processes are not directly relevant for the present work, references to temporal 
aspects of attentional processing are interesting; the model suggests that amount of pro-
cessing is related to the size of the description of the object being sought. 

Desimone & Duncan (1995) present a model of visual attention based on biased compe-
tition of information, where the characteristics of relevant or needed data are encoded in 
a special short-term description called attentional template, which can specify any 
property of the desired input including for example shape, color and location. Desimone 
& Duncan’s model addresses top-down and bottom-up attention separately. Bottom-up 
attention is based on intrinsic or learned biases of the perceptual system towards certain 
types of stimuli in addition to how significantly stimuli stand out from their back-
grounds. Top-down attention is based on spatial factors and feature detection where the 
features to be detected are encoded in attentional templates. 

Desimone & Duncan’s model has provided some inspiration to the present work, both 
due to its view of attention as a biased competition and also in more concrete ways: A 
functional equivalent of an attentional template, an attentional pattern, is included in 
the attention mechanism design presented in Chapter 8 to encode properties of infor-
mation that is desired by the system. 

4.1.5 Baddeley’s Working Memory Model 

Working memory is closely related to attentional functions, to the extent that attention 
has sometimes been viewed as a component in models of working memory (cf. Skubic 
2004, Phillips 2005). Baddeley’s model of working memory (Baddeley 1974, 2000) is 
among the more prominent models of working memory that has been proposed in cog-
nitive psychology. The model consists of four components: Central executive, phono-
logical loop, visuospatial sketchpad and an episodic buffer. The role of the central ex-
ecutive incorporates several aspects of attentional processing, such as binding infor-
mation from separate modalities into coherent episodes, coordinating sub-systems (the 
other components of the model), shifting between tasks and strategies for information 
retrieval in attention to selective attention and inhibition. The phonological loop is spe-
cific to the auditory modality, with all auditory information entering a phonological 
store but decaying rapidly. An articulatory process operates on this information, being 
viewed as an “inner voice” that prevents decay of salient auditory information. This 
process is capable of interacting with the visuospatial sketchpad in order to code visual-
ly observed language in auditory form. The visuospatial sketchpad is used to hold and 
manipulate information from the visual modality and for planning of motor actions. The 
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episodic buffer integrates information from separate modalities into coherent temporal 
representations, which are potential targets for storage in long-term memory. 

While Baddeley’s model addresses important aspects of attention, several important at-
tentional functions are not addressed, such as bottom-up attention, and interaction with 
other major cognitive functions is not specified in much detail. 

4.1.6 Knudsen Attention Framework 

More recent models of attention focus on the interaction between top-down and bottom-
up attention, such as the Knudsen attention framework (Knudsen 2007) shown in Figure 
4.2. It consists of four interacting processes: working memory, top-down sensitivity con-
trol, bottom-up filtering and competitive selection. The first two processes work in a re-
current loop to control top-down attention; working memory is intimately linked to at-
tention as its contents are determined by attention.  
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Figure 4.2: The Knudsen attention framework (reprinted from Knudsen 2007). 

As shown in Figure 4.2, information flows up from the environment and passes through 
saliency filters that detect important or unusual stimuli. Information that is passed 
through the filters then activates memory representations that encode knowledge. 
Memory representations are also activated by top-down sensitivity control, which is a 
process influenced by the contents of working memory and adjusts activation thresholds 
of representations. Representations compete for access to working memory, with the 
most active ones being admitted. Overall, the flow of information from the environment 
into working memory is regulated by the framework. While gaze is incorporated in the 
framework, that component is not necessary to the fundamental operation of attention in 
the framework. 
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This framework seems to capture the major necessary parts for attention and be a prom-
ising starting point for artificial general intelligence (AGI) systems, from which some 
important issues for consideration can be extracted, as done in Chapter 6.  

4.2 Neuroscience 

Neuroscience refers to the scientific study of the nervous system, representing a broad 
interdisciplinary branch of biology that has collaborated with computer science among 
many other fields. This section surveys selected phenomena and prior work from neuro-
science that is relevant to attention. However, as the present work is not biologically 
motivated except at a high level, much of what neuroscience has to offer with regards to 
attention is considered too far from the main thread. The present stage of neuroscience 
is unable to explain the working of attention in great detail, and certainly not in a holis-
tic fashion where interaction with other cognitive processes is mapped out. Some limita-
tions of human attention, discussed below, have been confirmed and investigated signif-
icantly. To be explicit, the present work has no ambitions towards replicating such phe-
nomena in intelligent engineered systems. Rather, the goal is to extract functional re-
quirements and useful inspiration from prior work where human attention has been in-
vestigated. The general idea is to endow intelligent systems with human-like attentional 
capabilities in the sense that these capabilities are necessary or significantly improve the 
operation of these systems, but leaving behind anything that can be considered a biolog-
ical limitation. A brief survey of attention-related phenomena observed in neuroscience 
is presented in this chapter for completeness, but in general, neuroscience was not found 
to offer the right level of abstraction to be influential to the present work. However, 
concrete evidence for the existence of different attentional processes has been uncov-
ered by neuroscience, as discussed below. All types of these processes are directly ad-
dressed in the context of intelligent systems in the present work. 

4.2.1 P300 

Measurements of event-related potential (ERP) have provided neuroscientists with a 
useful method to noninvasively study the function of the brain. ERP is a measured re-
sponse of the brain, in terms of electrical signals emanating from the scalp, resulting di-
rectly from a specific sensory, cognitive or motor event (Luck 2005). Early work in 
neuroscience found that ERP measures of response to stimuli was different for stimuli 
meaningful to the subject based on their current tasks and stimuli that was not (Chap-
man 1964). This differential response to stimuli on the basis of meaning to an individual 
became known as the P300 response. The name reflects that the response occurs ap-
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proximately 300 milliseconds after exposure to salient stimuli. Further studies found 
that that the novelty and unexpectedness of stimuli also affected this response and that 
the P300 response was modality-independent, at least to some degree, as it was ob-
served for both visual and auditory stimuli (Sutton 1965). Furthermore, the P300 re-
sponse was shown to occur even in the absence of task-related stimuli hinting at the par-
ticipation of a neural mechanism for detecting broken expectations (Sutton 1967). 

Subsequently, two separate components of the P300 signals were identified: P3a and 
P3b (Squires 1975). The P3a is also referred to as novelty P3 and is associated with in-
voluntary attentional shifts to changes in the environment and the processing of novelty 
(Polich 2003). The P3b is associated with improbable, surprising stimuli, with the mag-
nitude of the measured response being relative to the level of improbability or surprise. 
However, P3b has only been found to occur for stimuli that are associated with tasks 
(Donchin 2007). Practical applications of the P300 response have included measure-
ment of cognitive function and cognitive workload demand in addition to lie detection, 
where it is increasingly replacing conventional polygraphs (Farwell 2001). 

The neural mechanics of the P300 response remain somewhat unclear to neuroscientists. 
However, the signal represents evidence for a neural mechanism to detect novel or un-
expected events in addition to broken expectations. While one may argue that evidence 
of such mechanisms can be found by observing the behavior of ordinary humans in eve-
ryday life, the work has found practical applications and provides support for some of 
the requirements presented in Chapter 6. 

Sarter (2001) provides a description, based on findings from studies of humans and an-
imals, of neural circuits that implement sustained attention and how these are disassoci-
ated with circuits responsible for bottom-up attention, implying separate functional 
components for top-down and bottom-up attention in humans. 

4.2.2 Gamma Band Activity 

Recently, recording technologies and tools for analysis have been developed that allow 
a more detailed examination of low-amplitude cortical oscillations; in particular the 30-
100 Hz range which is called the Gamma band. In Kaiser (2003), research on Gamma 
band activity using a combination of intracortical recordings, EEG and MEG have 
identified an important role of this signal in a range of cognitive processes. These 
include top-down and bottom-up attention in addition to learning and memory. The 
results are interpreted as demonstrating that rather than being mostly focused on 
perception, the main task of the brain is to anticipate specific requirements related to 
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tasks and activate corresponding structures. This may be viewed as support for the 
important role of predictive functionality in human cognition. 

4.2.3 Attentional Blink 

The attentional blink is a phenomenon discovered in rapid serial visual presentation 
tasks where subjects frequently fail to detect a second salient target stimuli, after having 
correctly identified the first, if the second target stimuli is presented at a particular 
interval of time (150-450 ms) after the first target stimuli (Raymond 1992). 
Subsequently, evidence was found in neuroscience for the attentional blink that 
confirmed it to be the result of limitations in post-perceptual processes rather than a 
limitation of perceptual processes (Vogel 1998).  

4.2.4 CODAM 

The CODAM (Corollary Discharge of Attention Movement) model of attention is 
grounded in evidence from neuroscience (Taylor 2007). The most important feature of 
this model is that the control signal for orienting attention is duplicated, being sent not 
only to mechanisms carrying out attentional orientation but to working memory 
mechanisms as well in order to prime working memory for new information that is 
likely to be forthcoming due to the shift in orientation. The authors believe this 
duplication of the control signal allows for faster and more efficient access to relevant 
information in working memory, and furthermore that it is intrumental in giving rise to 
consciousness. 

 

 

Figure 4.3: The CODAM model of attention (from Taylor 2007). 
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In CODAM, attention is viewed as a high-level controller for lower-level brain 
mechanisms. An overview of the model is shown in Figure 4.3, where IMC (Inverse 
Model Controller) generates a feedback control signal for orientation of attention, which 
is sent to both perceptual mechanisms to execute reorientation and to the working 
memory for priming expected information, reducing effects from distractors and quickly 
activating an error signal if intended goals of the system are not realized. The Goals 
module transmits information with regards to intent of the system to the IMC while the 
Input module is the source of new information to be perceived. The copy of the 
attention control signal that directly affects working memory is called the corollary 
discharge and activates a predictive forward model in the Corollary Discharge module 
which in turn generates expectations with regards to what information is about to be 
attended. An error monitor (Monitor) generates an error signal based on the differences 
between what the system intended to observe versus what it actually observes. 

While CODAM is a plausible model of some aspects of human attention due to its 
grounding in neuroscience, the level of abstraction at which the model is presented 
makes it somewhat difficult to relate to the present work. However, it does establish 
predictive functionality as an integral part of attention and the failure of predictions as 
triggering events for reactive behavior. 
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Chapter 5 

Constructivist Methods for AGI 

When considering information processing systems that possess intelligence operating in 
complex environments under various time-constraints, as defined by Wang (2006), the 
need for introspective capabilities on part of the system quickly becomes apparent. Ad-
aptation under limited knowledge and resources is central to this view of intelligence. 
In environments that produce abundant sensory information the resource management 
problem is critical because the processing capacity of the system is vastly overpowered 
by the amount of information generated by the environment, requiring the system to 
constantly monitor and anticipate usage of resources – an activity which again requires 
introspective functionality. Meta-learning, self-configuration and adaptive attention are 
other examples of introspective operation, some – and likely all – of which may be de-
sired as well. Traditional agent models (cf. Russell & Norvig 2003) can theoretically be 
applied to systems exhibiting these qualities, assuming that introspective operations oc-
cur within a “box” (the agent) already present in the model. However, this approach 
oversimplifies the problem and obscures important elements of the systems operation. 
Furthermore, it does not provide any support in generating these introspective abilities. 
A strong argument can be made for there being substantial benefit to a different ap-
proach, namely extending how the environment and the body of the agent are defined to 
include the internal environment of the system itself. This view produces a unified sen-
sory pipeline8 where information from the external environment and information from 
the internal environment are observed and processed in an identical fashion. 

Mainstream methods for software development are constructionist (Thórisson 2012a, 
Thórisson et al. 2004); they rely on manual design and hand-coded implementation of 
systems, resulting in static structures and static capabilities during operation. The ap-
proach includes virtually all AI systems developed to date. Systems based on a con-
structionist approach tend to be operationally fragile as they cannot tolerate situations 

                                                 
8 For a review of the state-of-the-art in sensory pipeline unification, the reader is referred to section 9.4. 
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beyond those intended by the system designer; most significant changes to the system’s 
tasks or its environment call for a manual reconfiguration of the system. While tradi-
tional engineering practices see this as a “feature”, artificial general intelligence (AGI) 
sees this as a “bug”. Like software engineering in general, the field of AI has relied on 
constructionist methods so far, achieving great success in building modular systems that 
address isolated pre-specified problems: narrow AI systems. However, the success of 
constructionist methods in narrow AI systems does not necessarily translate well to AGI 
systems – if at all. 

As an example, consider that the operating system Microsoft Windows XP has 40 mil-
lion lines of program source code9. Being a highly modular software system, under-
standing the effects of all possible interactions in such a system is already a significant 
challenge of complexity for any team of software engineers, regardless of size or capa-
bility. The number of bug-fixing updates (being in the hundreds) released for this par-
ticular operating system supports this view and is not unusual for popular operating sys-
tems of comparable complexity in general. An operating system is responsible for 
providing a user interface, managing hardware resources (computation, memory, disk 
space), controlling communications with various hardware devices (monitors, mice, 
keyboards, printers, etc.) and other tasks. While this may sound complex, the sharp dif-
ference in complexity between the operation of a modern operating system and a hu-
man-level intelligence embodied in the real world should be obvious. The human brain 
has one hundred billion neurons and each neuron has 7.000 connections to other neu-
rons10 on average. It is not necessary to establish any type of equivalence between a line 
of program code and a neuron to see that the complexity of human-level intelligence is 
orders of magnitude beyond the complexity of an operating system, even if only a frac-
tion of the neurons are involved directly with what we consider intelligence. The neo-
cortex alone, a region of the brain that is most frequently associated with general intelli-
gence in humans, contains roughly 30 billion neurons11. As stated by Thórisson (2012a), 
“available evidence strongly indicates that the power of general intelligence, arising 
from a high degree of architectural plasticity, is of a complexity well beyond the maxi-
mum reach of traditional software methodologies”. 

For there to be any chance of success in building AGI system capable of achieving near-
human levels of intelligence, new software development methodologies are desperately 
needed. Given the complexity of the task and cognitive limitations of human software 
engineers, such methodologies must follow a radically different approach than the 
methodologies of today. As we stand very little chance of manually implementing these 

                                                 
9 http://en.wikipedia.org/wiki/Source_lines_of_code 
10 http://en.wikipedia.org/wiki/Neuron 
11 http://en.wikipedia.org/wiki/Neocortex 
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kinds of systems directly, we must abandon current approaches of manual system de-
sign, leaving only the option of delegating a large part of the software engineering work 
onto the AGI systems themselves. Another equally important reason for abandoning 
modern software methodologies as the (only or main) way to implement AGI systems is 
the fact that unlike systems targeted to solve a single or a set of pre-defined simple 
tasks, an AGI system may encounter completely novel tasks, scenarios, and even oper-
ating environment. Unless the systems have some sort of self-modification capabilities, 
radical changes in the environment or tasks of targeted systems will clearly lead to a to-
tal operational breakdown. 

 

“One way to address the challenge of artificial general intelligence 

(AGI) is replacing a top-down architectural design approach with 

methods that allow the system to manage its own growth. This calls 

for a fundamental shift from hand-crafting to self-organizing architec-

tures and self-generated code – what we call a constructivist AI ap-

proach, in reference to the self-constructive principles on which it 

must be based. Methodologies employed for constructivist AI will be 

very different from today’s software development methods; instead of 

relying on direct design of mental functions and their implementation 

in a cognitive architecture, they must address the principles – the 

“seeds” – from which a cognitive architecture can automatically 

grow.” 

- Kristinn R. Thórisson (Thórisson 2012a, p. 147)  

 

Thórisson (2009, 2012a) has proposed methodological principles intended to facilitate 
the creation of AGI systems that manage their own growth during operation, from a 
manually created initial-state, referred to as a seed, to complement the growth metaphor. 
Termed constructivist AI for its emphasis on self-constructing principles, this methodol-
ogy especially targets the architecture level of such systems and identifies several fea-
tures which must be architecturally supported such as tight integration, transversal 
functions, real-time processing and large size (Thórisson 2012a, p. 152-153). Further-
more, AGI-aspiring constructivist systems must be fine-grained to allow for the neces-
sary dynamic communication patterns necessary to support these features (Thórisson 
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2009, p. 178); the more coarse-grain an architecture is, the fewer possible ways its indi-
vidual components and building blocks have to interact, and the more is hidden inside 
“black boxes”, outside of the system’s ability to self-inspect.  

Thórisson’s constructivist AI methodology is inspired partly by Piaget’s theory of cog-
nitive development (c.f. Wadsworth & Gray 2004), which is a comprehensive stage-
based theory of the development of human intelligence. Drescher (1991) has presented a 
theory of developmental learning for AI systems using schema mechanisms based on 
Piaget’s theory. Like Drescher, Thórisson’s approach assumes that knowledge builds up 
over time via interaction with the world. However, taking the idea to the next level, 
Thórisson takes a more radical approach proposing that not only the knowledge but also 
that mature cognition – the cognitive processes themselves – emerge through interaction 
and experience with the environment via controlled self-programming of large parts or 
even the entire cognitive architecture. This view requires the methodology to be thor-
oughly grounded in the constructivist framework as well. The methodology is also in-
spired by and related to second order cybernetics (c.f. Heylighen 2001), which refers to 
a self-organizing view of cybernetics where the investigator is part of the system. Thó-
risson expands on the idea of developmental, constructivist AI design, addressing meth-
odological assumptions by extending the scope to cover automatic management of con-
trol structures and system architecture as opposed to focusing exclusively on the 
knowledge of the system. 

The new constructivist AI methodology proposed by Thórisson relies on the same type 
of unified sensory pipeline that was discussed earlier; directed self-growth requires sub-
stantial introspective capabilities on part of an AGI system in order to monitor, evaluate 
and modify its own operation and structure. Furthermore, a unified sensory pipeline al-
lows for the identical application of virtually all cognitive functions to internal and ex-
ternal information without dedicated mechanisms being required for each. 

In the present work, a constructivist AI methodology is adopted as it represents a meth-
odology on which future AGI systems are likely to be built, providing plausible ideas to 
create significantly more flexible and adaptable software systems than seen to date. At-
tentional functionality is critical to systems based on a constructivist methodology as 
the implicit introspective processes involved with self-directed growth must operate on 
a large stream of information from the internal environment of the system. 
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Chapter 6 

Requirements for an AGI Attention 

Mechanism 

This chapter focuses on requirements for attention in artificial general intelligence 
(AGI) as viewed by the present work. The requirements that are discussed result from 
several factors and are grouped here according to their nature. First, design require-
ments are discussed, which are constraints relevant to design and scope of the attention 
mechanism proper, as implemented within an AGI architecture. This is followed by 
functional requirements, which capture the intended purpose and behavior of the atten-
tion mechanism. Finally, architectural requirements are discussed, which represent a 
criteria that a surrounding AGI architecture must meet in order to be an eligible host 
target for implementation of this attention mechanism.  

Before proceeding, the top-level design goal guiding this work is as follows: 

 

Top-level goal: The attention mechanism of an AGI system must enable the 

system to pursue goals while being reactive to unexpected events in dynamic 

environments of real-world complexity containing abundant information, while 

operating with limited resources and time constraints. 

 

6.1 Design Requirements 

The design requirements of the attention mechanism result from (a) the operational ca-
pabilities that this work aims to bring to AGI-level systems as well as (b) how this work 
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is meant to contribute to the field of artificial intelligence. These represent the funda-
mental requirements that have guided and given scope to subsequent work. 

As the work is aimed at AGI systems, it is appropriate to address the “G” first. Gener-
ality has a dual meaning in relation to this work. First, a goal of achieving architectural 
independence would seem highly desirable. Achieving architecture independence calls 
for a highly general design, and possibly contingencies, as architectures vary wildly in 
their operational principles and structures (c.f. Duch et al. 2008, Thórisson & Helgason 
2012). A requirement of architecture independence is a conscious decision, attempting 
to maximize the contribution of this work to the field of artificial intelligence and com-
puter science. As discussed in earlier chapters, when the function of attention is viewed 
as holistic, unified resource management, there is a large gap in the body of existing 
work on artificial intelligence. Few attempts have been made to answer the question of 
how AGI systems will be able to operate in complex environments under real-time con-
straints with limited resources. Unfortunately, achieving this design requirement in a 
strict sense is practically impossible, as the functionality required for this type of atten-
tion mechanism is simply too pervasive in and interconnected to the surrounding archi-
tecture; it is not possible to penetrate lower layers of abstraction and detail for operating 
principles without making some assumptions with regards to the surrounding architec-
ture. Given these considerations, a weaker form of this requirement – targeting qualified 
architecture independence – can be stated, and is targeted here.  

 

Design requirement #1: The attention mechanism must be applicable to the 

full range of possible cognitive architectures that meet its architectural require-

ments. 

 

The success of this design goal can be measured by how severely the architectural re-

quirements narrow the set of potential target architectures. It should be explicitly stated 

that unqualified success for the goal of architecture independence was never expected. 

In the context of AGI systems, there are different ways to interpret the meaning of 
“generality”. In the narrowest sense, an AGI system would need to be capable of adapt-
ing to changes in tasks and the operating environment in one type of environment, spec-
ified to some arbitrary level of detail. Consider for example a household robot responsi-
ble for doing chores in a typical home environment. If such a robot is capable of suc-
cessfully adapting to changes such as the appearance or disappearance of furniture, ap-
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pliances and residents – and how these changes affect its tasks – the cognitive architec-
ture of the robot, even though specifically designed for a home environment, can be said 
to meet the narrowest requirements of AGI. The type of generality exhibited in this ex-
ample will be referred to as task-generality.  

In contrast, let us consider an AGI system that is designed to support any type of envi-
ronment that can be observed using human-inspired sensory modalities (vision, audito-
ry, tactile etc.) while satisfying task-generality. Such a system could potentially be de-
ployed in virtually any existing physical environment in the known universe. However, 
as physical environments may not be the only environments of interest for AGI systems, 
this type of generality will be referred to as weak environmental generality. 

The final stop on the generality dimension is an AGI system that maintains task-
generality but can support any type of environment – not only physical three dimen-
sional environments – as long as there are sensors that can sense the environment and 
actuators that can change it. As we drop the dependence on human-inspired modalities, 
a vast range of non-physical environments become open to application. For example, 
such a system might be deployed to trade financial instruments on stock markets, learn-
ing efficient trading strategies while sensing price changes and other channels of infor-
mation that are far removed from human sensory channels. This type of system displays 
a type of generality that can equally be referred to as embodiment-generality or strong 
environmental generality. 

As this work adopts the definition of intelligence proposed by Wang (2013; see chapter 
2), intelligence is viewed as a general capability independent of embodiment and envi-
ronments. Accordingly, this work targets AGI systems at the far end of the generality 
dimension. 

 

Design requirement #2: The attention mechanism targets AGI architectures 

that support generality in tasks, embodiment and environments. Limiting as-

sumptions for tasks, embodiment or environments are avoided in its design.  

 

As is implied by embodiment-generality, the attention mechanism proposed here does 
not limit channels of sensing or actuation to a predefined set. This leads to a uniform 
approach where all modalities are treated in an identical fashion while – for reasons of 
practicality – modality-specific preprocessing is allowed. For example, it is not difficult 
to see that tackling vision by working with single pixels at the cognitive level is hardly a 
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practical approach. Preprocessing of visual information that results in higher level fea-
tures being the actual inputs to the cognitive level is a more realistic solution. However, 
this may be viewed as a change to the sensor rather than the cognitive part of an AGI 
system. One camera sensor may supply raw pixels while another supplies a stream of 
higher level visual features. For the system, these are simply two different sensors. 

 

Design requirement #3: The attention mechanism treats information from all 

sensory modalities in a uniform fashion. Modality-specific preprocessing should 

be viewed as belonging to a sensor. 

 

In chapter 5, the constructivist AI methodology (Thórisson 2012a) was reviewed and 
motivation given for why this work adopts such a methodology. Any system tasked 
with controlling its own growth in a directed fashion down to the architecture level re-
quires substantial introspective capabilities, both in terms of observation and under-
standing. As discussed earlier, practical AGI systems will display significantly greater 
complexity than currently existing software systems, containing vast numbers of inter-
acting components. With this in mind, the internal activity of such a system may be 
viewed as a rich sensory channel that must be monitored and selectively processed by 
the system. It is entirely reasonable to assume that attentional functionality will be re-
quired on the internal side as well to enable meta-cognitive functions responsible for 
system growth to operate in real-time while system resources remain limited. Why im-
plement a separate attention mechanism for this purpose, when a general attention 
mechanism is already in place? Due to the generality of the attention mechanism pro-
posed in this work – its independence from domain-specific semantics of the input data 
– nothing precludes the internals of a system constructed according to its principles to 
be viewed as a separate environment or an addition to the external environment in terms 
of attentional functionality. The potential benefits of applying the same attention mech-
anism to the external environment as well as the internal environment, for directed self-
growth, are significant: It greatly simplifies design and implementation as resource 
management is treated in a holistic fashion throughout the system and also implies that 
any improvements to the attention mechanism will be reflected both in improved per-
formance on tasks as well as improved functionality for self-growth. 
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Design requirement #4: The attention mechanism must target both external 

and internal information (information coming from the environment as well as in-

formation coming from within the system).  

 

As tasks and environments of AGI systems are not specified at design time – and these 
may change once the system has adapted to them – a fixed mechanism for attention and 
resource management seems inefficient and problematic. Using operational experience, 
the control of attention may be improved over time identically to how experience can 
allow for improvements in task performance in the external environment. Like any other 
task that the system performs, the control of attention should be viewed as a skill that is 
continuously learned over time in a dynamic fashion. In fact, control of attention and 
management of resources are part of learning and performing all cognitive-level pro-
cessing. Concretely, this means that when faced with a state in the environment that is 
identical to states that have been observed before, the attention mechanism will operate 
(if possible) in a more “optimal” fashion than before, in the sense that resources should 
not be allocated to information or processes that generated no value on earlier occasions 
and the likelihood of information receiving processing that was later found to be rele-
vant but missed on earlier occasions increases. The learning produced in this adaption 
process needs to be transferrable, not just improving operation in future identical situa-
tions but applicable to situations sufficiently similar to be useful.  

 

Design requirement #5: The attention mechanism must be adaptive in the 

sense that its behavior is influenced by prior operational experience in a rational 

way. 

 

6.2 Functional Requirements 

This section introduces and motivates several functional requirements for the attention 
mechanism. These are stated at lower levels of abstraction than design requirements and 
result from reviewing existing work – and gaps therein - on attention in the field of AI 
as well as literature from the field of cognitive psychology. The policy adopted for in-
spiration from cognitive psychology (biological inspiration) is to incorporate concepts 
and ideas that seem necessary or promising to attention for AGI systems while biologi-
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cal limitations are not of interest as the goal of the work is not to replicate any existing 
biological attention mechanism to detail. With regards to level of abstraction and the re-
quirements, the first design requirement (architecture-independence) should be kept in 
mind. This requirement constrains discussion of functionality from low levels of ab-
straction. 

A concentrated, deliberate form of attention, related to a system’s goals, is referred to as 
top-down attention. This function of attention has been shown in humans to be heavily 
influenced by current tasks, which is not a surprising result. In a similar manner, an 
AGI-level system must focus its top-down attention based on currently active goals. In 
addition to goals, expectations also represent necessary control information for top-
down attention as humans have been shown to display greater alertness to sensory re-
gions and channels where new, relevant information is expected. The concept of top-
down attention is a core part of the cognitive process and essential for attention mecha-
nisms. Without detection of information relevant to current goals, the probability of 
achieving them – at least in an efficient manner – is greatly reduced.  

In order to sense if the operating environment is behaving in an expected fashion, the 
system must monitor the results of its own predictions. It is important to detect failed 
predictions as such cases indicate a faulty understanding of the environment and/or the 
present situation and represent opportunities for learning as well as impacting next steps 
of processing. 

We must clearly distinguish between two types of unexpected events in the operating 
environments that AGI systems will encounter, as two separate attentional functions are 
required to detect these two different types of events. When an event occurs that is 
completely unexpected, in the sense that no predictions existed prior to its occurrence 
regarding whether or not it would occur, such an event will be said to be implicitly un-
expected. Such events imply that the system had no expectations of any kind with re-
gards to this event. When the occurrence of an event represents a failure of an existing 
prediction, in the sense that an existing prediction explicitly describes the event as not 
occurring, the event will be said to be called explicitly unexpected. Examples of such 
events include cases where an existing prediction “The event A will not happen in 
timeframe TF” is active and the event A does occur in the timeframe. Another form of 
such an event is when an existing prediction “The value of X at time T will be 50” is ac-
tive and the actual value of X at time T is not equal to 50. An event that occurs and was 
correctly expected by an existing prediction is said to be explicitly expected. Detection 
of explicitly expected events is necessary in order to validate the knowledge or process-
es that produced the underlying prediction. 
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Functional requirement #1: The attention mechanism must include top-down 

attentional processes that detect goal-relevant information and events that are 

explicitly expected or explicitly unexpected in the operating environment. 

The early vs. late selection issue for attention in cognitive psychology highlights that 
early selection principles are not fully plausible in terms of explaining human behavior 
and also problematic for attention for AI systems. Early selection models have difficulty 
explaining how unexpected but important information can penetrate higher levels of 
cognition as little or no analysis of meaning is performed. To be explicit about what is 
meant by “meaning”; this is the process of relating new incoming information to exist-
ing knowledge and experience of a human or engineered intelligent system. We have 
seen that some examples of human behavior contradict the early selection paradigm, 
such as noticing one’s own name being called from across the room in a crowded, noisy 
cocktail party (Cherry 1953). Furthermore, the capability of allowing unexpected but 
potentially important information to penetrate cognition has functionally equivalent val-
ue for AI systems as for humans. It is not clear by what means other than semantic pro-
cessing such events could be caught; events that may not be directly goal-related to any-
thing going on at the moment but may still imply imminent goal failure or represent 
necessary triggers for the generation of new goals. Ignoring vast amounts of information 
without analysis of meaning introduces operational risk as the issue of whether the in-
formation has current relevance is left unresolved. 

 

Functional requirement #2: The attention mechanism must include bottom-up 

attentional processes that detect implicitly unexpected events in the operating 

environment.  

 

The types of systems being targeted by this work operate under time-constraints and 
limited resources in environments of real-world complexity. Top-down and bottom-up 
attentional processes must run simultaneously to allow the system to work towards 
achieving goals while remaining reactive to changes and unexpected events in the envi-
ronment. It should be noted that attention is a top-level process of the whole system and 
cannot rely on other processes triggering it (that would displace the function of attention 
to those other processes). 
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Functional requirement #3: The attention mechanism must continuously run 

top-down and bottom-up attention processes in parallel. 

 

Another potential problem of early selection approaches to attention is that resource 
management decisions such as allowing a data item to receive further processing are 
made early when the availability of resources at such a time that the data will receive 
processing is unknown. Furthermore, such decisions must necessarily be very coarse-
grained as they involve acceptance or rejection of data items with nothing in-between. 
Effectively, the decision step either guarantees the particular data item further pro-
cessing or excludes it from ever having an opportunity to receive processing. From a re-
source management perspective, it is more feasible to defer processing decisions until 
just before the processing is ready to occur and current resource availability is known. 
How can such an attentional process determine when it has selected a sufficient amount 
of data for processing such that resources will be fully utilized, considering that each 
data item may get different levels of processing at next stages and that other processes 
(top-down processes in particular) are simultaneously influencing resource management 
as well? This represents a complex problem, but one which can be avoided with the 
right design. 

There are additional practical problems with single-step selection. One of the main pur-
poses of attention for intelligent systems is to enable the system to operate in real-time 
while having greatly insufficient resources to process all available information. Consid-
er all of the factors that influence information selection and the amount of information 
that such systems are likely to face, even after information selection has occurred. The 
single-step selection process itself is clearly a resource-intensive process involving large 
amounts of data and computation. Implementing this as an uninterruptable, atomic op-
eration in the system will unavoidably have a negative effect on the reactiveness of the 
system. During this period of ballistic operation, new events may occur in the operating 
environment that change the existing assumptions that guide ongoing active information 
selection process, rendering the results of this process obsolete before it even finishes. 

 

Functional requirement #4: The attention mechanism must guarantee respon-

siveness by avoiding any time-consuming atomic, uninterruptable processes or 

control loops. 
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With regards to early selection vs. late selection, two issues require some thought. The 
first is the early dismissal of information without analysis of meaning. As has already 
been discussed this is problematic as detection of – and reaction to – unexpected but 
relevant information is difficult to achieve. For this reason, late selection models from 
cognitive psychology represent a more plausible approach to achieving human-like in-
telligence in engineered systems (c.f. Knudsen 2007, Norman 1969, Lavie 1995, Miller 
1988, Keele & Neill 1978), as well as explaining attention in humans, than other models 
proposed. The second issue is the manner in which processing decisions are made. Early 
selection models typically make hard binary decisions very early in the sensory pipeline 
as to whether a data item receives further processing; either-or decisions. For this rea-
son, they are frequently referred to as filter models. The Broadbent filter model is repre-
sentative example. In addition to problems discussed earlier, filter-based approaches 
make any kind of re-evaluation of relevance difficult at future steps as the rejected data 
item becomes inaccessible. Resource utilization is difficult to control as well using fil-
ter-inspired attentional processes as was discussed earlier. 

A number of late selection models (such as the Knudsen Attention Framework, see 
Knudsen 2007 and pages 49-50 above) are based on a process of competitive selection, 
where units of data are typically activated to varying degrees depending on their present 
relevance. The strength or quantity of this activation indicates the determined relevance 
of each item. This may be viewed as a prioritization process, as activation is equivalent 
to priority in this case. Following such approaches, data items can remain accessible for 
further processing as there is no rejection of data involved, only different levels of prior-
ity being assigned. Furthermore, resource utilization is straightforward as processing 
decisions can be made just before start of execution when resource availability is 
known, applying available resources to data items in descending order of priority. This 
makes a strong case for prioritization-based approaches, inspired by competitive selec-
tion, as opposed to filter-based approaches.  

 

Functional requirement #5: The top-down and bottom-up processes of the at-

tention mechanism must collectively quantify the relevance of data items, col-

laboratively implementing prioritization of information. 

 

Functional requirement #6: The attention mechanism must assign processing 

resources to data in proportion to its relevance, as determined collectively by 

the top-down and bottom-up attentional processes. 
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Attention is most widely understood as an information selection (reduction) process, al-
lowing certain aspects of the environment access to awareness while excluding others. 
However, this conventional view of the phenomenon omits some important issues. An 
interesting aspect of the Knudsen Attention Framework is that the process of attention is 
not simply viewed as selecting sensory information that is admitted into working 
memory. The diversity of the types of information (sensory, motor, stored memories 
and internal states) that compete for access to working memory unveils another side of 
attention: process control. Considering that the framework places motor knowledge (a 
specialized form of procedural knowledge) in the domain of attention, it is not far-
fetched that other types of procedural knowledge, such as internal information pro-
cessing functions, belong in the domain of attention as well. For example, the act of 
mentally adding two numbers can be viewed as such a process, activated on demand by 
working memory. 

If attention is viewed as a process solely concerned with information selection, some 
important aspects of resource management remain unaddressed. In the biological case, 
this omission might be accepted if we take a view that the wiring of the neurons in the 
brain is simply “just right” to trigger useful, rational processing based on whatever in-
formation it receives – that routing information and selecting how to process it is simply 
beyond the scope of attention in the world of biology. However, this point of view is 
much less valid for engineered systems since we are working from the other end: We 
must explain how to engineer the whole system from the ground up. Implementing an 
attention mechanism in the absence of an integrated resource management strategy is 
not likely to be very fruitful. 

It is possible to maintain the same information selection view of attention for AI sys-
tems and in fact this is done in most existing AI systems making any attempt to address 
attention that have been implemented to date. However, this leaves us the task of de-
signing a separate control mechanism that decides how to process information that is se-
lected by attention. In the end, the decision of whether to include process control in at-
tention for AI systems can be said to be a conscious decision of scope and ambition; it is 
clear that process control will not be carried out by the exact same functions as infor-
mation prioritization and that even if we follow a unified approach, the attention mech-
anism will in some way remain decomposable to its information-prioritization and pro-
cess control functionality. Leaving out the control part of attention for AI systems 
seems a rather arbitrary decision, since the prioritization, association mechanisms, and 
allocation of processor time to processes is rather interlinked and co-dependent. It 
seems more reasonable to describe and design all mechanisms related to resource allo-
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cation together, as a whole, so that the operation of the full system may be determined 
as a unit and implications of the design more readily and immediately apparent. Fur-
thermore, different approaches to information selection and process control may include 
architectural requirements in both categories that may be incompatible when combined. 
For these reasons, I make the conscious decision of including process control in the at-
tention mechanism. 

Although process control requires dedicated functionality, there are similarities with in-
formation selection at higher levels of abstraction if the problem is framed as process 
selection or process prioritization, which is only a conceptual change as the full, com-
plete set of system processes will not be able run simultaneously in any non-trivial AGI 
system. This means that there is no way around process control involving process selec-
tion. As with prioritization of information (as a way to implement information selec-
tion), the competitive selection approach is a rational choice for process selection for 
many of the same reasons as in the information selection case. Again, resource utiliza-
tion becomes more tractable when processing decisions are made as close to the begin-
ning of execution as possible as opposed to being made in a single step process. Choos-
ing process prioritization versus single-step selection allows multiple factors to be taken 
into account over some period of time, resulting in higher quality processing decisions 
and avoiding a time consuming uninterruptable atomic process. For these reasons, it 
seems rational to approach process control from a perspective of competitive selection 
based on prioritization, where processes compete for resources based on quantified es-
timates of their current relevance. 

 

Functional requirement #7: The attention mechanism must continuously eval-

uate the relevance of available processes. 

 

Functional requirement #8: The attention mechanism must assign processing 

resources to processes in proportion to their relevance, as determined by the 

process selection functionality of the mechanism. 

 

Attentional processing itself clearly requires some fraction of system resources. While 
care needs to be taken to avoid a line of thought leading to infinite recursion and loops 
in this context (as attentional functionality may be viewed as controlling attentional 
functionality in an all-inclusive approach to the phenomenon such as this one), some 
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consideration of resource consumption of attentional functionality is in order. As de-
fined in this work, an attention mechanism is intended to be an integral part of the sys-
tem, being responsible for system-wide resource management and control of cognitive 
processing. The kinds of architectures being targeted have already been constrained to 
systems having some level of introspective capabilities due to design requirement #4: a 
unified sensory pipeline processing external and internal information identically. For 
this reason, some external control from other functions of the hosting cognitive architec-
ture is conceivable. If a way is provided to control the attention mechanism in some 
way, these “control knobs” could be operated by other parts of the system in an intro-
spective, self-controlling fashion. But what features of attentional operation should the 
system be allowed to control in this way and for what purpose? Before proceeding, the 
boundary between prioritization of information and processes and process execution 
needs to be made explicit. 

 

Functional requirement #9: The attention mechanism (or the hosting AGI ar-

chitecture) must contain a primitive, fixed and deterministic core control mecha-

nism whose scope is strictly limited to allocating resources according to the pri-

oritization resulting from attentional processing. In the absence of such prioriti-

zation, as occurs when attentional processing is deactivated, the core control 

mechanism will continue to operate but processing decisions will be arbitrary, 

unpredictable and undirected (in terms of system goals).  

 

The core control mechanism should be responsible for all process execution within the 
system; the result of disabling this mechanism will result in the system ceasing to be 
operational (not initiating execution of any processes). This separates the process of 
generating the control data for attention (information and process relevance) from the 
actual execution of processes. This way, other functions of the attention mechanism can 
theoretically be tuned for different resource consumption and even deactivated com-
pletely without causing the system to break operationally, although the performance (in 
terms of goal achievement) of the system may be dramatically impacted.  

Firstly, this separation allows for controls that are useful for evaluation of the attention 
mechanism. This provides a way to measure and compare different settings of attention, 
helping to refine functionality of future versions and gather results that further justify 
researching attention as a critical function of AI systems. The attention mechanism con-
sists of different processes that have been identified earlier in this section: 
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x Top-down prioritization of information (functional requirement #1) 

x Bottom-up prioritization of information (functional requirement #2) 

x Prioritization of system processes (functional requirement #7) 

As functional requirement #8 clearly separates attentional processes and process execu-
tion, the balance between these three functions can be adjusted at will in terms of re-
source consumption. Any one of the functions can be turned off completely or the bal-
ance of resources assigned to each changed while the total amount of resources provid-
ed to attention remains constant. The total amount of resources provided to attention can 
also be changed. In addition to being useful for research evaluation, these resource con-
sumption controls of the attention mechanism may be used by the system itself at 
runtime. For example, a system might decide to increase the weight of bottom-up atten-
tion processing – at the expense of other attentional functions - during periods where 
many unexpected changes are occurring in the environment or increasing the weight of 
top-down attention when a deadline approaches for an active goal that remains 
unachieved. An AI architecture with sufficiently advanced introspective capabilities 
could learn to operate these controls to dynamically improve performance. 

 

Functional requirement #10: The attention mechanism must provide the host-

ing architecture with controls for: (a) Adjusting overall resource consumption of 

attention processes, (b) Adjusting resource consumption of top-down and bot-

tom-up information prioritization and (c) Adjusting resource consumption of pro-

cess prioritization. 

 

6.3 Architectural Requirements 

The final set of requirements deal with the architecture hosting the attention mechanism.  
Our first design targeted requirement above was architecture-independence, but as ex-
plained this requirement is unrealistic without some qualification due to the pervasive 
nature of attention (as approached in this work) and its system-wide functionality. To 
reach below the highest levels of abstraction when discussing the functionality of an at-
tention mechanism such as this one, some assumptions must be made to allow for a 
more concrete design and discussion. These results in architectural requirements: Crite-
ria which an architecture must meet in order to be a candidate host for the attention 
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mechanism. The precise requirements that have been identified are the result of the de-
sign requirements and the functional requirements. These are requirements that architec-
tures must satisfy for being capable of hosting the proposed attention mechanism. It is 
hypothesized that they represent also, to some extent, universal requirements for any at-
tention-implementing AGI system, but this hypothesis is only addressed superficially in 
this thesis. 

First, the issue of real-time operation will be discussed. As stated in functional require-
ment #4, the attention mechanism is required to be reactive and avoid time-consuming 
atomic operations. This feature of its operation will be reflected in the operation of the 
surrounding system unless the architecture of the system meets the same requirement. 
The availability of a dynamic up-to-date prioritization of available information and pro-
cesses is not useful if process execution is lagging far behind. To support interruptible 
and reactive operation, control of processing must be fine-grained. This implies a large 
collection of small processes as opposed to a smaller collection of large processes (Thó-
risson & Nivel 2009). The concept of process size is used here to reflect the resource 
consumption of a process rather than indicating lines of code or other properties. Fur-
thermore, small processes cannot be expected to process amounts of information that 
are extremely large in proportion. In the case of attention, determining the relevance of 
a very large item of information may result in a time-consuming atomic operation, vio-
lating functional requirement #4. This implies that not only the processes of the system, 
but data items as well, should be fine-grained. 

There are additional reasons that support this requirement related to constructivist AI 
methodologies. For directed self-growth to be possible, the system must be able to rea-
son about the effects of changes to its structure and operation. If individual processes of 
the system are large and complex, this becomes a practically intractable problem. Rea-
soning about small, simple components and their effects on the overall system (e.g. in 
terms of resource usage) is more tractable than for larger, more complex components. 
Fine-grained processes put such introspection more easily within reach. The complexity 
of each process does not limit the complexity of high-level goals that can be achieved 
by systems based on the architecture; such limitations can be fully addressed by the col-
laboration of many small processes. 

 

Architectural requirement #1: The hosting architecture must be 
based on fine-grained processes and units of data. 
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Fixed, elaborate control loops and global processing cycles are problematic for support-
ing real-time operation as these represent uninterruptible periods of processing. These 
kinds of control loops can be avoided if the hosting architecture is data-driven, with all 
processing being triggered by the occurrence of data. When combined with fine-grained 
data and processes, a data-driven architecture can incrementally perform simultaneous 
processing of multiple goals over time, where each goal has a potentially unique time-
scale, while remaining reactive to new events. In this case, such complex processing be-
comes dynamic, not being preplanned but reacting to intermediate results as they be-
come available to potentially alter next steps. This phenomenon has been referred to as 
reactive planning (Firby 1987) and provides significant flexibility to the control of the 
system as well as the ability to efficiently use available resources. 

 

Architectural requirement #2: The hosting architecture must be da-
ta-driven, in the sense that processing is triggered by the availability 
of data. 

 

Design requirements #3 and #4 imply a unified sensory pipeline where all data is given 
equal treatment regardless of origin. These requirements are motivated in the chapter on 
design requirements and lead directly to the following architectural requirement, which 
essentially allows all cognitive functions of the architecture – attention, in particular – 
to be applied equally to task performance and meta-cognitive processing (e.g. self-
configuration). Alternatively, this may be viewed as a requirement for homogenous data 
and processing items in the architecture. 

 

Architectural requirement #3: The hosting architecture must have a 
unified sensory pipeline where information is given identical treatment 
regardless of origin. 

 

As stated in functional requirement #4, the top-down information prioritization process 
of the attention mechanism is guided by goals and predictions. This functional require-
ment leads directly to the following architectural requirements. 
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Architectural requirement #4: The hosting architecture must be 
goal-driven with goals being a special case of data item. 

 

Architectural requirement #5: The hosting architecture must have 
predictive capabilities. 

 

Finally, it is necessary to address knowledge representation. AI architectures have 
commonly been classified according to whether they are based on sub-symbolic or 
symbolic processing, or are hybrids in the sense that they rely equally on both (c.f. 
Duch et al. 2008). However, it has not been emphasized frequently that this difference is 
not so much one of architecture as of abstraction level. Consider that known biological 
intelligences are clearly based on the sub-symbolic processing of their neural substrate 
while displaying an obvious surface capability of efficient symbolic manipulation and 
reasoning. For artificial general intelligences, the low-level substrate is sub-symbolic as 
well, based at the lowest of level of manipulation of zeroes and ones. In both cases, the 
low-level operating principles of the system and it‘s substrate are sub-symbolic in na-
ture; sub-symbolic information is given symbolic meaning by the internal structure of 
the system. Some form of a sub-symbolic substrate is necessary for any information 
processing. 

The attention mechanism of this work requires the surrounding architecture to have a 
symbolic level of knowledge representation for several reasons. The goals of the system 
must be symbolic in nature, as they represent desired target states, and cannot be ex-
pressed without symbolic representation. As one of the major functions of attention in-
volves relating information to active goals, the requirement for symbolic representation 
extends to other information of the system as well at some (operational) level of ab-
straction. The requirement can be justified further for the constructivist methodology, 
which involves the capability to reason about the structure of the system and possible 
structural changes. This type of reasoning requires symbolic representation as well. 

 

Architectural requirement #6: The hosting architecture must have a 
symbolic level of knowledge representation. 

 

It is worth clearly stating what this architectural requirement does not imply. Clearly, 
some type sub-symbolic substrate is necessary to any information processing capability 
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and as such is not precluded. While target architectures must have a symbolic level of 
representation, this makes no limiting requirements with regards to sub-symbolic pro-
cessing in the architecture. In a sense, a symbolic representation must always be based 
on sub-symbolic information. Architectures heavily based on sub-symbolic processing 
and knowledge representation might become better candidates for the attentional func-
tionality presented in this work if an operational conceptualization of a symbolic level is 
possible, based on existing sub-symbolic levels. For example, should significant pro-
gress be made in symbolizing neural networks, architectures based on these constructs 
will become more applicable candidates. 
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Chapter 7 

Towards Formalization 

This chapter presents a formalization of the approach taken towards attention and re-
source management for artificial general intelligence (AGI) architectures in this work in 
addition to related issues. Before proceeding directly to formalization for attention, it is 
necessary to establish and formalize some of the components involved in the problem. It 
is difficult to conceive an interpretation of attention that results in a stand-alone process 
occurring in a vacuum. Such interpretations – if they exist – are unlikely to be useful in 
terms of the top-level goals of this work. Attentional processing occurs within an AI 
system and is directed towards information generated in substantial part by external en-
vironments. When attention is viewed in a holistic way, as detailed in the functional re-
quirements of chapter 6, it becomes apparent that this functionality is system-wide and 
tightly integrated with and interconnected to the surrounding architecture. This necessi-
tates formalization for the kinds of AI system targeted by this work and their operating 
environments as a necessary basis on which attention may then be formalized.  

7.1 Constructivist AGI System 

The adoption of a constructivist methodology influences – in subtle ways – how an AGI 
system is formalized. To make this explicit, this is qualified appropriately and referred 
to as a formalization of Constructivist AGI system, while the formalization or significant 
parts of it may certainly apply for other types of AI systems as well. 

Traditional models of AI agents (c.f. Russell & Norvig 2003) present artificial agents 
that sense and act in their environment with the agent’s body being the interface be-
tween the “mind” of the agent and the external environment (sometimes referred to as 
the task environment). This paradigm is a useful starting point for discussion, but one 
that must be extended in the case of AGI systems based on a constructivist methodolo-
gy. The barrier between the external environment and internal operation of the system 
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must be removed as to allow for internal sensing and introspective capabilities, which 
are required to direct the growth of a constructivist AGI system. The definition for sen-
sors and actuators must also be generalized in such a way that makes a physical compo-
nent of these optional, so as to allow for these concepts to be applied to the internals of 
the system. 

 

Definition 7.1.1. A sensor is a system module consisting of software 
and, optionally, physical hardware that is intended for observation of 
the operational environment. A sensor generates new information ei-
ther when explicitly prompted to do so by the AGI system or at speci-
fied regular intervals (which are optionally adjustable at run-time). 
Sensors must expose an interface for commands intended to trigger a 
sample or orient (in a general sense) the sensor if the sensor supports 
such operation. 

 

Evidence for top-down influence in human perception has been found in neuroscience 

(c.f. Hopfinger et al., 2000) where attention orients sensory organs according to expec-

tations. The definition of a sensor presented here assumes an interface, through which 

the sensor can be oriented in a general sense; modifying the orientation of a sensor is 

thus equivalent to changing its configuration in some way. Thus, a top-down influence 

in perception is supported in the attention mechanism presented in this work. However, 

in the case of each type of sensor, sensor-specific operational knowledge of how to per-

form such control is required. A primitive version of this knowledge can be supplied to 

the system at implementation time, while the system learns to improve its control of the 

sensor over time through operational experience. 

 

Definition 7.1.2. An actuator is a module consisting of software and, 
optionally, physical hardware intended to change some parts of the op-
erating environment. Actuators must expose an interface for control 
commands. 
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The nature of embodiment and the operating environment changes somewhat when in-
trospective capabilities are factored into the equation. Traditionally, these concepts have 
been limited to the external environment and the embodiment of the system in that envi-
ronment; this view is too narrow to support the inclusion of introspective functions. 
Constructivist AGI systems must sense and act in the external environment while simul-
taneously monitoring, reasoning about and changing their own internal operation and 
structure. This implies that the operating environment is compositional, consisting of 
one (or more) instance of an external environment and one instance of an internal envi-
ronment, and that the system is embodied across these separate environments.  

 

 

Figure 7.1: The operating environment and embodiment of a constructivist AGI 
system is compositional in nature. 

 

Definition 7.1.3. The operating environment of a constructivist AGI 
system is a compositional environment consisting of one instance of an 
internal environment and at least one instance of an external environ-
ment, which may be a real-world environment or a synthetic, digital 
environment. Any combination of real-world and synthetic environ-
ments constitutes a valid operating environment when combined with 
the internal environment. 
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Having clarified these aspects, the focus moves to the internals of the system. On this 
side, we can rely on traditional, intuitive concepts from computer science. The follow-
ing definitions establish the building blocks and primitive units on which the internals 
of the system are built. 

 

Definition 7.1.4. A process is a unit of executable program code which 
may require inputs of a specific type in order to run. The execution of 
a process results in the generation of new data items and/or new com-
mands for sensors or actuators. All processes may equally constitute an 
executable object or data item (the code of the process). 

 

Definition 7.1.5. A data item is a typed, structured unit of infor-
mation. Data items can only constitute executable objects if properly 
typed and containing valid, executable code. 

 

The operation of the system can be viewed as the interaction of data and processes; the 
control part of the system is responsible for implementing this interaction. This is the 
component of the system that is most directly relevant to attention and resource man-
agement and is discussed in greater detail in the next section. 

  

Definition 7.1.6. A control module is a set of functions responsible for 
controlling execution of processes, performing resource allocation by 
selecting processes - and their inputs - for execution in addition to 
managing the memory of the system. 

 

With all the required building blocks in place, we can now proceed to define a Con-
structivist AGI System. 

 

Definition 7.1.7. A Constructivist AGI System is a software system 
consisting of the following components: 
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S: Set of sensors (s0..sn) 

A: Set of actuators (a0..an) 

P: Set of processes (p0..pn) 

D: Set of data items (d0..dn) 

C: Control module 

All sets may be dynamic with insertions and deletions occurring at 
runtime. Changes to the control module at runtime are also allowed. 

 

 

Figure 7.2: High-level overview of a Constructivist AGI system. 

 

During operation, new data items are continuously generated by sensors. The control 
module controls process execution, selecting processes and data items (as inputs) to ini-
tiate computation, as well as managing available memory of the system. The execution 
of processes results in new data items and/or commands sent to actuators (for changing 
the operating environment in some way) or sensors (for requesting new samples, adjust-
ing the sampling frequency of the sensor or re-orienting the sensor). When an actuator 
changes the operating environment, effects of the change are sensed (if observable to an 
active, properly oriented sensor) and represented by new data items, closing the percep-
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tion-action loop. It is worth re-iterating that the internal environment is included in the 
operating environment; processes, data and the control module of the system are part of 
the operating environment. 

A Constructivist AGI system is goal-driven, where actions in the operating environment 
may be viewed as attempts to achieve active goals of the system. This applies equally to 
much of the internal operation of the system, while core functions may not require ex-
plicit goals to operate. Goals are specified in terms of concrete states in the operating 
environment; they describe a desired target state in terms of attributes or properties of 
entities in the operational environment. For practical reasons, describing desired states 
in terms of the entire operating environment is not feasible. Such representation would 
result in unnecessarily large and detailed goal objects, as each goal typically involves 
only a few entities in the operating environment. Instead, an approach based on partial 
states should be followed where the desired target state is specified only in terms of 
goal-relevant elements. Multiple goals are expected to be simultaneously active within 
the system. To efficiently direct processing and make informed resource management 
decisions, each goal requires a priority value. This value should be supplied at creation 
time of the goal by the process responsible for its generation, while it may also be 
changed by system processes during the life-cycle of the goal. 

 

Definition 7.1.8. A goal is a special type of data item that specifies a 
partial state of the operating environment, representing a desired target 
state, in terms of entities in the operating environment and their prop-
erties and attributes. A goal priority value is associated with each goal 
and must be supplied by the process generating the goal; this value re-
flects the priority of the goal (relative to other goals in the system) for 
access to available resources.  

7.2 Control Module 

In the previous section, the role of the control module was defined as managing compu-
tational resources: Controlling process execution as well as managing memory re-
sources. For attention, given the requirements of Chapter 6, this is a critically relevant 
part of an AGI system. This section discusses the operation of a control module as rele-
vant for attention and resource management. This mainly involves how the results of at-
tention, being approached in present work as prioritization of processes and data items, 
are used to influence management of resources. Clearly, most of the complexity in-
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volved with the approach to attention taken in the present work lies in the prioritization 
functionality rather than the application of the prioritization results to resource man-
agement. Before addressing these, issues involving the basic control policy should be 
addressed and formalized in part. A full specification for a control module is not given, 
as this would violate previously stated design requirements for generality and architec-
ture-independence. 

7.2.1 Basic Control Policy 

According to the definition of a Constructivist AGI system in the previous section, con-
trol of process execution is a matter of selecting processes and input data items to initi-
ate computation. To make the relationship between processes and data items explicit in 
terms of execution, following definition is given. 

 

Definition 7.2.1. A processing task is the execution of a single process 
with valid input (as specified by the process), consisting of any num-
ber of data items. 

 

At any given time, there may be a very large space of possible processing tasks that a 
control module must select from, as the number of available processes and data items is 
assumed to be extremely large, potentially ranging from tens of thousands to millions 
for each in practice. Consider that in a system with just 10.000 processes and 25.000 da-
ta items, there are 250 million possible processing tasks when the simplifying assump-
tion is made that all processes require one data item as input and all data items represent 
valid input for all processes. When these simplifying assumptions are dropped, a com-
binatorial explosion of possible processing tasks may result as processes may require 
input consisting of more than one data item, where the number of possible composite, 
multi-valued inputs grows intractably large. For this reason, approaches to action selec-
tion based on any kind of exhaustive search or maximum expected value over all possi-
ble actions are not feasible due to resource constraints. 

The task of determining all possible processing tasks at any given time is itself resource 
intensive and does not resolve the question of which processing tasks out of all possible 
ones should be initiated. Ideally, the set of all possible processing tasks should be re-
duced to processing tasks that have the most probability (relative to other processing 
tasks) of being useful - in the sense that they contribute to the achievement of goals - in 
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the present situation without directing resources towards other possible processing 
tasks. Fortunately, there is a way to accomplish this in an efficient manner without hav-
ing to spend significant resources on determining the original, full set of possible pro-
cessing tasks. 

For this purpose, priority values are introduced for processes and data items. In this sec-
tion, the scope is limited to how these values relate to the control module with discus-
sion of their details in the next section. 

 

Definition 7.2.2. The activation of a process is a quantified estimation 
of its relevance in the present operating situation. This value receives 
meaning from comparison with the activation values of all other pro-
cesses and does not imply statistical probability of utility or expected 
reward. 

 

Definition 7.2.3. The saliency of a data item is a quantified estimation 
of its relevance in the present operating situation. This value receives 
meaning from comparison with the saliency values of all other data 
items and does not imply statistical probability of utility or expected 
reward. 

 

These priority values are intended to rank the present relevance of process and data 
items. With these values in place, the problem of identifying potentially useful pro-
cessing tasks becomes highly tractable and available resources can be directed towards 
the set of high-priority tasks, as defined by a threshold based on resource availability or 
fixed levels of priority. There are numerous approaches to the problem of selecting pro-
cessing tasks from this smaller, high-priority set. For example, one of the simplest pos-
sible approaches is shown below: 

 

Simple processing task selection algorithm 

1. Find process P with strongest activation 

2. Find most salient matching input I 
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3. Start execution of process P with inputs I 

4. Go to step 1 

 

It should be noted that a simple processing task selection algorithm, such as the one 
above, does not directly account for planning, which is required for tasks involving mul-
tiple steps and sub-goals spanning over longer periods of time. The implementation of 
such functionality is viewed as the role of the hosting architecture, but one that can be 
achieved on the basis of simple selection algorithms such as the one proposed here. The 
task selection algorithm is extremely simple as it does not address the problem of de-
termining relevance-based priority values for data and processes; it merely uses these 
values for selection. The problem of determining priority values, which is where most 
of the complexity lies, will be discussed in following sections. 

7.2.2 Memory Management 

In addition to process execution, management of memory is another role of the control 
module. As the stream of new data items being generated by the external environment 
as well as within the system is potentially very large, the control module must provide 
functionality to rationally “forget” information. This is similar in nature to garbage col-
lection, but with the subtle difference that potential future utility of each data item is not 
fully known whereas traditional garbage collection in modern software systems targets 
information known to be obsolete and useless. For this reason, referring to this func-
tionality as garbage collection is not sufficiently descriptive, as what is being discarded 
is not “garbage” in the sense that the information is accessible to the system and poten-
tially useful up to the point where it is removed. A selective forgetting mechanism is a 
more appropriate paradigm. 

There are several possible approaches to implement this functionality in a constructivist 
AGI system. A specific approach is suggested here that is based on a special decay pa-
rameter, taking values in the range [0..1], for each data item as well as the saliency pa-
rameter introduced earlier. The decay parameter is assigned a fixed initial value when a 
new data item is created. Over time, this value is automatically decreased by the system. 
The actual initial value and the particular decay function used is not important, however 
collectively these must ensure that the decay parameter value does not drop to zero too 
quickly, allowing the system time to process the data item. The goal of the selective 
forgetting mechanism is to ensure that data items are kept in the system long enough to 
have a fair opportunity to receive processing while discarding data items that have had 
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such opportunity and are not evaluated as being useful or interesting by the system. 
When the decay and saliency parameters are combined, a priority value for access to 
memory results on which selective forgetting functionality can be based. It seems intui-
tive to combine these two parameters by taking their product; this ensures that neither 
data items that have been created very recently nor data items with high saliency will be 
discarded. Note that both saliency and decay are values in the range [0..1]; for saliency 
a value of 1.0 represents maximum possible importance and for decay a value of 1.0 
represents a data item that has just been created.  

 

Definition 7.2.4. The information value (IV) of a data item (d) is the 
maximum of the saliency and decay parameters of the item: 

IV(d) = d.Saliency * d.Decay 

 

The process of selective forgetting can identify data items to be removed from the sys-
tem - freeing up space for new items – by finding the data items with the lowest infor-
mation value. The amount of new data entering the system may vary over time. Using a 
prioritization based on information value, a dynamic selective forgetting mechanism can 
be implemented where information is discarded in increasing order of information value 
and the amount of information being discarded can vary according to operational needs 
at any point in time. 

7.3 Control Mechanisms & Complexity 

The set of possible control mechanisms for an AGI system is vast, ranging from ones 
that blindly initiate processing in a first-come first-serve basis to control mechanisms 
that make processing decisions based on operating context and active goals. However, 
only much smaller set of options from the latter group can support the desired operating 
features being sought from these systems. This section discusses issues related to the 
complexity and operation of control mechanisms of AGI systems. Two distinct types of 
complexity are identified and discussed in this context: meta-control complexity and de-
cision complexity. The concept of degrees of freedom (DOF), commonly used in me-
chanics (robotics, in particular) and referring to the number of independent parameters 
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that define the configuration of a system12, is considered in context of both types of 
complexity.  

 

Figure 7.3: Meta-control complexity involves adjustable run-time parameters 
while decision complexity is relevant to the number of possible actions. 

 

7.3.1 Meta-Control Complexity 

The meta-control complexity of a control mechanism is determined by its adjustable 
control parameters, which may be adjusted at run-time by the system itself. Collective-
ly, the set of control parameters of an AGI system define its configuration in conjunc-
tion with operational experience. The same operational history can result in very differ-
ent configurations of the system when control parameters are changed. 

 

Definition 7.3.1. The configuration of an AGI system (S) is determined 
by its set of control parameters [c0..cn] and operational history13 E. If 
                                                 
12 http://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics) 
13 The full operational history of the system consists of all processing and actions performed by the 
system from start-up time, including input data for processing. 
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changes are allowed to control parameters at run-time, the trajectory of 
the control parameter vector and E determines the configuration. This 
definition assumes that initial knowledge (bootstrapping) is fixed. 

 

The DOF of a control mechanism is thus represented by the n in the above definition. A 
primitive control mechanism that initiates processing of tasks in a first-come first-serve 
fashion has no control parameters, with n = 0, and thus its configuration is only deter-
mined by its operational experience. Beyond this special case, potentially useful control 
parameters must be examined, as nothing has been said so far regarding what these pa-
rameters should represent. The functional requirements of chapter 6 offer some direc-
tion with regards to identifying important ones for attention. Clearly the complexity of a 
control mechanism is impacted to a much greater degree by the semantics of the control 
parameters rather than their number. The rest of this section is devoted to the discussion 
of selected control parameters that are highly relevant to attention.  

The concept of deliberation cost gives rise to potential parameters highly relevant to at-
tention. How much resources should be spent per unit of time on deciding what to do 
versus actually doing? In the approach to attention followed in the present work, this 
question has very similar meaning to the question: What amount of resources should be 
allocated to attention? Increasing the amount of resources allocated to prioritization of 
data and processes is expected to result in better quality of results, for example from 
consideration of a greater number of options or deeper analysis of options. 

 

Definition 7.3.2. The deliberation ratio of an AGI system is the frac-
tion of total system resources that are to be allocated to the process of 
action selection. 

 

For the sake of generality, this parameter is referred to here as “deliberation ratio”, 
while one could argue that “attentional ratio” would be more descriptive. The delibera-
tion ratio represents the relative amount of total system resources allocated to selecting 
future actions, without any assumptions regarding to how such selection is performed. 
Overall performance of the system is dramatically impacted by different values that the 
deliberation ratio may take. A low value is well-suited to situations where one or more 
high priority goals are active that have been successfully accomplished previously, as 
the process of achieving these goals is well-known by the system the deliberation cost 
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should be low. Conversely, a high value is well-suited to situations where the active 
goals of the system are novel and/or the environment is behaving in ways not observed 
before. Having the capability to autonomously modify the deliberation ratio at run-time 
by way of introspection is clearly a valuable operational feature for the performance of 
the system. In general, the process of determining values of control parameters using in-
trospection would seem to require some kind of meta-control mechanism, possibly con-
taining their own control parameters. This line of thinking can lead to infinite recursion 
as the chain of control must end somewhere. However, such problems can be avoided 
with a unified sensory pipeline, formalized as part of a constructivist AGI system in sec-
tion 7.1. A unified sensory pipeline allows meta-cognitive functions to be performed us-
ing the same control mechanisms as all other functions of the system, eliminating the 
need for external meta-controllers. 

As stated in the requirements of Chapter 6, the system is required to be reactive to un-
expected events while performing tasks. Alertness and task-focus can both be seen as a 
matter of degree and are in a sense mutually exclusive, with the two corresponding to 
bottom-up and top-down attention respectively. Different situations may call for diverse 
settings to this ratio. For example, when a deadline is fast approaching for an active 
high-priority goal, it would be rational for the system to increase its task-focus (and its 
deliberation ratio) at the expense of alertness. This control parameter is defined below, 
representing the fraction of resources already assigned to attentional processing – by the 
deliberation ratio –  that should be assigned to operation that is directly goal-relevant. 

 

Definition 7.3.3. The focused/alert ratio (FAR) of an AGI system is the 
fraction of the deliberation ratio that corresponds to resources to be al-
located for goal-focused processing over non-focused processing.  

 

This definition implies that the task-focus value of the system is equal to the FAR value, 
while the alertness of the system is equal to (1.0 – FAR). 
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Figure 7.4: The deliberation ratio, the focused/alert ratio, and their relationship. 

 

7.3.2 Decision Complexity 

The complexity of a control mechanism is also affected by the number of possible fu-
ture actions at each point in time, which in turn is largely determined by the surrounding 
architecture as well as the control mechanism itself. The number of possible options that 
the mechanism must choose from represents the DOF of the control mechanism, with 
the complexity of the mechanism being determined to a significant degree by this quan-
tity, as well as the specific methods used to select the future actions. Revisiting the ex-
ample of a simple first-come first-serve mechanism, it is plain to see that based on the 
underlying principle of this particular simple mechanism there is only one possible ac-
tion at any time: Starting execution of the oldest existing processing task in the system. 
Many possible control mechanisms can be reduced to this very low level of complexity 
if the generation of control data (e.g. prioritization values) is conceptually separated 
from the control mechanism, but this is not helpful in the pursuit of control mechanisms 
for AGI systems as it only addresses a trivial part of the control problem: Initiating ac-
tual computation from control data generated elsewhere. 

A differentiating factor among control mechanisms is whether they base decisions on an 
exhaustive evaluation of all possible actions or perform selective evaluation of a subset 
of all possible actions based on some form of heuristics. For the purposes of the present 
work, control mechanisms relying on exhaustive evaluation are not of interest. Such 
evaluation is practically impossible when AGI systems operating in real-world envi-
ronments, the states of which are represented in large part by continuous values, as the 
problem of enumerating all possible future actions alone becomes intractable.  
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As pointed out by Bratman et al. (1988), existing work in decision theory offers highly 
limited guidance for decision-making in real-world environments. Most existing meth-
ods of action selection assume an environment that is deterministic, has discrete state-
spaces and a coarse-grained representation of time. All these properties are highly prob-
lematic for operation in real-world environments, which are stochastic, continuous and 
constantly change with great frequency. Determinism is a problem since what has relia-
bly worked in the past is not guaranteed to work in the future; the environment may 
change or some external entity may unexpectedly influence how events unfold. Discrete 
state-spaces are a problem as the state of real-world environments must be represented 
largely by continuous values, eliminating the possibility of enumerating all possible fu-
ture states, let alone evaluating all of them. While fine-grained discretization can ap-
proximate continuous values, each approximated value may still take anywhere from 232 
to 264 different values. In operating situations involving multiple approximated values, 
the state-space quickly grows out of control from the resulting combinatorial explosion 
if all possible future states must be considered. A more coarsely grained approximation 
can reduce the state-space, but is also likely to negatively impact performance at some 
point. Coarse-grained representations of time are a problem as changes in real-world 
environments do not occur simultaneously at relatively wide, fixed and synchronized in-
tervals. For these reasons, exhaustive evaluation of all possible future actions – and thus 
optimal decision-making that guarantees the best outcome under time constraints – is 
impossible in real-world environments for resource-bounded systems. 

Changing the assumption of environmental determinism into a probabilistic environ-
ment leaves the nature of these issues unchanged. For example, in a Markov decision 
process (MDP) the next state after an action is random, with a probability distribution. 
While closer to the real-world environment by capturing uncertainty about the conse-
quences of actions, a stationary probabilistic distribution for the states following an ac-
tion are nevertheless unavoidable, and consequently truly novel situations and unantici-
pated situations are precluded. Furthermore, probabilistic models usually have even 
higher resource demands than deterministic models, given the large number of possible 
consequences of each action. 

This implies that the only feasible approach to decision-making in real-world environ-
ments is selective evaluation of all future states if the issue is to be properly addressed. 
However, this results in a new problem; how selected future points of interest are 
mapped out. This requires a process of selective generation of possible future states of 
value to the AGI system; a process which may be viewed as heuristics for AGI systems. 

Heuristics may be defined as being “strategies using readily accessible, though loosely 
applicable, information to control problem solving in human beings and machines” 
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(Pearl 1983, p. 7) and are usually domain-dependent in some way, for example repre-
senting “rules-of-thumb” from the particular problem domain. They have commonly 
been used in search problems to increase the efficiency of search algorithms as approx-
imation methods to identify future states that are likely to be more rewarding than oth-
ers. As the concept of heuristics has a loose definition, implementations vary. Heuristics 
are part of the utility function for future states in A* search (Hart 1968). A more general 
type of heuristics, hyper-heuristics, has been proposed (Burke 2003). Hyper-heuristics 
are domain-independent in nature, described as methods for selecting lower-level heu-
ristics at run-time from a predefined set of low-level heuristics as appropriate to the pre-
sent step of the problem solving process (Özcan 2008). Hyper-heuristics may be under-
stood as a method for optimizing the application of manually-generated domain-
dependent heuristics at run-time. Real-time operation in search and heuristics has been 
addressed to a degree; most notably by the Real-Time A* algorithm proposed by Korf 
(1990). 

In traditional search (as presented in any entry-level AI textbook), action-selection in a 
particular state is performed by enumerating and generating all possible next states – or 
nodes, on the next level of the search tree – in what is called the expansion phase. All of 
these possible future states are then evaluated using a utility function and the action 
leading to the state with the highest utility value is chosen as the next action. Some ap-
plications of search focus on terminal states and do not require a utility function. These 
include game-playing, where terminal states are states that end the current game either 
in a draw, in favor of the system as a player or in favor of the opponent. However, a 
terminal state is not a very intuitive concept to guide decisions of systems operating in 
an open-ended fashion in real-world environments. 

The expansion and evaluation phases are frequently repeated more than one step into 
the future in order to evaluate what lies beyond a particular single action. Time is 
represented in a coarse-grain manner where each decision step and following possible 
states are both atomic units of time; conceptually all possible next states are thus 
assumed to occur at a fixed step length in time while their actual time of occurrence is 
unspecified. A deterministic environment is assumed in which actions corresponding to 
paths to next states always succeed; there are no provisions for failing to reach the next 
target state.  

Enumerating all possible future states (the expansion phase in search problems), is usu-
ally a trivial problem in typical search problems but is not practical in the case of AGI 
systems operating in real-world environments for reasons discussed above. While AGI 
systems require some type of heuristics, these cannot be directly unleashed on an exist-
ing set of possible future states as that information is not available. In control mecha-
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nisms based on selective evaluation, the decision-making process has an added dimen-
sion of identifying potentially useful actions, which must be resolved before decisions 
regarding actions can be made. This is not a trivial problem, considering that methods 
based on discrete state spaces are not directly applicable. 

 

Figure 7.5: State-spaces in typical search problems and the application of heuris-
tics. a) The state-space is represented in atomic temporal steps with a tree struc-
ture where each level of the tree corresponds to an atomic moment of time. The 
initial state S0 occurs at time T0. b) All possible states in the next moment of time 
(T1) after S0 are enumerated resulting in the generation of possible future states 
S1,0 to S1,n. c) All states generated in the previous step are evaluated using a heu-
ristic utility function. The resulting utility value for each state is noted in the fig-
ure. d) Comparison of utility values finds the state with maximum utility value. 
This results in either the selection of action producing that state or an expansion of 
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that state where following states are evaluated. In the latter case, heuristics control 
how the search tree is expanded. 

 

The methodology shown in Figure 7.5 is not directly applicable to the problem of action 
selection for AGI systems in real-world environments. The reliance on an enumerated 
set of all possible future states in addition to a coarse grained approximation of time 
present significant problems for their operation. The distinction between fine- and 
coarse-grained representations of time should be viewed relative to the frequency of 
changes in the operating environment where finer grained representations encode the 
actual sequence of events with greater accuracy. This distinction may also be viewed as 
the difference between an order-based versus a measure-based representation, the latter 
being desired here. While this only applies to events relevant to the operation of the sys-
tem, these events are unknown at design time due to the domain-independent nature of 
AGI systems; consequently, the finest possible or practical granularity should be target-
ed.  

One possible solution is to generate “imaginary” future situations that are likely to occur 
next, based on the present operating context and the operational experience of the sys-
tem. This can be accomplished by striving to stay some steps ahead of the environment, 
continuously generating predictions with regards to future events that collectively repre-
sent a set of events that have more probability of occurring than others. It is rational to 
direct the resources of the system towards events that have a greater probability of oc-
curring rather than towards the much greater number of improbable ones. An implica-
tion of this approach is that the system will be unable to anticipate, prepare for or ac-
tively avoid events that cannot be rationally predicted in some way by its operational 
experience; no known intelligence has this ability. 

In this more tractable approach, only possible future states that have a higher probabil-
ity of occurring than others are generated; states that can occur with or without specific 
action in the environment on part of the system. Rather than selecting promising future 
states from a full set of possible future states, probable future states should be generated 
that are relevant to the goals of the system. This is possible by having the system gener-
ate predictions of future states based on the operational experience of the system and the 
current state of the operating environment, factoring in a set of actions suggested by the 
system (which should include inaction).  

There is no clear reason why the same prediction mechanisms should not be able to pre-
dict future events in the environment in case of inaction on part of the system as well as 
future events resulting from actions of the system. Predictive functionality is highly 



Helgi Páll Helgason  97 
 

general in nature with predictions being based on the observation of possible causal 
links in the operational history of the system. Predictions of the system may be treated 
as possible future states. They are not expected to be perfect all the time, the system 
may predict states that are impossible in practice due to lack of knowledge and experi-
ence. However, predictions should improve over time as the operational history of the 
system grows and more evidence (positive and negative) for causal links accumulates.  

The traditional setting for search can be altered to accommodate this approach. First, a 
fine-grained representation of time must be accommodated in the decision-making pro-
cess. This is possible if the requirement of considering only simultaneous possible ac-
tions (at the next coarse-grained time step) is simply dropped. The focus of the decision-
making process is still one step of action into the future. However the size of such a step 
is allowed to vary in length along the future part of the temporal dimension for each 
possible action. This length is determined by the timing of selected states that end up 
being evaluated. The result is that meaning is given to the length of the links in Figure 
7.5, representing when in time the possible future states occurs. As already discussed 
the enumeration of all possible future states – even at a fixed point in time – is intracta-
ble in real-world environments. For this reason, the requirement of generating all possi-
ble future states must be dropped in favor of selectively generating only a small subset 
of these. This addresses the enumeration problem. Finally, the stochastic nature of the 
environment must be acknowledged by estimating the likelihood of generated future 
states as opposed to taking their occurrence for granted, given some action leading up to 
them. The evaluation of likelihood does not have to assume a stationary probability dis-
tribution. Even so, the likelihood of a future state should influence its evaluation; it 
seems reasonable to discount the value of a highly favorable future state (in terms of the 
utility function of the system) if its actual occurrence is not likely. Conversely, it is ra-
tional to amplify the value of a possible future state of average value (relative to other 
possible future states) if its actual occurrence is virtually guaranteed. This addresses the 
issue of deterministic environments.  

Conceptually, the search tree structure is still valid for representing the decision prob-
lem, but evenly distributed levels of the tree disappear as the length of links between 
nodes now represents the duration of time elapsing between states. This implies that the 
depth of a node becomes its distance in the temporal dimension from the root node, as 
opposed to the number of intermediate actions. 

The prediction-based approach suggested earlier is based on the system suggesting ac-
tions in some fashion in order to evaluate different ways to affect the environment as is 
relevant to its goals. Any attempt to predict the effects of all possible actions of the sys-
tem encounters the same enumeration problems as search in continuous environments 
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and must be rejected. The system must suggest a set of hypothetical actions in a goal-
directed fashion, the effects of which are then predicted. The combined set of predicted 
future events resulting from suggested hypothetical actions as well as inaction can then 
be evaluated. Not only does this allow the system to choose rational actions likely to 
advance its goals, it may also allow the system to detect that undesirable events are like-
ly to occur in the near future, which the system can then generate explicit goals to ac-
tively avoid. The actual predictions that are made and actions that are suggested by the 
system depend on attentional functionality; namely the prioritization of data and pro-
cesses. Resource availability and meta-control parameters can be expected to affect the 
number of predictions made by the system at each point in time. Predictive functionality 
has strong links to learning, as learning can result from discovering solutions by way of 
generating predictions with desirable outcomes in terms of active goals. This indicates 
that during periods where the system lacks knowledge and actively seeks to learn, a 
greater share of resources should be devoted to generating and evaluating predictions 
than under normal circumstances; this causes the system to explore a greater number of 
future states. This represents a resource-bounded, interruptible and directed fashion of 
learning; all of these qualities are targeted by the present work. 

Once a set of predictions has been generated, these can be treated just like future states 
and evaluation of such states is straightforward as no selection is needed; the very fact 
that a state was generated (predicted) indicates that it is worthy of evaluation. The eval-
uation of future states can be based on active goals of the system. In systems based on 
fine-grained architectures, the decomposition of a top-level into several sub-goals may 
be expected. Evaluation of a state may then be determined according to the number of 
achieved and incomplete goals taking into account the priority and temporal context of 
each goal in that state. Each goal of the system is assumed to have associated Priority 
and Deadline values; however, in the absence of these, default initial values may be 
used. Time is represented as a single numeric value. Each state occurs at a specific time 
t, which is encoded in the state itself. 

A method to compute the value of achieving a specific goal in a specific state is needed, 
which must be based on the priority of the goal and its temporal context in the state (dis-
tance from deadline). To address the temporal issue, an Urgency value is computed us-
ing the function below, taking a goal g and state S’ as inputs and returning an urgency 
value. The urgency value represents the temporal priority of the goal at a specific point 
in time relative to other active goals. The formula relies on a helper function and a spe-
cial set, H, for clear notation. The set H contains all time horizons (quantified intervals 
of time) between the time of all states currently under consideration and the deadline of 
the goal that spawned the state. If either value of the urgency calculation is equal or less 
than zero, zero is returned.  
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Definition 7.3.4. The urgency of a goal g in a predicted future state S’ 
is computed as follows: 

 

 

 

As each goal has an associated priority value which is independent of the deadline and 
other temporal factors, the utility function of the system is computed by combining the 
priority value of the goal with its urgency value in a specific state (a particular moment 
in time). This means that the utility value of achieving a goal is not fixed but rather dy-
namic and depends on time. 

Definition 7.3.5. The utility of achieving a goal g in a predicted future 
state S’ is computed as follows: 

 

 

With the utility function in place, computing the expected value of a future state be-
comes straightforward, being determined by which goals are achieved in such a state. 

Definition 7.3.6. The expected value of a predicted future state S’ for 
the system is computed as follows: 

ሺܵᇱሻ݁ݑ݈ܸܽ݀݁ݐܿ݁ݔܧ ൌ ݀݁ݒ݄݁݅ܿܣሺ݃ǡ ܵԢሻ כ ሺ݃ǡݕݐ݈݅݅ݐܷ ܵԢሻ�


ୀ
 

where:   

n = number of active goals 

Achieved(g, S) = 1.0 if goal g is achieved in state S and -1.0     
otherwise 

Priority(g) = Priority value of goal g 
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The above definition does not take into account the reliability of predictions, which will 
be addressed later. With prediction-based generation of future states, the evaluation of 
possible events is restricted to states that have a non-astronomical probability of occur-
ring. Rather than working backwards from all possible future states - the number of 
which approaches infinity in real-world environments – it seems greatly more feasible 
to work forwards from the current state to the states that are likely to follow; the result-
ing decrease in complexity of the decision problem can hardly be overstated as the 
number of states to be considered can drop by several orders of magnitude (or even 
from infinity to finite number). 

To encapsulate this, the concept of predictive heuristics is proposed for the functionality 
just described; this concept represents an extended scope and slightly altered functional-
ity as opposed to traditional heuristics. To explicitly motivate this naming: “Predictive” 
refers to reliance on predictors to generate possible future states in the form of predic-
tions. Traditionally, the enumeration phase has not been viewed as part of heuristic 
functionality in search. Here, the equivalent of the expansion phase is integrated with 
the heuristics. 
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Figure 7.6: Predictive heuristics. A) The initial state of Si occurs at a specific point 
on a continuous (or fine-grained) axis of time. B) Based on the state Si, in addition 
to the operating experience of the system and actions having been proposed by the 
system, a finite set of new states (each denoted S’) is generated that may be dis-
tributed on the future part of the temporal axis. C) Each S’ state is evaluated and 
S’5 found most desirable, causing the selection of action(s) leading to that state. 

 

Predictive heuristics represent one possible way to relate work in state-space based 
search and decision theory to the AGI problem. The search problem is modified to al-
low for action-selection that is not fixed to a specific moment in time but spanning the 
future part of the temporal axis; the expansion phase becomes the generation of new 
possible future states – distributed throughout some future time period – resulting from 
the current state in combination with the systems operational experience and action or 
inaction on part of the system. Conceptually, the tree structure is still valid for repre-
senting the decision problem in the AGI case, but uniformly distributed levels of the 
tree disappear as the length of links between nodes acquires meaning, representing  the 
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duration of time (as a continuous value) elapsing between states. This implies that the 
depth of a node becomes its distance in the temporal dimension from the root node. 

As stated earlier, predictions of the system cannot be expected to be correct all the time; 
this follows from the facts that the operating environment is stochastic and the agent’s 
knowledge and/or predictive capabilities are limited. This calls for consideration of the 
reliability of predictions. The following definitions formalize these issues. 

 

Definition 7.3.7. A predictor is a process that generates data items rep-
resenting predictions of future states in the operating environment. As 
input, a predictor takes the current operating context as well as a set 
(including the empty set) of hypothetical future actions of system.  

 

Definition 7.3.8. The success rate of a predictor (p) is calculated as: 

  SuccessRate(p) = | S’+ | / | S’*| for | S’*| > 0 

SuccessRate(p) = 0.5   for | S’*| = 0 

where  

S’+ is the set of accurate predictions made by p in the past 

S’* is the set of all predictions made by p in the past 

  

Definition 7.3.9. The confidence of a predictor (p) is calculated as: 

ሻሺ݂݁ܿ݊݁݀݅݊ܥ   ൌ � 
ାଵ   for n > 0 

ሻሺ݂݁ܿ݊݁݀݅݊ܥ   ൌ Ͳ    for n = 0 

 

where  

n = | S’*| 
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These parameters and the way in which they are calculated are based on Wang’s (2006, 
p. 59-62) method for evaluating truth of logical statements in NARS. The generation of 
predictions may be viewed as a special case of logical inference as existing beliefs (in a 
highly general sense) are used to infer future states. Some existing work has proposed 
inferential heuristics. Johnson-Laird (1983, p. 34-39) proposes such heuristics based in 
the context of cognitive psychology on linguistic economy of conclusions where the in-
ference process should produce only conclusions of the shortest possible form. These 
heuristics are supported with examples from human reasoning. In the present context of 
predictions, these heuristics apply conceptually; predictions are generated on the basis 
of the operational history of the system. A prediction (conclusion) will have a more 
compact form than the sum of information used to generate it. While this does not pro-
vide obviously helpful insights into the problem at hand, the fact that these heuristics 
apply in the present case may lend a small degree of support from cognitive science for 
the present approach. 

The success rate of a predictor is intuitive; it is a direct measure of the frequency with 
which it produces correct predictions. The confidence value of a predictor is a measure 
of reliability for the success rate value of the predictor and grows larger as more predic-
tions are produced. Note that confidence does not imply anything about the quality of 
the predictor in terms of making correct predictions; it addresses only the reliability of 
its success rate value. In stochastic environments, there is no point of accumulated expe-
rience where the results of a predictor can be assumed to be correct forever; this is why 
the confidence value is never allowed to reach the absolute maximum of its value range. 

Based on these definitions, the likelihood of a prediction coming true can be estimated. 
This estimate is not truly probabilistic, in the sense that the result does not represent the 
actual probability value of the prediction coming true. Rather, the likelihood estimate is 
relative to all other predictions of the system; when one prediction has a higher likeli-
hood estimate than another, it is more likely to come true than the prediction having a 
lower likelihood value. The computation of likelihood is based on Wang’s (2006: 75-
76) formula for expectation. 

 

Definition 7.3.10. The likelihood of a prediction S’ made by predictor 
p is estimated as: 

  Likelihood(S’) = Confidence(p)*(SuccessRate(p)-0.5)+0.5 
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The likelihood estimate should be included in calculations of expected values for pre-
dicted future states, as it represents a relative measure of likelihood for actually reach-
ing that state. A revised definition of expected value of future states is presented below. 

 

Definition 7.3.11. The expected value of a predicted future state S‘ for 
the system, taking into account the reliability of the prediction, is 
computed as follows: 

ሺܵᇱሻ݁ݑ݈ܸܽ݀݁ݐܿ݁ݔܧ ൌ ሺ݀݁ݒ݄݁݅ܿܣሺ݃ǡ ܵԢሻ כ ሺ݃ǡݕݐ݈݅݅ݐܷ ܵԢሻ ሻ


ୀ
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where:  

n = number of active goals 

Achieved(g, S) = 1.0 if goal g is achieved in state S and -1.0 
otherwise 

Utility(g,S) = see definition 7.3.5 

  Likelihood(S) = see definition 7.3.10 

 

The revised definition increases or decreases the expected value of future states based on 
their likelihood, as defined in 7.3.10. For example, states that achieve multiple goals are 
discounted in value if their likelihood is low while states that achieve fewer goals are in-
creased in value if their likelihood is high. Note that due to the particular definition of the 
Achieved function in definition 7.3.11, decisions will always favor states that achieve goals 
over ones that do not if action selection is based on maximum expected value. 

This influences how future states based on intermediate states must be valued, as the in-
termediate states have their own likelihood estimates. Such decision-making is crucial for 
problems involving multiple actions. In a sequential chain of predictions, the value of the 
end prediction must take into account the likelihood estimate of all previous predictions in 
the chain. The definition below provides a method to rationally value future states that are 
reached by way of multiple steps of action. 
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Definition 7.3.12. The expected value of end state S’n in a sequential 
chain of predictions (S’0..S’n) is computed as: 

ሺ�Ǯ݊ሻ݁ݑ݈ܸܽ݀݁ݐܿ݁ݔܧ ൌ �ෑ݄݈݀݅݁݇݅ܮቀܵԢ݅ቁ
݊

݅ൌͲ
כ �݀݁ݒ݄݁݅ܿܣ൫݃൯ כ ሺ݃ǡݕݐ݈݅݅ݐܷ �Ǯ݊ሻ



ୀ
 

where: 

n = number of states in the prediction chain 

m = number of active goals 

Achieved(g) = 1.0 if goal g is achieved and -1.0 otherwise 

Likelihood(g) = see definition 7.3.10 

  Utility(g,S) = see definition 7.3.5 

  

It should be noted that the expected value by itself can also be used as a heuristic for 
finding promising prediction chains to explore in more depth. In this sense, the expected 
value represents an additional level of heuristic functionality. Furthermore, exhaustive 
evaluation of the set S’ is not an absolute requirement. Should selective evaluation be 
desired – the evaluation being of set of states that have already been selectively generat-
ed – a reasonable approach would be to evaluate states, as starting points for exploration 
further into the future, in decreasing order of expected value. This may be desirable for 
reasons of resource conservation. 

Finally, the relationship between predictive heuristics and attention should be ad-
dressed. The decision-making processes of an AGI system must necessarily involve col-
laboration of multiple functions, attention being one of these. The attention mechanism 
of the present work supports the functionality described in this section by facilitating the 
generation of possible future states of interest (the set of S’ in Figure 7.6). In order for 
any predictions to be made, data that forming the basis of the predictions must be given 
sufficient priority – by the information prioritization of attention – to be considered a 
valid starting point for predictions. Predictive functions, like all other functions in a da-
ta-driven architecture, are only activated in response to being exposed to data, which is 
in turn controlled by attention. This means that predictions are made from data in de-
creasing order of relevance. 
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Predictive heuristics represent a set of methods for rational decision-making in stochas-
tic, real-world environments. Their introduction in this section has highlighted problems 
faced by traditional search methods in real-world environments and provides a potential 
bridge from which techniques from traditional search and decision theory could possi-
bly be brought to bear on AGI-level problems, although most probably in some slightly 
altered form. 

7.4 Evaluation of Novelty 

Bottom-up attention, as presented and discussed in chapters 4 and 6, requires methods 
to evaluate the novelty of new information in relation to prior operational history of the 
system. While these concepts are well understood in common language, some discus-
sion of their meaning is in order in context of the present work. How do we determine 
and measure what is novel or unexpected for an AI system? It is clear such assessments 
must be made based on the prior experience of the system.  Events that the system has 
experienced on previous occasions are considered less novel than events similar to ones 
having been experienced before. 

The most naïve approach to determine novelty would to evaluate new events by search-
ing for identical events in the entire operating history of the system. This approach has 
functional and practical problems: Absolutely identical events are unlikely to occur fre-
quently in the operation the system; the description of events will involve continuous 
values and even separate instances would have different values for time of occurrence. 
It would seem more desirable to base novelty determination of new events on their simi-
larity, on the level of informational representation, with prior events. Furthermore, stor-
ing the entire continuously growing operating history of the system is not reasonable 
due to limitations of memory, and even without memory limitations the size of the op-
erational history would eventually become so extreme as to render simple search highly 
resource intensive.  

Information entropy (or Shannon Entropy), as defined by Shannon (1948), is a concept 
of interest to computing the novelty of information. It represents a measure of the abso-
lute optimal lossless compression possible for some sequence of information, represent-
ed as number of bits required on average to store each byte. Entropy can thus be seen as 
a measure of unpredictability of the information, with greater compression implying 
lower levels of unpredictability and less compression implying higher levels. However, 
directly operationalizing entropy as a method to compute novelty at run-time is prob-
lematic: This would require a recalculation of entropy for the entire operational history 
of the system (the availability of which is practically questionable as pointed out before) 
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each time a new event occurs. Changes to the entropy value of the total operational ex-
perience when a new event is added could serve as an indicator of novelty for the new 
event. Unfortunately this amount of change approaches zero as the size of prior operat-
ing history continuously increases, which complicates the novelty determination. 

Schmidhuber (2008) describes a useful relationship between the concepts of novelty, 
prediction and compression. This is based on the insights that prediction may be seen as 
a special case of compression, with compression of data being possible due to the rela-
tionship of the new data with prior data, and that the compression ratio resulting from 
new data being added to set of prior data is a valid measure of the novelty of the new 
data. For example, consider the following situation: The prior experience of the system 
is contained in a file we will call P. Two new events occur in the operating environment 
and are encoded in the equally sized (in bytes) files E1 and E2 in uncompressed form. 
Next, two new files are generated: The first one is a compressed version of E1 appended 
to P, the second is a compressed version of E2 appended to P. The numbers C1 and C2 
represent the compression of each file, measured by the size of the compressed files as a 
fraction of the size of the original data. If C2 is greater than C1, this means that greater 
compression was achieved in the case of the file E1 than the file E2. This fundamentally 
indicates that the event E2 is more novel than E1. If greater compression was possible in 
the case of E1, this is because the data of E1 was more similar to the data in P than the 
data of E2. Compression of new data, when appended to prior data, is thus a useful es-
timation of novelty contained in the new data. Furthermore, the resulting novelty meas-
ure has less severe mathematical problems (where the measuring quantity approaches 
zero as operational history grows) than approaches relying directly on entropy calcula-
tions.  

The determination of novelty in the operating environment by way of compression has 
some interesting side-effects: It potentially provides the system with metrics which can 
be used to evaluate its own level of intelligence - and changes thereof - in the present 
environment; the level to which the system has adapted to the environment is directly 
related to the amount of novelty that the system perceives in the environment. If the sys-
tem reaches the point of being able to correctly predict all events in the operating envi-
ronment over some substantial amount of time, no further novelty is likely to be en-
countered until the environment changes in some fundamental way. Conversely, at 
boot-time the system has no operating experience, making all events novel except those 
addressed by the initial knowledge (bootstrapping code) of the system. Furthermore, 
changes in novelty observed by the system over time are indicators. Decreasing novelty 
suggests successful learning and adaption while increasing novelty suggests changes in 
the environment or faults in the systems own operation. Additionally, novelty may also 
be used to detect elements of the environment that are fundamentally random and un-
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predictable; knowing this, the system can conserve learning resources for more promis-
ing tasks. This insight well stated in the quote below. 

 

“Consider two extreme examples of uninteresting, unsurprising, boring da-

ta: A vision-based agent that always stays in the dark will experience an ex-

tremely compressible, soon totally predictable history of unchanging visual 

inputs. In front of a screen full of white noise conveying a lot of information 

and “novelty” and “surprise” in the traditional sense of Boltzmann and 

Shannon (…), however, it will experience highly unpredictable and funda-

mentally incompressible data. In both cases the data is boring (…) as it 

does not allow for further compression progress.” 

(Schmidhuber 2008, p. 8) 

 

Having established novelty as an important and highly useful metric for AI systems, one 
possible solution to determine the novelty of new data is to follow the earlier example, 
storing the complete operational history of the system and performing compression each 
time new events occur. In this case, the compression ratio resulting from each compres-
sion can be used as an estimation of novelty. However (as mentioned before) this is un-
likely to work in the real-world for practical reasons. For starters, storing the complete 
operational history of the system would require enormous amounts of memory, with re-
quired memory growing rapidly throughout the operation of the system. This is particu-
larly true for constructivist AGI systems, where internal experience is guaranteed to be 
included. The processing resources required to perform compression of the entire oper-
ating experience each time a new event occurs in the operating environment also repre-
sent an intractable problem due to resource limitations and real-time constraints.  

These problems may be avoided if some modifications are made to the idea described 
above. If the requirement of storing the complete operational experience of the system 
is dropped, the problem of memory vanishes. Consider that while the experience of the 
system is compressed, there is no intention of decompressing this information at a later 
time. The interesting aspect of compression in this case is not the product, but the pro-
cess and its results. Fortunately, well-known methods of compression exist that work by 
compressing new information solely from aggregated information from previous data, 
with the aggregated information being stored in fixed-size data structures that are con-
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tinuously updated as information is added. Adaptive Huffman coding14  is a prime ex-
ample of such methods (Gallagher 1978). This effectively means that by using a fixed 
amount of memory, it is possible to determine approximately to what degree new data 
compresses when appended with prior data without storing the prior data. This kind of 
incremental compression seems to solve the problems of processing resources as well, 
as only the aggregate data structures and the new data are involved in determining nov-
elty for a new event. 

Based on the idea described above, a method for evaluating novelty under resource-
constraints and real-time requirements based on incremental compression using aggre-
gate fixed-size data structures is proposed. 

 

Figure 7.7: Evaluation of novelty based on incremental compression. A new event 
(the dark E) enters the unified sensory stream. Subsequently, it is compressed us-
ing aggregate data resulting from previous compression. The aggregate data is up-
dated as part of the process. Once compression is complete, the novelty of the 
item may be estimated by its relation to the original size of the event. The com-
pressed version is then discarded. 

 

                                                 
14 http://en.wikipedia.org/wiki/Adaptive_Huffman_coding 
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7.5 Attention & Prioritization 

An inclusive approach to attention, as described by the requirements of chapter 6, goes 
significantly beyond the view of attention as an information-filtering process: The prob-
lem is not limited to selectively processing information; it directly addresses how in-
formation should be processed as well. As a result, the desired functionality for atten-
tion can be grouped in two categories: information prioritization and process prioritiza-
tion. These two sets of functionality are discussed in this section. 

The prioritization of information has two distinct components: top-down attention and 
bottom-up attention. As introduced in chapter 4, top-down attention is the deliberate 
side of information selection, influenced by current tasks and desires; goals in the case 
of AGI systems. An implication of this is that information must be related to goals in 
some fashion in order for top-down information prioritization to be possible. In a simi-
lar fashion, the problem of prioritizing processes depends on relating processes to goals. 
On the other hand, bottom-up prioritization of information relies on evaluation of novel-
ty, already discussed in the previous section. 

7.5.1 Mapping Goals to Data 

Before addressing the issue of how goals may be mapped to data, it is appropriate to re-
state the definitions of the two primitives of the problem. 

 

Definition 7.1.5 (repeated). A data item is a typed, structured unit of 
information. Data items can only constitute executable objects if 
properly typed and containing valid, executable code. 

 

Definition 7.1.8 (repeated). A goal is a special type of data item that 
specifies a partial state of the operating environment, representing a 
desired target state, in terms of entities in the operating environment 
and their properties and attributes. A goal priority value is associated 
with each goal and must be supplied by the process generating the 
goal. 
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As goals are a special type of data item, the problem is clearly one of relating one type 
of information to another type. Each data item is expected to carry information related 
to some entity in the operating environment and some of its properties while each goal 
represents a desired target state of such an entity. This implies that entities and their 
properties are the common denominator in this particular problem. Finding matches be-
tween entities referenced in goals and data is an important part of solving the problem. 
In fact, this is sufficient when only goals at the lowest level of abstraction are consid-
ered and will be addressed before more complex cases are considered. 

In order to allow for fine-grained, precise targeting of information, which is desirable 
for reasons of resource preservation, it is necessary to drill down into the issue of how 
an entity is represented.  Each data item is expected to carry information related to some 
entity in the operating environment; otherwise it would be meaningless. Different data 
items can contain a wide range of information concerning a particular entity. For exam-
ple, in the case of physical entities, a data item could contain information with regards 
to the location of the object, for example. If the system generates a goal to move this ob-
ject, the location of the object will clearly be a property of interest while the goal re-
mains unresolved. However, the object in question may produce various types of other 
information during this time, which are less goal-relevant. To allow for this degree of 
control when targeting information, a flexible specification of relevant data is required; 
one that can equally target individual entities as well as specific information related to 
entities. 

A form of pattern-matching is one method compatible with the requirement of matching 
data in a flexible way based on various constraints and conditions. In the present work, 
pattern matching does not refer to any particular existing implementation. At the con-
ceptual level, the desired functionality of pattern matching is simple, while efficient im-
plementation of the functionality is of great interest for implementing the attention 
mechanism in any AGI architecture. Essentially, the kind of patterns useful for the goal-
to-data mapping problem allow for specification of target data to varying levels of de-
tail. Such patterns can range from fully specifying the contents of data being sought, 
where the pattern becomes a complete description of the data item of interest, to gen-
eral, loosely specified patterns - for example targeting all data items of a certain type 
without regards for content – in addition to all the various possibilities that lie in-
between.  
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Figure 7.8: A group of entities (shapes) with different properties (shape, color, 
size). 

 

In Figure 7.8, a group of entities (shapes) are shown having different properties includ-
ing: shape, color and size (measured as total area). The kind of functionality needed for 
the particular type of pattern matching presently of interest should allow flexible speci-
fications of entities of interest, such as: 

 

x Green rectangles (shape=rectangle, color=green, size=ANY) 
x Largest blue circle (shape=circle, color=blue, size=MAX) 
x Smallest green entity (shape=ANY, color=green, size= MIN) 
x Largest entity (shape=ANY, color=ANY, size=MAX) 
x All blue entities (shape=ANY, color=blue, size=ANY) 
x All circles (shape=circle, color=ANY, size=ANY) 
x All entities (shape=ANY, color=ANY, size=ANY) 

 

Concretely, this pattern matching must support the composition of conditions on entities 
and their attributes where wildcards (e.g. “ANY”) are allowed. Wildcards may be ex-
plicitly stated, such as in: (shape=rectangle, color=green, size=ANY). Alternatively, 
wildcards can be implicit by omission, such as in: (shape=rectangle, color=green). Ei-
ther way, both cases should be functionally equivalent. 
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Formally, there at a finite number of entities present in the operating environment at any 
point in time. These will be referred to as E = [e0..en]. Each entity has a finite set of 
properties, referred to as e1 = [p0..pm]. The structure of a valid pattern is subject to the 
following rewriting rules, where: 

1) A pattern consists of one or more conditions: 
 
Pattern ĺ ( Condition )+   

 
2) A condition states that property pj of entity ei is equal or unequal to a value 

(with wildcards not being valid in the latter case) or within or outside of a de-
fined range:   

 
Condition  ĺ   
( ei.pj = Valuea | ei.pj != Valueb | ei.pj within range | ei.pj outside range ) 
 

3) A value may represent a natural number, string or a wildcard: 
 

Valuea ĺ ( number | string | wildcard ) 

Valueb ĺ ( number | string ) 

 
4) A range represents the range between two natural numbers: 

 
Range ĺ ( numbermin, numbermax) 

 

When a data item meets all the conditions specified by a pattern, a match occurs. This 
type of pattern matching provides the desired functional capability to map goals to data 
on the basis of entities, their attributes and values thereof. Patterns may also be used to 
represent goals, in which case a match with present reality and such a goal pattern indi-
cates the achievement of the goal. The inclusion of ranges in the rewriting rules allow 
fuzziness in the operating environment to be addressed. 

7.5.2 Mapping Goals to Processes 

As before, the definitions of the primitives of the problem are worth restating. 
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Definition 7.1.4 (repeated). A process is a unit of executable program 
code which may require inputs of a specific type in order to run. The 
execution of a process results in the generation of new data items 
and/or new commands for sensors or actuators. All processes may 
equally constitute an executable object or data item (the code of the 
process). 

 

Definition 7.1.8 (repeated). A goal is a special type of data item that 
specifies a partial state of the operating environment, representing a 
desired target state, in terms of entities in the operating environment 
and their properties and attributes. A goal priority value is associated 
with each goal and must be supplied by the process generating the 
goal. 

 

This problem is somewhat different from the one of relating goals to data, as there is no 
clear common denominator and the primitives are of a fundamentally different nature 
(executable objects versus data objects). The ability to view a process as a data item 
does not simplify this problem in any obvious way. As a direct mapping seems out of 
the question, a different approach must be adopted. 

One such approach is to relate goals to processes by using the operational experience of 
the system. This involves actively seeking processes that have contributed directly to 
the achievement of previous goals that are identical or similar to the present goal. For 
this to be possible, the following challenges must be addressed: 

x How is the contribution of a particular process to a particular goal detected? 
 

x How should information expressing such a contribution be stored? 
 
x How can such information be efficiently accessed and searched on the basis of 

similarity? 

One way of detecting the contribution of a process to a successfully achieved goal is to 
trigger dedicated processing when a goal is achieved. Most high-level goals can be as-
sumed to be achieved by the collaboration of multiple processes, due to the requirement 
for fine-grained processes (architectural requirement #1 of chapter 6). A chain of execu-
tion starts when a new goal is generated which ends in successful achievement of that 
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goal (if the goal is achieved, which will probably not always be the case). When the 
terminal state of the chain occurs (goal achievement), the system receives reward – in a 
sense – as its goal-determined utility value increases. According to the expected value 
defined in section 7.3.2, the quantity of the reward will be proportional to the priority of 
the goal that was achieved. The reward is then back-propagated through the chain of ex-
ecution where each process is given a reward proportional to the utility increase, possi-
bly using some form of ampliative reasoning (c.f. Wang 1995). 

 

Figure 7.9: A chain of execution, starting with the generation of a new goal and 
ending in its achievement. Processes are represented by rectangles, data items are 
represented by circles. Processes marked by the plus sign receive reward upon 
goal achievement for contribution to the path of execution that resulted in success-
ful goal achievement.   

 

Formally, a goal g is said to trigger processing consisting of processing tasks (see defi-
nition 7.2.1) represented by the set PT = (pi, ii) where pi is a process and ii is (valid) in-
put for pi. The enumerator (i) takes values from 0 to n, where n is the number of total 
processing tasks resulting from the generation of goal g. A valid input for any process 
constitutes a combination of one or more data item, collectively matching the input 
specification of the process. In Figure 7.9, the set of all squares represents all pi and all ii 
are composed from the set of all circles. The set PTg is defined as a subset of PT, con-
taining only processing tasks that the achievement of goal g directly relies on in the 
chain of execution. The processes contained in PTg are marked with the plus symbol in 
Figure 7.9. Finally, the set Pg contains only the processes of PTg. 
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To encode the contribution of each process towards the achievement of goal g, the fol-
lowing information is required: 

x Specification of goal g 
x Utility of contribution (priority value of goal g) 
x Identifier of all processes in Pg 

Taking a database view of the task, this represents a collection of entries where each en-
try encodes the contribution of one process. Entries may take the form: 

 C = (goal, utility, process) 

It should be noted that the surrounding architecture may have more than one prioritiza-
tion parameter for each goal. For example, NARS (Wang 1995) has two such parame-
ters in order to exert different types of time pressures on the system: in addition to the 
main priority parameter, called urgency, a second priority parameter called durability 
encodes the long-term importance of the task. However, these must be collapsed into 
one at some point as a one-dimensional prioritization is required for the purposes of at-
tention. 

For each achieved goal, the goal and utility values (determined by the priority of the 
achieved goal) remain constant in all entries while the process identifier is different in 
each entry, enumerating all processes of Pg. The total collection of all such entries of the 
system constitute is contextualized process performance history (CPPH). This may be 
viewed as a special database that can be consulted to prioritize processes of the system 
by finding past contributions of processes that are relevant to a new goal. 

While this presents a sufficient method of relating new goals to processes responsible 
for achieving identical goals in the past, it is important to note that identical goals are 
unlikely to occur often in the operational history of an AGI system, as the specification 
of goals involves individual entities and/or continuous values. Furthermore, the CPPH is 
likely to grow extremely large in size over time as the entire operational of goal-driven 
AGI system revolves around achieving goals at various levels of abstraction. Function-
ality that enables access to the CPPH on the basis of similarity (as opposed to exact 
matching) and compresses the size of the data contained therein is desirable. 

The pattern matching described in 7.5.1 can be of use for this purpose, as the pattern 
matching functionality is fully applicable to goals, with these being special types of data 
items. If a set of goals contained in the CPPH share common features, a special process 
of generalization can be used to generate one pattern from all these goals. In this case, 
entries for the original goals can be collapsed – and potentially discarded - into one 
more general entry where the goal specification is the new pattern. This enables the con-
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tents of the PGGH to be accessed on a basis of similarity – where similarity of a new 
goal with previous entries can be determined on the simple basis of whether it matches 
an existing pattern or not. Furthermore, as numerous entries may be collapsed into sin-
gle entries, the growth of the PGGH over time is significantly reduced. 

Generalization must be a continuously running maintenance function of the PGGH. The 
principle of collapsing two or more process-to-goal contribution entries is based on 
shared references to entities and attributes in the original entries. For example, these two 
goals 

rectangle01.position = (1.0, 1.0, 1.0) 

rectangle01.position = (2.0, 0.0., 0.0) 

both involve the process of moving a particular entity in the environment. Based on 
their shared reference to the position of entity, a new pattern can be generated where the 
actual numbers representing concrete locations in the environment are generalized: 

 rectangle01.position = (NUMBER, NUMBER, NUMBER) 

Subsequently, should a new goal be generated involving moving the particular entity, 
such as for example 

rectangle01.position = (5.0, 5.0, 5.0) 

this new goal will match the generalized pattern, accomplishing access to the PGGH 
based on similarity. The functionality of this example is referred to as value generaliza-
tion. 

 

Definition 7.5.1. Value generalization is the process of replacing actu-
al values in a pattern with less constrained symbols that are applicable 
to more than one value. Such symbols include wildcards, intervals (for 
continuous or semi-continuous values) and enumerations (for discrete 
values). 

 

Generalization does not need to be limited to abstracting concrete values into wildcards 
or variables. The surrounding architecture is required to have a symbolic level of 
knowledge representation, as stated in architectural requirement #6 of chapter 6. The 
present work does not go as far as to require an ontological representation; however 
useful generalization opportunities emerge if such representation is assumed. 
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Figure 7.10: Example of an ontology. Ovals with solid borders represent classes 
while the oval with dashed borders represents an instance of a class (that class be-
ing Rectangle). Solid lines represent an “is-a” relationship between concepts, with 
the lower concept being a type of the higher concept. 

 

Definition 7.5.2. Ontological generalization is the process of replacing 
of references to an instance of a class with the type of the class, or re-
placing a reference to class with a reference to a super-class. 

 

When an ontology is available in the surrounding architecture, an added dimension of 
generality opens up. Ontological generalization is the action of generalizing from an in-
stance of a class to the type of the class, or from one class to super-class. Relative to 
Figure 7.10 this represents movement upwards in the ontology. Ontologies structured as 
trees are assumed here. This method may also apply to ontologies with graph structures 
as long as the direction of increased generality can be determined in the graph.  

This presents a method for generalizing on the basis of entities rather than values. For 
example, the pattern 

rectangle01.position = (NUMBER, NUMBER, NUMBER) 
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can be generalized several steps up using the ontology of Figure 7.10. The first step in 
the generalization involves changing the reference to specific entity rectangle01 to a 
reference to the ontological class to which it belongs. 

Rectangle.position = (NUMBER, NUMBER, NUMBER) 

Further ontological generalization is possible up to the root of the ontology, generating 
the following patterns in increasing order of generality: 

Shape.position = (NUMBER, NUMBER, NUMBER) 

Physical_Entity.position = (NUMBER, NUMBER, NUMBER) 

Entity.position = (NUMBER, NUMBER, NUMBER) 

The risk of over-generalization is ever-present when generalization is performed; this 
can lead to patterns that are not useful for achieving goals as the range of applicable 
contexts and range of goals can grow to include goals that are sufficiently different to 
require different solutions and thus processes. While such patterns can be generated, 
they will not receive positive rewards to their utility value if they are unable to achieve 
goals. Relative to other, more successful, patterns, over-generalized patterns will lag 
behind and gradually loose the opportunity to be matched with new goals, perhaps be-
ing eventually discarded. 
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Chapter 8 

Attention Mechanism Design 

The design of a general attention mechanism for artificial general intelligence (AGI) ar-
chitectures presented in this chapter is both constrained and motivated by the require-
ments presented in Chapter 6, using the methods, concepts, and techniques discussed in 
Chapter 7. 

The attention mechanism consists of a set of functional components; these are functions 
of the attention mechanism, not isolated software classes or modules. In Figure 8.1, an 
overview of the complete attention mechanism is shown. To present the design, each 
component shown in the figure is introduced at a time, with discussion of interactions 
and overall functionality presented subsequently. Each component is also related to the 
requirements presented in Chapter 6, motivating its place and necessity in the attention 
mechanism, and providing an explanation of how it addresses the relevant requirements.  

8.1 Goal-Driven Data Prioritizer 

The component responsible for goal-driven prioritization of data items is intuitively re-
ferred to as the goal-driven data prioritizer (GDDP). The function of the GDDP is to: 

a) Detect data items that are related to active goals or predictions,  

b) Quantify the priority value such data items should be given and  

c) Assigning them the resulting value.  

These map directly to functional requirement 1 in chapter 6. While the functionality of 
b) and c) will be shown to be relatively trivial, the functionality of a) involves signifi-
cant complexities and will be the main focus of this section. The particular resource 
management control parameter that the GDDP is responsible for setting is the saliency 
value of data items. 
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Figure 8.1. Overview of the proposed attention mechanism. The components de-
picted are functions of the attention mechanism (not isolated software classes or 
modules). 
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The importance of predictions in the operation of predictions in the operation of the 
GDDP is worth emphasizing. Observing the success or failure of a prediction is a criti-
cal requirement of the system in order to react appropriately to either event and to eval-
uate the quality of its predictive functions. In general, predictions can also be necessary 
control data to configure sensors in order to ensure that the outcome of a prediction will 
be observable to the system. 

In section 7.5 a form of pattern matching was proposed that allows for flexible, fine-
grained targeting of data items. The task of relating data items to goals and predictions 
relies on precisely this type of pattern matching; goal-relevant and prediction-relevant 
data is considered to be the set of data contained in the system that matches a special set 
of patterns. This special set of patterns consists of patterns derived from active goals 
and predictions of the system. Each such pattern is referred to as an attentional pattern 
(AtPat) and the set of attention patterns at any point in time fully define the focus of in-
terest for top-down attention (addressed here as goal-driven data prioritization). Func-
tionally, an AtPat is similar to the attentional template of Desimone & Duncan (1995), 
but has wider scope as internal system information may be targeted in addition to envi-
ronmental information.  Each AtPat has an associated priority value that determines the 
boost in priority given to data items matching it, as well as being useful to prioritize at-
tentional functionality; matching of attentional patterns with data is performed in de-
creasing order of the priority of attentional patterns in cases where available resources 
preclude full matching. Furthermore, each AtPat contains a reference to the goal or pre-
diction that triggered its creation, which is necessary so the pattern may be deactivated 
by the achievement, failure or abandonment of the goal/prediction on part of the system. 

 

 

Figure 8.2: Attentional pattern (AtPat) as a data-structure. 
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The life-cycle of an attentional pattern begins when a new goal or prediction is generat-
ed in the surrounding system. Both may be viewed as a fully specified pattern that rep-
resents a desired or predicted state in the operating environment. When the GDDP is no-
tified of the generation of a new goal or a new prediction, it derives one or more atten-
tional patterns from the new item. Goals have associated priority values that represent 
the importance of a single goal relative to other goals of the system. On the other hand, 
predictions do not have such priority values. In case of goal-triggered generation, the 
priority value of the goal is set as the priority value of all derived attentional patterns. In 
case of prediction-triggered generation, the priority of the prediction – if the surround-
ing architecture provides priority values for predictions – should determine the priority 
values of all derived attention patterns. Possible sources of priority values for predic-
tions include the goal that the prediction was generated to serve and the estimated like-
lihood of the prediction being accurate, based on the operational experience of the sys-
tem. Otherwise, a default initial value must be used. The process of deriving patterns 
from goals or predictions involves generalization; the original pattern is generalized by 
creating new patterns where concrete values are replaced by wildcards by a process of 
value generalization (definition 7.5.1). As the original pattern may involve more than 
one condition, one attentional pattern is generated per condition. This allows each atten-
tional pattern to target a single component of the goal or prediction. While an attention 
pattern is active, the system continuously attempts to find data items that match the pat-
tern in a continuous process of evaluating possible matches between available data 
items in the system and existing attention patterns. This process is biased towards find-
ing matches for high priority attentional patterns, where more resources are allocated to 
search for matches with these attentional patterns than those having lower priority. Dur-
ing the life-cycle of an attentional pattern, it never becomes inactive; however the prior-
ity of each pattern determines the likelihood of the pattern receiving processing re-
sources necessary for matches to be found with data. In cases where the GDDP has in-
sufficient resources to attempt matches for all active attentional patterns, available re-
sources are used to find matches for attentional patterns in decreasing order of priority. 
Upon a match, the saliency value of the matching data item is increased relative to the 
priority of the matching attentional pattern. Note that the same data item can be matched 
by more than one attentional pattern, as well as having its saliency modified by bottom-
up attention. When a goal or prediction that triggered the generation of attentional pat-
terns is deactivated (which may happen as a result of goal achievement, goal failure, 
goal abandonment, prediction success or prediction failure), all attentional patterns de-
rived from the deactivated item are deactivated as well. 
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Figure 8.3. Goal-driven prioritization of information. Attentional patterns are de-
rived from goals and predictions by a process of generalization. The AGI system 
constantly tries to match active attentional patterns to data items. If a match is 
found, the saliency of the matching data item is increased relatively to the priority 
of the matching attentional pattern. 

 

8.2 Novelty-Driven Data Prioritizer 

A special function of the attention mechanism is responsible for prioritizing data based 
on novelty: The novelty-driven data prioritizer (NDDP) function. This is a variation of 
the compression-inspired methods for estimation of novelty that was described in sec-
tion 7.4. The operation of the NDDP is not influenced directly by goals or predictions; 
its state is determined from the collective operational experience of the system. More 
concretely, the NDDP keeps track of the frequency with which different types of infor-
mation have been observed in the past. This information forms a basis on which com-
pression may be based, as frequently observed events will compress to a greater degree 
than novel events in relation to prior operational experience. If unlimited time and re-
sources were available in the system the ideal approach for computing novelty would be 
to compress all new events individually together with all prior operational experience 
and note the resulting compression ratio. This approach is clearly not applicable in prac-
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tice, but compression methods exist that could enable an equivalent result to be generat-
ed; Adaptive Huffman Coding (AHC, Gallagher 1978) represents one such example. 
However, AHC as originally described works on the level of individual bytes. While all 
new events that the system encounters can be, and are, obviously represented as digital 
information (and thus a series of bytes), that low level of granularity – where the build-
ing blocks are individual bytes – is too low to be useful, as the representations of two 
events may share a large number of identical bytes without any meaningful operational 
similarity. Working at the higher level of data items may seem to represent a more use-
ful approach. At this level, similarity (and thus novelty) can be measured based on the 
type of data item, entities which are referenced by the data item and concrete values 
contained in the data item. However, whereas a single byte can only take 256 values, a 
data item can take a much greater number of different values. As representations of 
events can be assumed to include continuous values, this number may in fact be infinite. 
In addition, any two events in the operational history of the system will rarely be exact-
ly identical and if the event representation includes a reference to the time at which it 
occurred this might in fact never happen. For these reasons, applying Adaptive Huffman 
Coding or related methods at the level of data items is neither useful nor practically rea-
sonable. Some new ideas are needed to implement compression-inspired novelty esti-
mates at this level. 

One possible solution is to categorize data-items into discrete groups based on their con-
tents, and use the frequency of a category to estimate novelty. As the set of data items 
contained in each category will merely be similar and rarely identical, the actual novelty 
value of each new data item – defined in terms of compression when appended to opera-
tional history – is not precisely computed, but rather becomes an approximation of nov-
elty, as limited by discrete categorization. Nevertheless, approximations may provide 
near-equivalent results to precise novelty values, in terms of usefulness to the AGI sys-
tem. A categorization-based approach for approximating novelty can be viewed as a 
variation on lossy compression15. 

In order to implement such categorization-based approximation of novelty, the system 
must dynamically generate and update categories at runtime. Efforts to implement such 
functionality for a particular AGI architecture will be influenced and constrained by the 
types of data items that are representable in the surrounding architecture. While availa-
ble types may vary between architectures, some core types are assumed to be necessary 
in light of the requirements of Chapter 6. In particular, the need to represent – at a min-
imum – the following distinct types of data items may be derived from the require-

                                                 
15 Data compression methods come in two flavors, of course: lossless and lossy. In lossless compression, 
compressed data can be extracted back to its original form with absolute accuracy. In lossy compression 
information is eliminated, so that the extracted version is similar – but not identical – to the original. 
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ments: Goals, predictions, and observations. The system is required to represent inten-
tions and desired future states, predictions and observations, derived from the operating 
environment. These all refer to a partial state in the operating environment. For this rea-
son, it seems rational to introduce a special State data type intended to give meaning to 
the first three types. The meaning of a state is determined by what type of data item it is 
associated with. A state by itself is only a partial specification of a possible (representa-
ble) state in the operating environment. If a state is associated with a goal, its operation-
al semantics are those of a desired future state. If a state is associated with a prediction, 
its operational semantics are those of an expected (possibly to a degree) future state in 
the environment. Finally, if a state is associated with an observation, its operational se-
mantics are those of an event the system has witnessed in the operating environment. 
The top level of a categorization for data items is shown in Figure 8.4.   

 

Figure 8.4: Top-levels of a categorization for data items. 

 

Considering the concept of a state at the fundamental level, a state must represent the 
value of a property of an entity in the operating environment. Different entities may 
have different properties. For example, a location property makes perfect sense for a 
chair in the external environment but has no meaning in relation to internal entities, 
such as a process. Conversely, a process entity may have a property that represents its 
priority (in the competition for system resources) while such a property would not make 
sense for the chair entity. 
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Figure 8.5: A state is the representation for a property of an entity with a specific 
value. 

 

A single state, as shown in Figure 8.5 may not be sufficient to represent states of inter-
est for the operation of the system. However, this can be resolved by allowing states to 
be combined into composite states which represent an arbitrarily large set of atomic 
states combined by conjunction or negation.  

Note that there is no requirement on part of the NDDP for knowing all possible entities, 
properties, or even data types, at design time. Should a new data item not fit into any 
existing category, a new category would be dynamically created to accommodate it. 
When this occurs it is a strong indication of novelty and the data item should be as-
signed the maximum allowable novelty value.  

Two different types of novelty have to be addressed in this categorization-based ap-
proach: The qualitative novelty of what is being observed and the quantitative novelty 
of the actual value. 

8.2.1 Qualitative Novelty 

Qualitative novelty measures the novelty of operational semantics carried by a data 
item, measuring how novel it is to observe this kind of information, regardless of the ac-
tual concrete values of the data item. For example, if the system has never observed in-
formation regarding color, it is qualitatively novel if a color observation occurs. If the 
system has observed color information before, but not for the entity referenced in this 
particular observation, it is also qualitatively novel but to a lesser extent as the qualita-
tive novelty in this case relates to the entity of the observation rather than type of infor-
mation.  

Qualitative novelty can be computed as follows: If a data item requires a new category 
(as it does not match an existing one), it should be given the maximum allowable novel-
ty value, and quantitative novelty does not need to be computed. Creation of a new cat-
egory will occur if a) the type of this data item has never occurred before, b) an obser-
vation references an entity which has not been referenced before or c) an observation 
describes a property never seen before in relation to the entity in question. All these 
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cases may be considered truly novel in the widest sense of the term. If a data item fits 
into a pre-existing category, the qualitative novelty value is computed as the average of 
the inverse probability for all categories to which the data item belongs. This computa-
tion is reflected in the formula below. 
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݊



ୀ
 

  where 

  D is a data item 

  n is the number of categories matching D   
 

 

The use of an average over all compatible categories is motived by a desire to allow 
multiple levels of generality to influence the estimated qualitative novelty value. A 
weighted average, which would presumably place higher weights on categories closer to 
the root category, is not necessary as such bias towards more qualitative novel data 
items is already present: When more than one new category need to be generated for a 
new data item, all new categories influence the average with a probability value of zero. 
The probability value of each category can be computed from simply incrementing a 
counter of each category each time a new data item is added to the category and compu-
ting the relative value of the category counter with a global counter of all prior data 
items.  
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Figure 8.6: Qualitative novelty is determined by the categorization of the relevant 
data item. Each sub-category of the root “Data Item” category is given a likeli-
hood value based on the number of data items seen so far that belong to the cate-
gory, relative to the number of all data items seen. The qualitative novelty value is 
calculated as the average of inverse likelihood values of all categories that a data 
item belongs to, from the root of the categorization down to the terminal category. 
In the categorization example above, the observation of a position for the table 
would be given a qualitative novelty value of 40% based on this method. The 
lower (bottom right-hand) observation, describing the position of the cup, requires 
the creation of a new sub-category as such an observation has never been experi-
enced by the system before, although other properties of the cup have been ob-
served. The likelihood of this new observation is considered 0% in light of the op-
erational experience of the system, resulting in a qualitative novelty value of 
100%. 

 

8.2.2 Quantitative Novelty 

Quantitative novelty measures how unusual specific values for properties of entities are 
in context of prior operating history. This is different from qualitative novelty, which 
focuses on novelty of operational semantics, in that quantitative novelty focuses on how 
specific values in the operating environment change over time and deals with concrete 
values. The approximation of quantitative novelty involves similarity of new observed 
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concrete values (that quantify properties of entities) when compared with previously 
experienced ones. At a minimum, quantitative novelty is evaluated for the value of a 
specific property of a specific entity, not over multiple entities or a variety of properties. 
In systems having structured ontologies, while this is not one of the architectural re-
quirements, it is possible to go a step further and additionally evaluate quantitative nov-
elty over related or similar entities (e.g. entities of same ontological type). This allows 
the system to not only detect that a particular property of a specific entity has an unusu-
al value, but also that a particular value for a specific property is unusual for the rele-
vant ontological type of entity. Approaches that must be followed to this end diverge 
according to the type of value under consideration. For continuous numerical values, an 
exponential moving average16 (EMA) is used to dynamically update the mean and 
standard deviation of prior values. The choice of EMA, as opposed to a traditional aver-
age, is motivated by two factors:  

1) The next value of an EMA can be computed using only two values, the new value of 
the data stream and aggregate data (prior EMA), eliminating the need to revisit past ex-
perience (which may no longer exist in the system).  

2) The influence of prior values decays over time in an EMA; the speed of this decay 
can be controlled with a single coefficient.  

With EMA-based estimations of mean and standard deviation, evaluation of novelty can 
be calculated by assuming a Gaussian probability distribution where the novelty value is 
the inverse of the probability of the new value. This approach works identically for nu-
merical integer values when the data is normalized to a continuous range. 

Discrete values, such as identifiers (e.g. of entities), and strings of text require a differ-
ent approach. In this case, it is necessary to keep track of prior values for each variable 
of interest, counting the total number of occurrences as well as occurrences of each val-
ue, giving rise to a discrete probability distribution. Based on this information, the prob-
ability of a new value can be computed from the number of occurrences of the value in 
the past and the total number of occurrences for the particular variable. A dedicated data 
structure holds all previously observed values and the number of occurrences for each. 
One entry in this data structure is required for each discrete property of each entity. 
When a previously unseen value occurs, this triggers the generation of an entry in the 
data structure, with maximum possible quantitative novelty. The data structure includes 
a decay parameter which is used to decrease all counters over time, at a rate determined 
by the parameter. Evaluation of similarity between discrete values may present some 

                                                 
16 An exponential moving average is calculated as:  St = Į * Yt + (1- Į) * St-1 
where St is the value of the EMA at time t, Yt is the value being averaged at time t and Į is a constant. 
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advantages in some cases, in particular for text strings, but this is a sub-domain that is 
not addressed in the present work. 

8.2.3 Runtime Novelty Computation 

The operation of the NDDP consists of computing approximated qualitative and quanti-
tative novelty values for new events. These values should equally contribute to the final 
approximated novelty value for a data item (d): 

 

ሺ݀ሻݕݐ݈݁ݒܰ ൌ ሺ݀ሻݕݐ݈݁ݒܰ݁ݒ݅ݐܽݐ݈݅ܽݑܳ�  ሺ݀ሻݕݐ݈݁ݒܰ݁ݒ݅ݐܽݐ݅ݐ݊ܽݑܳ
ʹ  

 

As observed by the design presented in this section, attempts for estimating novelty of 
incoming information can be expensive in terms of memory resources; a large number 
of data structures are required in the operation of non-trivial systems. To allow opera-
tion that gracefully handles limited memory resources, the collection of data used for 
novelty estimation may need to be pruned during operation. In general, pruning should 
be based on discarding knowledge regarding rare events; when such events are pruned 
this will not greatly influence their novelty estimation if they occur in the future. Being 
rare, such events will receive high novelty values while information regarding the fre-
quency of their occurrence exists. After removal of frequency evaluation, future occur-
rences will be treated as completely novel events, also resulting in a high (maximum) 
novelty value. Pruning can be performed at multiple levels; where information is dis-
carded in order of increasing frequency. Data structures with lowest frequency storing 
information regarding categories, entities or values are feasible targets for elimination 
as they result in high novelty estimation values for the elements they are associated 
with, which will continue to be the case (although to an increased degree) if these struc-
tures are removed. However, novelty data structures cannot be removed in this way too 
quickly as this would inhibit the mechanism to learn what is common (the opposite of 
novel) and display habituation. 

Habituation is a trait of human cognition that is described as a decrease in response to a 
stimulus after repeated presentations (Bouton 2007). This trait is desirable in bottom-up 
attention of AGI systems and in fact implicit in the context of present work according to 
our definition of novelty. The approach described in this chapter for estimating novelty 
of data items provides this functionality; due to the continuously updated nature of the 
data underlying estimates of novelty, repeated occurrences of data that were once novel 
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will cease to be so over time. However, the rate of habituation is what motivates the 
frequency decay functionality in both qualitative and quantitative novelty. Without de-
cay, this rate would be high for a system with relatively short operational experience 
while a system with extended experience would exhibit habitation at a slower rate. With 
decay of frequency values over time, a more stable rate of habituation will be exhibited 
by the system throughout its operation, as the effects of events in the distant past disap-
pear or become negligible. This may be implemented by a periodically running mainte-
nance function that applies decay to the novelty related data structures that have been 
described.  The effects of decay are also beneficial from a resource conservation per-
spective, where data structures are discarded from the system after their associated fre-
quency value reaches zero due to the effects of decay. 

The methods discussed in this section for approximating novelty give some structure to 
the experience of the system in the form of aggregate data structures and frequency val-
ues; this allows the novelty of new events to be approximated in an efficient manner as 
opposed to requiring the system to base such computations on the entire set (or large 
parts thereof) of prior operational history. 

8.2.4 Alternative Approaches 

The prior sections have presented methods for evaluating the novelty of information 
based on an interpretation of novelty in terms of prior operational experience of the sys-
tem. There is at least one other way in which the concept of “novelty” can be interpreted 
that is worthy of discussion: Novelty as events that are not predicted by the system. 
Under this interpretation, all events that occur without an existing and explicit predic-
tion with regards to their occurrence are considered novel. This greatly simplifies the 
process of determining novelty as continuous processes running on the total operational 
experience of the system and the memory resources required to store the resulting data 
(in some form) are no longer required. However, new problems are also raised when us-
ing this attractive but simplified definition of novelty. The approach requires the system 
to attempt prediction for all future events that it can expect, to a rational degree, in 
terms of its operating experience. This requires an extremely large number of predic-
tions to be continuously made in order to detect novelty, whereas the approach de-
scribed in prior sections only deals with novelty evaluation for all actual events. One 
benefit of such approaches is that dedicated data structures (and the memory expendi-
ture involved with them) are not required to evaluate novelty, as the required infor-
mation is encoded in prediction processes that contribute to other aspects of operation as 
well. However, the requirement to predict all aspects of the operating environments (in-
cluding aspects not related to current goals) – which is implicit in this approach to nov-
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elty evaluation – is somewhat extreme and may ultimately not prove practical. Varia-
tions of this scheme that involve partial prediction may prove more practical. 

8.3 Experience-Driven Process Prioritizer 

The function responsible for prioritizing processes is called the experience-driven pro-
cess prioritizer (EDPP). In Chapter 7 the issue of mapping goals to processes was dis-
cussed and an approach suggested based on using the operational experience of the AGI 
system to relate current goals to processes by keeping track of the contribution of each 
process to the achievement of a goal, and using this information when similar goals are 
generated in the future. A practical solution for implementing this method was also in-
troduced where the reward (or utility – represented by the priority of the achieved goal) 
resulting from the achievement of a goal was propagated backwards through the chain 
of execution in which it resulted (see Figure 7.9). The following encoding of a contribu-
tion of a process towards a goal was suggested: C = (goal, utility, process).  

This encoding contains all necessary information to leverage the knowledge for future 
goals and may be considered an entry in the knowledge base of the EDPP; a revised en-
try structure is presented at the end of this section that meets the operational needs of 
the EDPP. The goal is expressed as a concrete partial state of the environment, the utili-
ty indicates the priority of the goal and an identifier of the process is included. The task 
of prioritizing processes in this manner calls for a dedicated data structure to store a col-
lection of entries like the one above. This data structure (or base of knowledge) is re-
ferred to as the contextualized process performance history (CPPH). Each time a goal is 
achieved in the system, the CPPH is updated to encode the contribution of each process 
involved. In fine-grained systems, the numbers of goals that are achieved accumulate 
rapidly over time due to a high number of sub-goals expected to be involved with each 
high-level goal. Without further action, the data structure would eventually (and likely 
quite soon) become impractical to store and inefficient to search. Furthermore, the prob-
lem of evaluating similarity of current goals and goals solved in the past remains un-
addressed. To resolve both of these issues, introducing a process of generalization for 
specific goal details is necessary. 

As goals can be viewed as fully specified patterns, a similar approach to generalization 
as used in the GDDP may be used here. The generalization functionality that is of inter-
est for the present problem has two functions: Value-generalization and ontological 
generalization (both defined in section 7.5.2). Value generalization is the process of re-
placing concrete values in goals with wildcards based on the insight that the application 
of certain processes to the achievement of a goal with particular absolute values is likely 
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to be useful for at least some future goals that are identical in structure but have differ-
ent absolute values. This process generalizes a specification of some aspects of the op-
erating environment where the resulting pattern matches a greater number of states; for 
example when an absolute specification of one possible state in the environment is re-
laxed to fit a wider range of similar states. Ontological generalization is the process of 
replacing a reference to an actual entity (in the sense that instances of this entity exist in 
the operating environment) with a reference to the class of the entity (so that the pattern 
applies not only to this particular instance of the entity but all entities like it) or replac-
ing a reference to a class with a reference to its parent class (if one exists). This allows 
for the application of processes to a wider range of similar entities in cases where pro-
cesses have only been observed in action with relation to a specific entity. 

 

 

Figure 8.7: Value generalization involves the replacement of concrete values with 
more general symbols, such as wildcards as shown. 

 

  

Figure 8.8: Ontological generalization involves the replacement of 1) a reference 
to a specific entity with a reference to the class of entities like it or 2) a reference 
to a class of entities with a reference to the parent class of entities. 
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The existence of an ontological level of representation is not one of the architectural re-
quirements for the attention mechanism. Ontological generalization may either be 
viewed as optional, being simply ignored (in architectures which do not offer such rep-
resentation), or attempted in the operation of the EDPP. In the latter case, proposed on-
tological classes may be dynamically generated for entities that occur in structurally 
similar goals.  

The results of both types of generalization will not always be useful as over-
generalizations may occur. While the original entries into the CPPH knowledge base 
are proven to be useful in operation, the same cannot be said for new entries resulting 
from generalization; these are unproven at creation time in terms of usefulness. For 
original entries, the utility parameter quantifies approximately the contribution made by 
a process to the operation of the system; its value comes from the priority of the goal 
that was achieved. The issue of what priority value to assign to new entries resulting 
from generalization raises some issues. First, generalized entries are fundamentally dif-
ferent from initial entries in the sense that their actual utility is unknown at creation time 
– although the system will learn to evaluate their utility over time. However, there is 
some motivation to validate new generalized entries as quickly as possible as 
knowledge that is applicable in a greater number of contexts is more valuable – in a 
general sense – to the system than highly context-specific knowledge. Furthermore, lim-
ited resources motivate removal of redundant information from the CPPH. As a general-
ized entry is validated successfully over time, the likelihood of redundancy for the en-
tries on which it is based increases, eventually allowing a rational decision to be made 
regarding their removal. If the validation fails, the generalized entry becomes a target 
for removal instead. 

The utility value of each entry represents its priority in the pattern matching process, 
where matches between active goals and existing entries of the PCCH are attempted in 
order of decreasing utility. An examination of how the utility value of each entry should 
change over time is in order. While entries resulting from goal achievement are ground-
ed in operational history, the contributions of the same processes for solving even iden-
tical goals is not guaranteed in the future as the environment is assumed to be stochas-
tic; this means that the utility value of original entries may need to be updated after cre-
ation. The same is true for entries resulting from generalization; at creation time their 
utility is unknown. Due to the desire to determine their degree of usefulness, each new 
generalized entry should be given an initial value higher than the average of the entries 
on which the generalization is based. This represents the unverified belief of the system 
that the new generalized entry is more useful than the entries on which it is based. The 
utility value of all entries is subject future updates. By treating the utility value as an 
exponential moving average (EMA), the utility value becomes a measure of the benefi-
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cial influence of the entry which is biased towards recent events. The EMA value can be 
updated in an efficient manner not directly reliant on a set of prior values. 

When a new goal is generated, the CPPH is consulted by seeking entries that have a pat-
tern matching the goal. If matches are found, the processes corresponding to each entry 
are assigned an increase in activation according to the utility value of the entry. Addi-
tionally, the fact that specific entries were used for the purpose of achieving a specific 
goal by activating selected processes is recorded for the lifetime of the goal. This is 
necessary to properly update the PCCH in the event that the goal is successfully 
achieved, in which case the entries used to increase activation of selected processes 
should receive increases in their utility values – if and only if the process activated by 
the entry is part of the chain of execution that terminated in goal achievement- the pro-
cess rather than having individual process contribution entries being created and treating 
the goal achievement as a fundamentally new one. When generalized entries are rein-
forced in this manner, the new utility value resulting from the latest goal achievement is 
added to the exponential moving average (EMA) that encodes the utility of the entry.  

 

Figure 8.9: An entry in the CPPH data structure contains: a) Goal or pattern that 
an active goal must match in order for this entry to be applicable. b) Identifier of 
process to be given increased activation. c) Exponential moving average of the 
contributions this entry has made to the operation of the system. d) Durability of 
the entry, which represents its priority in the competition for memory resources 
relative to other entries. On successful achievement of a goal following the appli-
cation of an entry, the new contribution is added to the EMA of the Utility value 
and to the Durability value. 
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Two continuously running processes operate on the CPPH: A generalization process 
seeks possible generalizations and generates new entries based on these when found. A 
memory maintenance process periodically removes entries from the CPPH whose dura-
bility value have fallen below the threshold for storing. 

 

Figure 8.10: The EDPP reacts to a new goal. a) A new goal (gi) is generated, 
prompting an attempt to match the goal to entries (e1..en) contained in the CPPH. 
Four matches are found (e1, e2, e3 and e4). This results in the activation of pro-
cesses associated with each entry (p1, p2, p3 and p4) to be increased by the 
amount of the utility value of the entry. b) Execution of processes occurs. The 
goal is achieved by one chain of execution where processes p1 and p3 contribute 
to the achievement, each having been given increased activation by respective 
CPPH entries e1 and e3. Processes p2 and p4 do not contribute to the achievement 
of the goal in spite of having received increased activation by CPPH entries e2 
and e4. Process p5 also contributes to the achievement of the goal without receiv-
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ing increased activation by any CPPH entry. c) The achievement of the goal caus-
es an update to the CPPH knowledge base. Entries e1 and e3 are reinforced for 
their contribution to the goal achievement, where their utility values are updated 
with the priority of the goal that was achieved and their durability values incre-
mented. Entries e2 and e4 receive no such reinforcement, not having contributed 
to the achievement of the goal. A new entry is created in CPPH to record the con-
tribution of process p5 to the achievement of the goal. 

 

8.4 Control Parameters 

To address functional requirement #10 (from Chapter 6.2), which dictates that the atten-
tion mechanism should allow for external control of resource usage of its individual 
functions, the attention mechanism is outfitted with such control parameters for control-
ling selected aspects of attentional processing. These parameters are supplied as con-
trols to be used by the system itself in an introspective manner and may also be adjusted 
externally, while the latter is a less interesting case as autonomy of the system is re-
duced. The control parameters expose some aspects of the attention mechanism for out-
side control, in a sense making attentional functionality a tool that may be used to vary-
ing degrees and controlled by the system. However, any changes to these parameters are 
reflected in system-wide operation. 

Alternatively to exposing these control parameters, they could remain fixed or it could 
be viewed as the role of the attention mechanism to adjust them during runtime. How-
ever, the former approach would fail to offer flexibility as varying operating conditions 
benefit from different settings to these parameters.  

The latter approach requires an attention-specific implementation of broad-scope learn-
ing mechanisms as part of the attention mechanism. While this is possible, a more prac-
tical solution would be to use the general learning capabilities of the surrounding archi-
tecture, that are assumed to exist in any constructivist AGI-level system, for this pur-
pose. However, such learning capabilities may not be available for all systems in which 
the present attention mechanism could be implemented, justifying the implementation 
of attention-specific learning functions. Such functions are out of scope of the present 
work, because it does not focus on learning or reasoning mechanisms, and the types of 
systems specifically targeted by the work are assumed to have general learning and rea-
soning mechanisms that can be applied to this problem. 

The control parameters exposed by the attention mechanism are: 
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8.4.1 Deliberation Ratio 

The Deliberation Ratio was introduced in definition 7.3.2. The value of this parameter 
expresses the total amount of processing resources assigned to the operation of the at-
tention mechanism as a fraction of total system processing resources. Changes to this 
parameter affect the amount of resources accessible to all functional components of the 
attention mechanism (GDDP, NDDP, EDPP). 

8.4.2 Focused/Alert Ratio 

The Focused/alert ratio (FAR) was introduced in definition 7.3.3. The state of being fo-
cused refers to goal-focus and is achieved by means of top-down attention while the 
state of being alert refers to the ability to notice novel, unexpected events in the envi-
ronment and is achieved by means of bottom-up attention. The EDPP reserves a fixed 
amount of the attentional resources allocated at each time; the resource allocation the 
EDPP as a functional component may not be altered as any reduction would negatively 
impact the capability of the system to achieve its goals and react to new operating situa-
tions. 

The desirable balance between these two states is different for varying operating condi-
tions, although some minimum resources must always be allocated to processes sup-
porting each state. For example, let us consider the case where a high-priority goal is 
generated by the system and is unresolved while its deadline rapidly approaches. This 
situation is depicted in Figure 8.11. 

At time T0, a high-priority goal is generated within the system. As the goal remains 
unachieved, the amount of resources dedicated to bottom-up attention is gradually de-
creased by the system at the expense of alertness to strive for goal-achievement by ded-
icating increased resources to top-down attention. The goal is achieved just before its 
deadline, after which resource allocation to top-down and bottom-up attention reverts to 
prior levels. 

Quantitatively, the amount of resources allocated to top-down attention (GDDP) are 
represented by FAR, with resources allocated to bottom-up attention (NDDP) are repre-
sented by (1.0 – FAR). 
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Figure 8.11: The pie charts show the focused/alert ratio of a hypothetical system 
at different times, with red represented the amount resources allocated to bottom-
up attention (NDDP) and blue showing the resources allocated to top-down atten-
tion (GDDP). The lower line shows events related to a high-priority goal along the 
temporal dimension. 

 

8.5 Attention Mechanism 

This section explains how the individual components described in this chapter interact 
in a coordinated way to implement a complete attention mechanism. The discussion will 
be around a set of illustrations which consecutively introduce the key sub-systems in the 
mechanism, and the operation of the complete attention mechanism thus introduced in 
stages, with the figures growing gradually in complexity as they incorporate more func-
tionality. 

Two fundamental entities relating to operation of the attention mechanism are the col-
lection of processes and data items of a system. These are essentially the targets of the 
attention mechanism. Data items are produced in the environment and sensed by the 
system’s sensors and produced internally during normal operation of the system. In sys-
tems satisfying the fine-grained requirement of Chapter 6 (architectural requirement #1:  
the hosting architecture must be based on fine-grained processes and units of data), 
these are large collections of small interacting units. 
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Figure 8.12 shows an overview of the system before any attentional functionality is in-
troduced; actual operation of the system without such functionality will be arbitrary and 
undirected. The system continuously receives new data items from the operating envi-
ronment, which is assumed to be of real-world complexity, from its set of sensors. Data 
items trigger the execution of compatible processes, resulting in the generation of new 
data items and/or commands for actuators. Any commands generated are sent to the 
specified actuator, which performs some action in the operating environment that 
changes its state. The results of such changes are then observed by the system via its 
sensory devices, closing the perception-action loop.  

 

 

Figure 8.12: Overview of the system before any attentional functionality is intro-
duced. Components represent architectural functions (not classes or modules). 
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First we will look at top-down attention functionality. In this process, new incoming da-
ta is initially evaluated by the GDDP to determine possible relationships with current 
goals and predictions of the system by attempting to match active attentional patterns 
(created by generalization of goals and predictions). When a new goal or prediction is 
generated by the system, a new attentional pattern is generated in the GDDP by per-
forming value generalization on the specification of the goal. This causes the GDDP to 
become reactive to information relating directly to the goal or prediction. When matches 
are found, the data item receives positive bias in the form of an increase in its saliency 
value with the magnitude of the increase being determined by the matching attentional 
pattern. An overview of the system with this functionality is shown in Figure 8.13. In 
this state, the system prioritizes its data items solely on their relation to active goals and 
predictions, giving goal- and prediction-related data a higher probability of being pro-
cessed than other data. 

Now, let’s look at bottom-up attentional functionality. New incoming data is also evalu-
ated by the NDDP for novelty using categorized aggregate data of prior experience. The 
saliency of each data item evaluated for novelty is incremented by the amount of the re-
sulting novelty value. Habituation is an emergent operational property in this process, as 
novel or unexpected information will cease to be so automatically after having been ob-
served on an increasing number of occasions. An overview of the system with the addi-
tion of the NDDP is shown in Figure 8.14. Once bottom-up attentional functionality is 
added, the system not only targets information that is directly goal-relevant, but also 
novel and unexpected information which may be indirectly relevant to active goals or 
necessary triggers for the generation of new goals. Prioritization of data items, based on 
goal-relatedness and novelty, is the result of combined operation of the GDDP and the 
NDDP where priority is represented by saliency values of data items. However, process 
prioritization remains unaddressed, implying that many processes not useful in the pre-
sent context may be used to process available data.   
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Figure 8.13: Overview of the system with top-down attention. Components in the 
diagram represent architectural functions. 
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Figure 8.14: Overview of the system with top-down and bottom-up attention. 
Components in the diagram represent architectural functions. 
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Finally, let’s look at process prioritization. The generation of a new goal also prompts 
the EDPP to perform contextual process evaluation, with the goal being the context un-
der consideration. This process involves attempting to match the new goal with existing 
entries in the contextual process performance history (CPPH) knowledge base. If 
matches are found, the processes identified in matching entries are given increased acti-
vation, with the magnitude of the increase being determined by the utility value of the 
entry. The resulting prioritization of processes, where the priority of a process is repre-
sented by its activation value, is thus based on historical operation of the AGI system in 
similar contexts (in terms of active goals). This completes the attention mechanism, as 
shown in Figure 8.15. 

The case in which no entries are found in the CPPH for a new goal is worth discussing. 
In this event, the EDPP cannot supply information with regards to prioritization of pro-
cesses in the context of this goal. The AGI system has to fall back on its general learn-
ing mechanisms and attempt to find a way to achieve the goal. While general problem 
solving and learning are not the main focus of this work, the section discussing decision 
complexity (7.3.2) in chapter 7 offers some direction in terms of methodology. 

The top-level resource management policy of the AGI system should be to allocate re-
sources to data and processes based on their evaluated priority. As a data-driven archi-
tecture is assumed (see chapter 6), this translates to exposing the most salient data items 
to the most activated processes of the system at all times. With a resource management 
policy based on deterministic application of priority values, some processes and data of 
the system may never receive attention, in the sense that they will not trigger any pro-
cessing. An interesting future research direction is a probabilistic application of control 
data to resource management decisions, as featured in NARS (Wang 1995). Under such 
a resource management policy, all items in the system have an opportunity to receive 
resources, while priority values control the probability of this occurring. While I am 
presently unable to motivate such a scheme as critically necessary for the attention 
mechanism, wider exploration and even some form of creativity may result under such. 
When the execution of a process is triggered by a match with compatible input data, the 
result is the generation of new data items and/or commands for actuators of the system. 
While this is not explicitly depicted in Figure 8.12, sensors may also be the target of 
commands; examples of this include adjusting the sampling frequency or re-orienting a 
sensor. 

 

 



Helgi Páll Helgason  147 
 

 

 

Figure 8.15: Overview of the system and complete attention mechanism. Compo-
nents in the diagram represent architectural functions. 
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8.6 Discussion 

The design presented here seeks to make any system containing this attention mecha-
nism capable of real-time operation. While functional components that deal explicitly 
and directly with temporal aspects of system operation have not been proposed, this is-
sue is addressed at the level of architecture. In particular, architectural requirements for 
fine-grained structure and data-driven execution model are central to achieving real-
time performance. The importance of fine-grained structure is that, since processes and 
data of the system are small but numerous, no time-consuming, atomic processes are 
possible; the system will never have to wait for a substantial period of time before being 
able to process and react to new information. Furthermore, this results in homogeneity 
in temporal aspects of processing tasks of the system as all units of processing are likely 
to take roughly the same or similar amounts of time. The importance of a data-driven 
execution model is that it allows the system to bypass fixed global processing cycles 
and elaborate control loops, which are atomic and potentially time-consuming units of 
processing. Furthermore, this allows simultaneous processing related to immediate tasks 
and possible future tasks while all branches of processing are fully open to interruption. 
As a result of these architectural requirements, the system is constantly in an interrupti-
ble state of operation and temporal aspects of its operation are largely predictable. Sev-
eral aspects of real-time operation fall outside the scope of the present work, including 
reasoning about task deadlines and balancing the priority of the goals of the system, of 
which many are assumed to be concurrently active at any given time during operation. 
The discussion on decision complexity in section 7.3.2 proposes some ideas with re-
gards to these issues. 

As has been stated several times in the present work, the attention mechanism is intend-
ed to allow resource-bounded systems to operate in environments producing vastly 
more information than they could ever hope to process in real-time. The operation of the 
NDDP for bottom-up attention is a possible source of confusion with regards this intent, 
as the functionality does indeed process all information from the environment. While it 
is true that for complete, fully functional bottom-up attention all information observable 
from the operating environment at any point in time must be processed, there is a signif-
icant qualitative difference in the type of processing referred to in this context and pro-
cessing on the cognitive level of the system. 

Cognitive-level processing occurs when data items receive sufficient saliency to trigger 
processes to execute. The results of such execution invariably results in generation of 
new data items or actuator commands, potentially being the start of a chain of execu-
tion. Thus, the derived cost, in terms of resource allocation, of processing a data unit 
from the operating environment at the cognitive level – where the meaning of the in-
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formation is interpreted in context of all other data items of the system as well as prior 
operational experience – is highly variable. In contrast, the NDDP applies uniform, pre-
determined processing to all data items from the operating environment; this may be 
called low-level processing while processing at the cognitive level may be called high-
level processing. 

This issue is not unique to the NDDP and bottom-up attention. The operation of the 
GDDP also requires fixed amounts of predetermined low-level processing for all new 
data items from the operating environment. The GDDP must ideally evaluate every sin-
gle new data item for matching with active attentional patterns in the same way that the 
NDDP must ideally do the same to approximate novelty of all new data items. It is 
worth stating explicitly that when abundance of environmental information and resource 
limitations are discussed, insufficient resources on part of the system to process all envi-
ronmental information refer mainly to high-level processing, which is orders of magni-
tude more resource intensive than low-level processing where small, fixed algorithms 
are applied to the data.  

While the efficiency and risk of system operation are maximized by ensuring that the 
system has sufficient resources to give attentional consideration to all new information, 
this may not be possible in all cases. Full attentional consideration increases efficiency, 
as the probability of missing goal-relevant information is reduced, and reduces risk, as 
the probability of missing novel, unexpected events that are relevant to current tasks or 
necessary triggers for the generation of new goals is reduced. While ideally, the baseline 
resource requirements of any resource-bounded generally intelligent system must neces-
sarily be that resources are sufficient to apply some fixed low-level processing to all 
units of new information; this is not a practical requirement in real-world environments 
as the required resources may to vast. Some evidence even suggests that humans do not 
fully meet this requirement, as relevant but unexpected events are not reliably noticed in 
all cases (Wood 1995, p. 255-260). 

A selective application of top-down and bottom-up attention is implicitly challenging as 
it requires assumptions to made with regards to information that is not evaluated at all, 
hence introducing increased risk. Rather than arbitrarily ignoring information in such a 
way, a better policy would be to leverage the predictions of the system in an attempt to 
isolate the type and place in time of relevant information to some degree and where no 
predictions exist to strive for uniformly distributed evaluation along the temporal di-
mension so that no particular type of information or modalities go ignored for longer 
periods than necessary. 
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8.7 Other Issues 

Discussion of some issues that are somewhat peripheral to the main thread of present 
work is presented in this chapter. We briefly examine how integration of data from dif-
ferent modalities and sources can be performed in systems implementing the attention 
mechanism and how the attention mechanism can play a role in curiosity and creativity 
on part of the hosting system. Finally, we discuss how systems containing the attention 
mechanism show graceful performance degradation. 

8.7.1 Integration of Modalities 

The necessity of integrating data from separate modalities is critical to human cognition 
and must be achieved in AGI systems as well. While this is not seen as a direct the role 
of the attention mechanism present here, this is achieved based on the architectural re-
quirements, particularly the requirements of data-driven execution model and fine-
grained structure. Integration of data items from separate modalities is possible by way 
of processes that take as inputs data from two or more modalities and produce new data 
items that have meaning to the system as a merger of the input data. Due to the unified 
nature of the sensory pipeline, it is also possible to integrate data items from the exter-
nal environment with the inner workings of the system.  

8.7.2 Attention, Curiosity and Creativity 

An interesting question presents itself in the investigation of attention for generally in-
telligent systems:  How should idle time and free resources be spent, where both are 
characterized by the absence of active high-priority goals? There are a number of differ-
ent possible policies to handle this scenario. 

The system can allow free resources to go unused in an effort to conserve its energy 
consumption. By doing this, viable opportunities for improving future performance are 
missed but availability and cost of energy may justify this choice in certain situations.  

Alternatively, the system can attempt use free resources to generate new knowledge or 
change its structure in an effort to improve its future task performance. In a sense, this 
temporarily changes the nature of the system from a goal-driven system to a knowledge-
seeking system. However, efforts on part of the system to seek knowledge should be 
grounded in prior operating experience of the systems, goals in particular, as vast 
amounts of information could potentially be generated or learned from the environment 
that are in no way task related. It is difficult to justify the allocation of limited resources 
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for such knowledge, memory resources in particular. A pure knowledge-seeking system 
could use up its limited memory resources quickly in a complex, information-rich envi-
ronment. 

Some possible options for using free resources include:  

a) Reasoning with existing knowledge to generate new knowledge relevant to prior 
tasks of the system.  

b) Performing internal (mental) simulations of hypothetical situations (relevant to prior 
tasks) that have interesting outcomes, potentially giving rise to new, useful knowledge.  

c) Increasing the level of bottom-up attention (NDDP) to observe the environment in 
more detail for information, seeking information potentially related to prior tasks.  

d) Seeking similarity in known entities by generalizing to a greater extent than required 
for regular operation and validating or invalidating the results. Successful generalization 
implies that knowledge and processes may be shared and reused by wider set of operat-
ing situations than previously known, potentially allowing the system to compact its in-
ternal structure. 

All of these possibilities may be viewed as task-grounded curiosity on part of the sys-
tem and d) may be viewed as a form of creativity, as identifying common aspects of dif-
ferent entities can lead to innovative solutions for existing problems. 

8.7.3 Graceful Performance Degradation 

Graceful degradation in terms of task performance under conditions of information 
overload – and even diminished resources – is an important characteristic of cognition 
in natural intelligences. This issue is important for synthetic systems as well; in situa-
tions where a system has more active goals than it is capable of pursuing simultaneous-
ly, either due to an unusually large number of such goals or diminished resources (e.g. 
hardware failure), some goals must necessarily be ignored (at least temporarily) in favor 
of goals with highest priority. Systems unable to handle such situations in this fashion, 
continuing to operate normally and making no provisions to handle the scenario, will 
suffer total failure in such cases as task deadlines will be missed and important events 
will go unnoticed or reacted to. 

Due to the prioritization-based design of the attention mechanism presented here, sys-
tems implementing it are able to react rationally to situations of information overload or 
severely insufficient resources (relative to active goals) as their core operation, con-
trolled by the attention mechanism, continuously allocates resources to processes and 
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data in order of decreasing priority. As a result, assuming that the prioritization generat-
ed by the attention mechanism is rational, graceful and rational performance degrada-
tion will be exhibited. 

8.7.4 Priming 

The use of predictions in top-down attention (Goal-Driven Data Prioritizer) directly 
gives rise to the functional equivalent of priming in the hosting system, in the sense that 
increased sensitivity to certain stimuli due to prior experience is a feature of the atten-
tion mechanism presented here. Systems containing this mechanism are required to 
have the capability to generate predictions and expected to learn to improve their pre-
dictions over time (although the latter is more of an AGI requirement than an explicit 
requirement for hosting this attention mechanism). The Goal-Driven Data Prioritizer 
explicitly seeks out information related to predictions, which may be seen as equivalent 
to priming. By dynamically configuring sensors at run-time to ensure that outcomes of 
predicted events are observed, priming functionality can be achieved down to the level 
of system sensors. 

8.7.5 System-Wide Alarms 

For systems operating in dangerous environments, reacting quickly to threatening situa-
tions is necessary for survival. This rests on the rational (in most cases) assumption that 
one of the top-level goals of the system is to ensure its survival. When such a situation 
arises, the system may be previously engaged in attempting to achieve a number of ex-
isting goals. In order to recognize the threatening situation and maneuver through it 
safely, indicators of the situation must attract the focus of attention. The attention mech-
anism presented in this chapter supports this type of functionality primarily through bot-
tom-up attention (Novelty-Driven Data Prioritizer, NDDP) and its reliance on predic-
tions in top-down attention (Goal-Driven Data Prioritizer, GDDP). The NDDP ensures 
that novel, unexpected information is considered by the system while the GDDP tracks 
entities of interest by means of monitoring predictions regarding their behavior. 

Let us take a hypothetical example of an autonomous (unmanned) aircraft. During regu-
lar flight, the system may focus primarily on goals related to reaching a destination be-
fore a specified time, complying with directions of air traffic controllers and minimizing 
fuel consumption. Suddenly, a missile is launched from the ground targeting the air-
craft. The appearance of a new moving object in the approximate environment is caught 
by bottom-up attention and data items relating to this object given high salience because  
this information is novel on a qualitative level, as the aircraft is not assumed to have ex-
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perienced missiles in its recent operating history. Even if this assumption does not hold 
and the aircraft has just avoided another missile, qualitative novelty is still high as in-
formation relating to this newly appeared object in the operating environment is seman-
tically novel, as is true for any new entity in the operating environment for which there 
are few or no prior observations. With the increased saliency assigned by the NDDP, 
the new missile-related information is highly likely to receive processing. From either 
recognizing the object as a threat by means of declarative knowledge, or generating a 
chain of predictions based on the movement of the missile that eventually predicts that a 
collision with the aircraft is on the horizon, maximum priority goals of evasive maneu-
vers can be generated. These maximum priority goals, in the absence of other goals of 
such priority, will immediately receive the vast majority of resources available to the 
system with previously generated goals being put on hold. In this way, the NDDP and 
GDDP can collaboratively act as a system-wide alarm for the containing system. 
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Chapter 9 

Compatibility with Existing  
Architectures 

Having presented the design of a general attention mechanism for AI architectures in 
the last chapter, here we examine the compatibility of selected existing architectures as 
potential targets for implementation. The selection criteria include the prominence of 
the architectures, compatibility with the architectural requirements of Chapter 6 and an 
attempt to present a reasonably broad range of the key high-level types of existing ar-
chitectures that aspire towards artificial general intelligence (AGI). 

Before we embark on this discussion, to cut a long story short, given the architectural 
requirements presented in Chapter 6, the following conclusion is inescapable: Extreme-
ly few architectures currently exist that fully satisfy them all. In fact, I am only familiar 
with one such case which is introduced later in this chapter. One of the reasons for this 
is that most existing AGI architectures, while AGI-aspiring, are all fairly far from solv-
ing the AGI problem and have certainly not demonstrated capabilities anywhere near 
human-level intelligence. Another reason is the reliance of these architectures on con-
structionist methods, which, as discussed in chapter 5, bring with them significant limi-
tations in complexity and scope. This state leads us to consider which of the require-
ments can be relaxed – and how – for each of the architectures below, and which parts 
of the attention mechanism’s operation would be affected by such changes to the re-
quirements. One architecture, AERA, has been motivated expressly from constructivist 
principles. AERA is a fairly untested architecture, and few publications exist that de-
scribe it in sufficient detail. Nevertheless, as it is the only current AGI architecture I am 
aware of that satisfies the architectural prerequisites posed by my attention design. For 
these reasons it is included in the below discussion. All of the architectures considered 
here, except AERA, were discussed in Chapter 3. 
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9.1 SOAR 

SOAR is one of the most mature cognitive architectures currently in development, and 
has been used by many researchers worldwide during its roughly 30-year life span 
(Laird, 2008). It is a goal-driven architecture that features symbolic levels of representa-
tion, satisfying these two important prerequisites. SOAR partially satisfies the require-
ment of a uniform sensory pipeline, but limited aspects of the systems own operations 
are sensed in this way. However, it has some problems satisfying the rest of the archi-
tectural requirements (predictive capabilities, fine-grained structure and data-driven ex-
ecution model). No explicit mechanisms for generating predictions are implemented in 
the architecture. The processes of SOAR are large and monolithic in nature, where each 
operating cycle is fixed in structure. When the system detects a lack of knowledge, a 
special learning process is started during the running operating cycle as dictated by the 
fixed control mechanism, highlighting the magnitude of broad-scope functionality built 
into its core operating cycle and related control functions. The SOAR architecture can-
not be viewed as data-driven as operating cycles occur with or without the presence of 
new data. As a result, the fixed control-loop of the architecture is an uninterruptable unit 
of processing which may be time-consuming, especially when the need for problem-
solving is encountered in an iteration, which significantly limits the reactiveness of the 
system. Furthermore, due to special problem solving processes being activated when 
necessary as part of the control loop, temporal aspects of the systems performance are 
unpredictable as iterations of the control loop can show considerable diversity in dura-
tion. 

In terms of data filtering, a limited version of the GDDP for top-down prioritization – 
using only goals for control data as predications are not available – could possibly be 
added to the architecture. Bottom-up prioritization could probably be added as well, 
with the NDDP. However, the lack of a unified sensory pipeline implies that these at-
tentional functions would only be performed on input data in a rather narrow sense, 
where such input constitutes information generated by the environment, with some 
highly limited information of the systems own operation possibly included. Alternative-
ly, these attentional processes could be duplicated, with each focusing on one type of 
memory in the system, although this is likely to be an inefficient solution. 

Adding these functions would require substantial changes to the core control mecha-
nisms and architecture of the system where prioritization values are supported and used 
to guide processing decisions. While these additions might help SOAR in making more 
rational processing decisions, they cannot improve the capability of the system for real-
time processing while a fixed, resource-intensive operating cycle forms the basis of the 
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operation of the system. Changing the fixed operating cycle would mean changing a 
very core principle of the architecture, and would certainly not be straightforward. 

The production rules of SOAR are the most directly relevant target for implementing 
the functionality of the EDPP (process prioritization), as core system processes are too 
large and general for this to be feasible. At this level, SOAR already implements some-
what similar, but more limited, functionality based on reinforcement learning. To im-
plement the processing prioritization functionality of the present attention mechanism in 
SOAR, the existing functionality could possibly be modified to fit the design more 
closely. 

9.2 LIDA 

The LIDA architecture is based on the Global Workspace Theory of Consciousness and 
is intended for intelligent and autonomous software agents (Franklin 2007 & 2012). 
While the LIDA architecture is more sub-symbolic than symbolic in nature and does not 
have an explicitly symbolic level of knowledge representation, the organization of relat-
ed perceptual and other types of information into coherent units with meaning can be 
viewed as a substitute for present purposes. LIDA is goal-driven and can be said to be 
data-driven as system processes operate continually and asynchronously. The fine-
grained structure requirement is satisfied to significant degree as the majority of data 
items in LIDA are small. While a LIDA system has many small processes (called 
codelets), a considerable number of control processes of varying complexity operate in 
the architecture, so that the fine grained requirement is not satisfied to the same degree 
on the process side. Furthermore, the data items and processes of LIDA are not homog-
enous in structure and display considerable diversity. This suggests potential problems 
in having the architecture predict the temporal aspects of its own operation, which the 
architectural requirements of the attention mechanism are intended to avoid. LIDA has a 
unified sensory pipeline (represented by its Perceptual Associative Memory), but capa-
bility for operational introspection is limited as not all aspects of the systems activity is 
subject to perception. At the present stage of its development, LIDA does not explicitly 
or rigorously address predictive capabilities, but such functionality is seen as part of fu-
ture development17. 

The information prioritization processes (GDDP and NDDP) of the present attention 
mechanism could be applied to the perceptual functionality of LIDA, although these 
would either need to be modified to be compatible with LIDA’s Perceptual Associative 
Memory or the present perceptual functionality changed significantly. However, these 

                                                 
17 Ryan McCall & Stan Franklin. Personal communication with H. P. Helgason. 
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attentional processes would be limited by the absence of predictions as control data, as 
in SOAR. One of the clearest benefits of these additions to the LIDA architecture would 
be increased capability for bottom-up attention, and thus to detect and react to unex-
pected events. 

The process prioritization functionality of the attention mechanism is more challenging 
to implement in LIDA due to significant numbers of structurally and functionally heter-
ogeneous processes. In order for this to be possible, multiple instances of the EDPP 
would need to operate simultaneously on each type of processes or the processes of the 
system would need to be unified to a greater extent. 

9.3 NARS 

The Non-Axiomatic Reasoning System (NARS) is a general-purpose intelligent reason-
ing system designed for operation in real-time under conditions of insufficient 
knowledge and resources (Wang, 1995). As NARS is designed as a reasoning system, 
one of its main purposes is to generate new knowledge from existing knowledge in ad-
dition to achieving given goals in the operating environment. The system clearly meets 
the requirement of having a symbolic level of knowledge representation as symbolism 
is implicit in reasoning, while the meaning of symbols is defined by the operational ex-
perience of the system rather than corresponding to arbitrary objects in the outside 
world. Data units in NARS are fine-grained, consisting of beliefs and three types of 
tasks: judgments, questions and goals. Beliefs are encoded as logical statements and can 
also be viewed as processes in addition to data, although these two views do not hold 
simultaneously for a given belief. As each statement tends to be short, and the architec-
ture has a single, fixed control mechanism, execution time should be fairly uniform and 
predictable for each processing step. As a result, NARS can be said to meet the fine-
grained requirement on the processing side as well. 

NARS is partially data-driven, as incoming information triggers processing, but not en-
tirely since the system will continue to improve its own knowledge in the background 
during idle times when no new data is flowing into the system. More accurately, NARS 
is task-driven, but it is possible for an architecture to be fully data-driven and goal-
driven (e.g. AERA – see below). Again, this is determined by the core control processes 
of the system which are somewhat black-box, from the point of view of the system it-
self. 

While the system may be said to have a unified sensory pipeline, explicit observations 
with regards to all aspects of the systems own operation are not generated. This limits 
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the level of introspection possible in the system, although future work targets higher 
levels of introspection than possible in current implementations. 

NARS is partly goal-driven, but NARS goals – in the sense of being states to strive for 
in the operating environment – are not the only types of tasks in the system: Judgments, 
which are knowledge integration and derivation tasks based on accepting new 
knowledge into the system, and questions, which are user supplied queries for the sys-
tem to answer on the basis of its current knowledge. 

Explicit mechanisms for prediction are not featured in the system, but logical inference 
may be viewed as a type of predictive functionality when time is addressed by the logic 
of the system, as in NARS. Conversely, prediction may be viewed as a special case of 
logical inference where conclusions are related to the future. 

When considering the compatibility of NARS for the attention mechanism presented in 
the present work, it must be noted that as a reasoning system, NARS is not heavily fo-
cused on perception and action. The kind of typical operation the system is designed for 
is periodically receiving structured new information and tasks, where idle time is spent 
organizing and expanding the knowledge of the system. This is in stark contrast to em-
bodied systems dealing directly with real-world environments, where vast amounts of 
low-level information continuously flow into the system. Work intended to give NARS 
greater focus towards perception and action is planned, the results of which are likely to 
increase its level of compatibility with the attention mechanism. However, in its present 
form not all aspects of the attention mechanism can be implemented in NARS. Process 
control and the EDPP in particular would be difficult to implement in systems that do 
not feature a clear separation of data and processes, while the ideas presented in the pre-
sent work for process control could potentially be adapted to NARS according to how a 
process is viewed in the system or incorporated into core control mechanisms of the 
system.  

The functional components of the attention mechanism involved with prioritization for 
data are more straightforward to implement in NARS; there are no obvious problems 
preventing the implementation of the NDDP and the GDDP would be relatively straight 
forward to implement, although this would require an analysis of how judgments and 
question tasks would be handled. However, NARS already has functionality for data 
prioritization that would need to be modified or replaced in this case. 
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9.4 AERA 

The Autocatalytic Endogenous Reflective Architecture (AERA) is a recently-developed 
fully implemented AGI-aspiring architecture (Nivel et al., 2012a) that targets domain-
independent autonomous systems that adapt in dynamic, open-ended environments, 
while meeting assumptions about insufficient knowledge and limited resources (Wang 
2006). AERA may be viewed as an evolutionary descendant of the Ikon Flux (Nivel 
2007) architecture, discussed in Chapter 3. The architecture is developed under a con-
structivist methodology (Thórisson 2012a). From a manually constructed initial state 
(called the Masterplan in AERA) the system revises its processes and structure as re-
quired for its operation in the target domain, based on experience. The architecture is in-
tended to allow systems to acquire domain-dependent knowledge from the environment 
in real-time by observing intentional agents, inferring the details of its high-level goals 
and observing ways to accomplish them. AERA-based systems are model-based and da-
ta-driven; the unifying structure of the entire architecture is an executable model where 
the architecture consists of dynamic hierarchies of executable models. An AERA model 
is bi-directional in nature, being capable of prediction or action prescription depending 
on the data causing its activation. Consequently, models can be said to encode under-
standing of events by unifying the ability to predict events and the ability to make 
events happen. In this respect, models may be viewed as bi-directional production rules. 
Each model contains a specification of inputs it can process; this includes specification 
of content and timing.  
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Figure 9.1: A bi-directional executable model in AERA. At the top, a model pre-
dicts the future position of an object (BOX) by observing its present state and a 
command on part of the system to move it (in the future). At the bottom, the same 
model generates a command to move the object (BOX) by observing a goal to 
move it and its current position. 

 

The architecture supports learning by building models that encode knowledge, in a pro-
cess driven by goals and predictions of the system. New models are built from few ex-
amples, which is in sharp contrast with traditional machine learning techniques. The op-
eration of AERA-based system involves the continuous cooperation of four processes: 
model acquisition, model revision, model compaction and reaction. The model acquisi-
tion process involves transforming goal-related observations into reusable models while 
the model revision process evaluates the correctness of existing models. The model 
compaction process compresses models of the system proven by operational history to 
be of high-quality and use, where compressed models are no longer targets of learning 
as little or no improvement has been found possible. Compressed models are specially 
compiled to execute faster (i.e. requiring less resources) than other models. The reaction 
process samples information from the operating environment identifies models relevant 
to the present operating situation and executes them to generate sub-goals, predictions 
with regards to likely future events or produce commands for the actuators of the sys-
tem.  

AERA was developed as part of the HUMANOBS project18 and has been used to im-
plement a system that can learn socio-communicative skills in real-time by observing 
people in dialogue. For the implementation of the architecture, available programming 
languages were found inadequate to support the desired operation of the architecture, 
resulting in the design and implementation of a new programming language called Re-
plicode (Nivel et al. 2012b) on which AERA is based. The final evaluation of the pro-
ject revealed significant validation of the principles and assumptions on which it is 
based (Thórisson 2012b); a range of publications describing the system and approach in 
detail are currently in preparation (preliminary overview can be found in Nivel at al. 
2013 and Nivel & Thórisson 2013). 

                                                 
18 http://humanobs.org/ 
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Figure 9.2: Detailed overview of the AERA architecture (from Nivel et al. 2012). 
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AERA includes attention mechanisms closely related to, and compatible with, the one 
presented in the present work. The success of the AERA architecture strengthens the 
present design proposal, and further evaluations and future publications detailing the ar-
chitecture seem likely to further build support for the present attention design. In large 
part this can be expected because AERA satisfies all the architectural requirements pre-
sented in Chapter 6: It is fine-grained – it is composed of small models and data objects 
(requirement #1); it is data-driven – the execution of a model can only occur with expo-
sure to data (requirement #2); it has a unified sensory pipeline (requirement #3) – data is 
treated identically regardless of whether it originated inside or outside the system; the 
architecture is goal-driven (requirement #4) – all operation of the system is directed by 
goals; it has predictive capabilities (requirement #5), as models generate predictions; 
and finally, AERA operates on a symbolic level of knowledge representation (require-
ment #6). To further illustrate the relationship between the architectural implementation 
of AERA and the architectural requirements on which the present work rests, a cursory 
description of how attention is currently implemented in AERA is presented below. 
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Figure 9.3: Overview of attentional functionality in the AERA architecture. 
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All new information, being sampled from the environment or generated internally, 
flows through a special component of the system called AutoFocus. This component is 
primarily responsible for determining the relevance of new information and implements 
this using a set of buffers called Targeted Pattern Extractors (TPX) that are identified 
by a pattern derived from a goal or prediction. TPX’s correspond to the attentional pat-
terns of the attention mechanism design presented in the present work. However, they 
are only created if the model that produced the goal or prediction is evaluated to be a 
candidate for improvement. The model revision process maintains information with re-
gards to the performance of a model over time to make such evaluation possible. If a 
new data object matches the pattern of one or more TPX’s, the following occurs: The 
data item is placed in the buffers of matching TPX’s after concrete values have been re-
placed with variables (representing generalization) to make learning more efficient, as is 
explained below. The original version of the data item is then allowed to proceed further 
into the system where it will have opportunity to activate models. Data objects that do 
not match or share values with any TPX pattern are discarded. 

Attention is tightly integrated with learning in AERA. During the lifecycle of a goal or 
prediction (the period from its generation up until its success, failure or abandonment), 
data objects are accumulated in each TPX. The lifecycle of a TPX is identical to that of 
the goal or prediction it was derived. If the lifecycle of a TPX ends with success of a 
goal or failure of a prediction, the accumulated data in the TPX is used for the genera-
tion of new models. The significance of these particular events deserves some elabora-
tion. Observing another entity (e.g. an intentional agent) in the environment achieving 
an identical or similar goal to one which the system current seeks to achieve allows the 
recipe for achieving this goal to be extracted from the environment. The data objects 
that end up in the TPX for such a goal constitute such a recipe and are used to generate 
new models that are intended allow the system to solve similar goals by itself at future 
points in time. In the case of predictions, a failure of a prediction - which the system has 
generated using its models - to come true is evidence of a problem with the current 
models of the system. No new models are produced if an existing model predicted the 
successful achievement of a goal or the failure of a prediction. The data objects of the 
associated TPX represent the means to generate a new model that accurately would 
have predicted the turn of events. 

The quality of all models in the system is continuously monitored and updated by the 
model revision process based on the ability of each model to generate accurate predic-
tions. Models contain a special parameter, called success rate, to store their estimated 
quality. The success rate is in part used to set the activation of models, influencing pro-
cess control with higher quality models receiving higher activation and thus a greater 
chance of being executed. However, this does not guarantee the execution of a model, 
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even in the presence of compatible input data, as the limited resources of the system are 
allocated to individual models in decreasing order of their total activation value. 

As there may be several ways to achieve a specific goal, each with different costs and 
side-effects, the system employs simulations to select and commit to appropriate goals 
as opposed to doing so blindly. This is particularly important in cases where the pursuit 
of a new goal has potential to interfere with the pursuit of an existing goal that the sys-
tem has already committed to. Simulations are achieved using the models of the system 
and can explore multiple ways of reaching a goal in parallel, in a manner similar to 
breadth-first search. The predictive capabilities possessed by the models are essential to 
the analysis of hypothetical situations that simulations must deal with. Once a viable so-
lution is found, the system commits to the corresponding sub-goals, which are then add-
ed to the active goals of the system. The system has a fixed, global parameter to control 
simulation called simulation time horizon. This parameter controls how far into the fu-
ture different possible actions are simulated. 

As a large number of models accumulate in the system over time, many models are only 
valid in specific operating contexts. In addition to the success rate of a model, evaluated 
relevance of a model to the present operating situation is used to set activation values. 
This is accomplished by a process of continuously running all models of the system in 
partial mode to determine if they are able to react (find data items to trigger execution) 
in the present context. As most models have restrictive, precise input specifications, the 
ability of a model to execute indicates that it was learned in a context similar to the pre-
sent one. Although implemented in different form than proposed in the design presented 
in the present work, the functional result of contextual process evaluation influencing 
the activation of processes (or models, in the AERA case) is highly similar. 

The ways in which attention in AERA deviates from the attention mechanism proposed 
in the present work are now discussed. The main deviation lies in the area of bottom-up 
attention; AERA approaches novelty as observed events that were not predicted to oc-
cur. Consequently, bottom-up attention is implemented by detecting mismatches be-
tween predictions and actual observations, focusing on prediction failures. The attention 
mechanism proposed in the present work approaches novelty on different terms; namely 
as events that are different from what the system has experienced previously. Equiva-
lence between these two approaches can be roughly assumed if the system is required to 
predict all aspects of its future experience, regardless of relevance to goals. However, 
AERA predicts only events that are relevant to goals and predictions. While this is a ra-
tional design decision given issues of resource consumption, it limits the capability of 
bottom-up attention in systems based on the architecture, implying reduced capacity to 
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notice events that, while not currently goal-related, may be relevant to the goals of the 
system in addition to providing opportunities for learning. 

There is some evidence that humans share similar limitations when it comes to bottom-
up attention. For example, although we can notice unexpected but relevant information 
in the presence of noise while performing tasks, this capability is not absolutely reliable 
(Wood 1995, p. 255-260). However, I view this as a biological limitation; increased ca-
pability in bottom-up attention should lead directly to higher levels of intelligence (as 
defined by Wang) as improved mechanisms for detecting unexpected events enhance 
the flexibility of such a system and enable it to adapt faster to its environment. Howev-
er, bottom-up attention is a resource-intensive process as it requires constant compari-
son of new events with some form of prior operational experience of the system. With 
the power of current computer hardware it may not be feasible to pursue implementa-
tions of such mechanisms at present, although this is far from obvious in my view; es-
pecially when considering approximate methods using aggregate information from prior 
operating experience versus the totality of actual operating experience. Whatever the 
case, computer hardware is highly likely to dramatically increase in capability over the 
coming decade, which in turn is likely to affect the feasibility of highly accurate bot-
tom-up attention mechanisms. 

9.5 Summary 

We have seen that extremely few existing architectures satisfy all of the architectural 
requirements of Chapter 6. All architectures considered in this chapter, except AERA, 
fail to meet some of the requirements. 

SOAR is goal-driven and has symbolic knowledge representation. However, it is not da-
ta-driven, lacks predictive capabilities and does not have fine-grained structure. While 
SOAR does not feature a fully unified sensory pipeline, some aspects of the system’s 
own operations are observable to the system. The LIDA architecture is goal-driven, da-
ta-driven and has fine-grained structure - although the variety of its building blocks pos-
es some problems. It may be viewed as having a sufficiently symbolic level of 
knowledge representation. The architecture does not feature explicit mechanisms for 
predictions yet and has a limited version of a unified sensory pipeline. NARS, being a 
reasoning system, clearly has a symbolic level of representation. The architecture has 
fine-grained structure but is only partially goal-driven and data-driven. While explicit 
mechanisms for generating predictions are not featured in the architecture, predictions 
may be viewed as a special form of reasoning in context of NARS. Like SOAR and 
LIDA, NARS has a limited version of a unified sensory pipeline in its present stage of 
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development. AERA is the only architecture considered here that satisfies all require-
ments. 

Since SOAR, LIDA and NARS do not satisfy these architectural requirements, only 
limited functions of the attention mechanism of the present work are applicable to those, 
as discussed in previous sections. Having motivated constructivist methodologies (in 
Chapter 5) as a significantly more promising path towards realizing fully capable AGI 
systems, and presented a set of requirements for attention in AGI-aspiring systems 
largely based on such methodologies, the failure of architectures to meet these require-
ments – their incompatibility with the general attention mechanism presented in the 
present work – is an indication that significant functionalities are missing that are criti-
cal to solving the AGI-problem. This result is not specific to these architectures, being 
chosen as representative examples, but concerns the vast majority of AGI-aspiring ar-
chitectures that exist to date.   
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Chapter 10 

Analytical & Conceptual Evaluation 

We now turn to issues related to the evaluation of attention mechanisms in AI systems. 
This chapter discusses some of the issues that must be addressed in future evaluations of 
implemented artificial general intelligence (AGI) attention mechanisms – the present 
one included. The ultimate evaluation of the proposed attention mechanism will involve 
an actual implementation – or several – in actual cognitive architectures, situated in a 
variety of environments. The luxury of such an elaborate scenario, however, is still a 
few years down the road, as it is a considerably greater undertaking than a single – 
probably even several – Ph.D. theses.  

This chapter addresses therefore the question of evaluation from two angles. We begin 
by grounding the necessary concepts by providing clear and concise definitions of the 
main concepts involved, such as the expected limits of attention, information bandwidth 
of cognitive architectures, and their processing capacity. We then present a high-level 
discussion of the possible and appropriate methodologies and methods that a full analy-
sis would call for, which could be done in the near future provided that a sufficiently 
advanced architecture is available to host an implementation of the proposed design; 
this might already happen sometime in the next decade. Task complexity, which is part 
of environmental complexity, and methodological concerns, are also addressed. The 
proposed design is subsequently analyzed analytically and conceptually, along the main 
dimensions of its operating principles. For this purpose we propose a hypothetical ex-
ample of a real-world task involving a self-driving car. 
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10.1 Definitions 

On the surface level, two quantities seem central to making attention mechanisms nec-
essary: the amount of information coming from the operating environment and the 
amount of resources available to the system. Operating environments supply a steady 
stream of new information: The magnitude of this stream is such that if available re-
sources are distributed evenly between units of information, each such unit is likely to 
receive only a very small amount of processing. In this sense, the resources of the sys-
tem are vastly insufficient to uniformly process the entire stream at depth; in search of 
rational responses to the operating situation, exhaustive consideration of all available in-
formation in a uniform fashion is not feasible. Nature and evolution have solved this 
problem with selective processing, which is the principal inspiration for the present 
work. The following defines the nature of these two quantities – environmental com-
plexity and system processing capacity – and applies equally to systems with or without 
a uniform sensory pipeline. The term “cognitive system” will be used to refer to systems 
implementing attention, covering AI (including AGI) and natural intelligence systems. 

 

Definition 10.1. The environmental bandwidth (EB) of a cognitive 
system, measured in bytes, is the amount of information generated by 
its operating environment per second, averaged over a specified period 
of time.  

 

Definition 10.2. Assuming all possible orientations of the system sen-
sors simultaneously, the environmental bandwidth potential (EBP) of 
a cognitive system, measured in bytes, is the amount of information 
generated by its operating environment per second, averaged over a 
specified period of time.  

 

Definition 10.3. The computational resources of a cognitive system 
consist of processing capacity, measured in millions of low-level in-
structions per second (MIPS), and total memory space, measured in 
bytes. Memory refers to dynamic storage that may be used to store data 
items. 
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With these definitions in place, we can further discuss the relationship between the 
quantities in question. In general, a system that requires fewer resources to successfully 
operate in more complex environments can clearly be said to have better attention 
mechanisms than a system requiring the same or more resources in a simpler environ-
ment: 

 

Definition 10.4. The theoretical upper limit of attention may be 
viewed as an attention mechanism that enables the system to success-
fully operate, according to some concrete definition of success, with 
theoretically minimal resources required to accomplish its tasks in the 
target environment. 

 

That is to say that any general-purpose information processing system with fewer re-
sources would be unable to do the same regardless of all aspects of its implementation.  

Conversely: 

 

Definition 10.5. The lower limit of attention (theoretical and practi-
cal) is uniform processing of all information. 

 

Incidentally, this definition describes how most existing software systems operate. It 
should be noted that efficient design and implementation and optimization of software 
can heavily influence the processing capability of a system while resources remain 
fixed; attention is not the only way to achieve greater capability while resources remain 
fixed. However, as soon as our discussion is restricted to constructivist systems – and 
we have presented ample arguments for why it should be for any system that is respon-
sible to large degree for implementing and optimizing itself – increased performance 
with fixed resources can increasingly be viewed as the product of attention, as processes 
of self-reconfiguration must rely heavily on the attention mechanisms of the system. 

Comparing attention mechanisms not only requires the resource usage of the individual 
systems being evaluated to be normalized but important aspects of the tasks and envi-
ronments of the system must also be normalized. Starting with focusing on the envi-
ronment, the amount of resources than can be spared for each unit of information, as-
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suming uniform processing and given the complexity of the environment, is a quantity 
of interest.  

 

Definition 10.6. The environmental processing capacity (EPC) of a 
cognitive system is the ratio of the processing capacity of the system 
(PC) and the environmental bandwidth (EB). 

   EPC (MIPS/bytes) = PC / EB 

 

While the EPC measures the processing capacity of a system in relation to complexity 
of the environment, a similar measure is required to evaluate the memory aspect of the 
systems resources. This may be done by relating the environmental bandwidth to the 
amount of total system memory. Although no existing intelligences are known to actual-
ly store the entirety of its raw experience in memory, this relationship is a valid metric 
of to what degree memory resources of the system must be “stretched” to serve the op-
eration of the system. 

 

Definition 10.7. The environmental retention capacity (ERC) of a 
cognitive system is the ratio of environmental bandwidth (EB) and the 
total memory space (MS) of the system. It measures of how many sec-
onds of full, unfiltered environmental experience can be stored by the 
memory of a system.  

   ERC = MS / EB 

 

The EPC and ERC ratios are particularly interesting for attention. The EPC ratio 
measures how much processing can be applied to each byte of environmental infor-
mation when resources are uniformly distributed while the ERC ratio measures how 
many seconds of complete, unfiltered operating experience can theoretically be stored 
by the system. These represent useful quantities to compare the attentional capabilities 
of different systems. In general, when two systems can maintain identical or highly sim-
ilar quality of operation in the same operating context (defined by tasks and the envi-
ronment), the system with lower EPC and ERC values can be said to have higher quali-
ty attentional functions as they satisfy greater attentional requirements. 
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Studies that investigate attentional capability of humans, common in cognitive psychol-
ogy as discussed in Chapter 4.1, also provide some ideas for important metrics and 
properties related to attentional functionality of cognitive systems. Such studies (e.g. the 
Stroop Test) typically focus on the response time, error rate and influence of distrac-
tors. These properties are likely to be useful for evaluating different implementations or 
control parameter settings of an attention mechanism in a single system while resources 
and operating conditions are fixed. 

10.2 Methodological Considerations 

In this section, we examine methodological issues in the evaluation of attention mecha-
nisms.  

Based on calculations of the processing capacity of the human retina, among other 
things, Moravec (1998) estimated the processing capacity of the human brain at 100 
million (108) MIPS. The environmental bandwidth for humans may be estimated when 
some assumptions are given.  

Some conservative assumptions will be made in order to roughly estimate the environ-
mental bandwidth that humans are exposed to. Vision is the dominant modality in terms 
of information generation to such a degree that other modalities become almost irrele-
vant when focusing on the environmental bandwidth. For the sake of simplicity, the as-
sumption is made here that all other human modalities produce at most 25% of the 
amount of information that is generated by vision. In Moravec’s estimates the human 
retina processes ten one million point images per second. If we assume one of the more 
common representations used in computer graphics, each pixel consists of 24 bytes (8 
bytes respectively for red, green and blue). The result is close to 60 megabytes per sec-
ond, each retina supplying around 30 megabytes. By adjusting this number for other 
modalities, following the simplifying assumption noted above, the result is that the en-
vironmental bandwidth that humans must cope with is around 75 megabytes. With these 
numbers in place, the EPC of humans is estimated at 1.3 MIPS / byte. At the present 
stage of neuroscience, insufficient information is available to attempt a similar estimate 
for the environmental retention capacity of humans with useful precision. 

It has been well established in cognitive psychology and neuroscience that the human 
brain does not assign processing resources to information capacity in a uniform fashion. 
The reader can easily verify this himself by nothing that numerous aspects of the envi-
ronment are being ignored while reading this text. It would thus appear that processing 
well beyond the quantity indicated by the EPC is required for relevant data in order to 
produce rational, meaningful responses to the environment while the majority of availa-
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ble information is virtually ignored. Thus the distribution of resources over all available 
information over some period of time cannot be uniform, but must be highly heteroge-
neous and irregular. Furthermore, determining the relevance of available information al-
so requires computation. 

Turning back to synthetic systems, a high-level methodology for comparing attentional 
capabilities was suggested above that assumes that the tasks and environments of sys-
tems being compared remain fixed. Comparing attentional capabilities between systems 
operating in different environments with different tasks, with any real precision, is a 
much harder problem. For this to be possible, the attentional requirements of each sys-
tem under comparison would need to be individually determined. At a minimum, such 
determination would need to factor in the following quantities: 

 

a) Environmental bandwidth of the system. 
b) Environmental bandwidth potential of the system. 
c) Average degree of change in the environment per unit of time. 
d) Number of entities in the environment relevant to each task. 
e) Number of atomic steps involved with each task. 
f) Complexity of each task. 
g) Number of concurrently active tasks. 
h) Processing resources of the system. 
i) Memory resources of the system. 

 

Of these, metrics relating to task requirements and complexity are particularly difficult 
to determine as they may vary greatly and even be different in each instance of the same 
task. One possible approach to measure task complexity is to use the minimum descrip-
tion length of each task. This is identical to how complexity of algorithms is measured 
using Kolmogorov complexity (Kolmogorov 1963). However, this would require a 
normalized description language and identical levels of abstraction for the tasks of all 
systems under comparison. This is very difficult if not impossible to do. And yet, even 
with such approaches solved, concurrency issues will still be next to impossible to ad-
dress as any number of tasks may be active at the same time and task-relevant interac-
tions in the operating environment need to be accounted for.  

Ideally, it would be useful if we could quantify these variables so that a formula, possi-
bly similar to the one below, could be used to determine the attentional requirements of 
a system on the drawing board, or compare attentional requirements of different existing 
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systems (assuming the systems all operate above a minimum acceptable threshold of 
performance in terms of successful task execution). 

 

 

 

While this is clearly a simplified, abstract formula it captures the idea that the attention-
al requirements of a system – the need to stretch out available resources – may be de-
termined by a multiple of environmental and task related complexity measures in rela-
tion to the resources of the system, where higher values indicate greater need for atten-
tion and selective processing. If the resources of the system are increased, the require-
ment for attention decreases and conversely, the requirement increases if resources are 
reduced. If the environmental complexity or task complexity is increased or decreased, 
this directly affects the requirement for attention. And, in particular, if both environ-
mental and task complexity change, the resulting change in requirement for attention is 
exponential. Higher values for attentional requirements indicate a more efficient intelli-
gence (Goertzel 2007: p. 11) than in systems with lower attentional requirement values.  

While the preceding sections have established a methodology to compare attentional re-
quirements of two or more systems when environments and tasks are fixed, such eval-
uation is also of interest when this assumption does not hold. The comparison problem 
is of course more tractable if the individual systems under comparison are functionally 
identical or highly similar. Methods for task-independent comparisons, which must be 
based on advanced task-complexity metrics, would be of clear value but are presently 
out of reach due to the unavailability of said metrics.  

10.3 Conceptual Evaluation 

In order to evaluate the proposed attention mechanism design analytically and 
conceptually, we look at a real-world task in this section that requires all functions of 
the proposed attention mechanism: Autonomously driving a car safely from one place to 
another in a large city within a specified amount of time. Such systems are usually 
referred to as self-driving cars. For present purposes, the task is analyzed on a level of 
symbolic representation where vision capabilities are seen as low-level processing that 
provide symbolic data to the hosting AGI system. 
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This task is well-suited to demonstrate all capabilities of the attention mechanism as it 
has the following properties: 

 

x Prioritization of information is required. 
o The operating environment provides abundant information. 

 
x Real-time operation is required. 

o Goals are time-constrained. 
o The environment is dynamic and the system must react quickly to avoid 

undesirable outcomes. 
 

x Decision complexity is significant. 
o Several simultaneously active goals with different priorities 
o More than one way to achieve most goals. 

 
x Potential for novel, unexpected events. 

o Perfect familiarity with the operating environment is practically impossible. 

 

A standard car with some extra sensors is assumed here. Through these sensors, the 
system is able to observe driving speed, fuel level, fuel consumption, tire pressure, 
engine diagnostics, road temperature, humidity, wind, location (via GPS), microphones 
and various other types of information related to the state and operation of itself as well 
as the external environment. As hinted at earlier, the system is also equipped with 
cameras that monitor the surrounding environment and generate symbolic observations 
from raw video feeds. Information from all these sources, in addition to information 
relating to the internal operation of the system itself, serve as inputs to the unified 
sensory pipeline on which the attention mechanism operates. As the attention 
mechanism treats all data in a uniform fashion, dedicated attentional sub-systems are 
not required for each type of information. Finally, the system has a machine-readable 
map of the city, such as those found in modern GPS navigators. 

The system is trained in a simulator before being enlisted for real-world operation and 
learns from its simulated experience, as this is the most feasible way of allowing the 
system to learn from its experience that does not involve pedestrians being run over. 
Even imitation learning, where the system would learn by monitoring a human driving, 
is not capable of making the system learn to avoid undesirable outcomes unless such 
outcomes actually occur in the training sessions. 



Helgi Páll Helgason  177 
 

The initial high-level persistent goals of the system are listed below, some of which may 
have been supplied by the system designers (except the first goal, which is always given 
by a human operator) and others may have been learned during training in the simulator 
(such as goals 2-5). In order of increasing priority, these include: 

 

x G1. Arrive at location L1 before time T1 
o Priority = 0.2 

 
x G2. Drive only on a road 

o Priority = 0.4 
 

x G3. Do not run a red traffic light 
o Priority = 0.4 

 
x G4. Drive in a proper lane for the direction of travel 

o Priority = 0.4 
 

x G5. Avoid all collisions 
o Priority = 0.6 

 
x G6. Avoid collisions with pedestrians 

o Priority = 1.0 

 

In the system, persistent goals are treated in a special way as they are not bound in time. 
Persistent goals are operationally embodied as processes that generate time-bound goals 
that are specific to actual situations at run-time, when the system perceives risk that the 
corresponding persistent goal may fail. For example, if the system observes a new 
pedestrian in the environment or a prediction is seen that indicates that a pedestrian is 
about to be run over, special processes associated with the persistent goal will generate 
an operational goal to avoid this specific event. These special processes have a fixed 
activation value equal to the priority value of the persistent goal they embody. 

What follows is an analysis of how each functional component of the attention 
mechanism enables the system to perform its task. An example of a typical scenario 
which the system may encounter during operation is examined and broken down to 
show how each functional component supports the operation of the system. 

Before the examples, a short recap summary is provided to explain the role of each 
functional component (details can be found in Chapter 8): 
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Novelty-Driven Data Prioritizer (NDDP) 

The role of the NDDP is to prioritize information based on its novelty to implement 
bottom-up attention. This functional component is responsible for detecting novel 
events in the environment which require consideration to determine if some reaction on 
part of the system is necessary. 

Goal-Driven Data Prioritizer (GDDP) 

The GDDP is responsible for detecting information related to active goals and 
predictions of the system. This is accomplished with attentional patterns which are 
generated for each goal and prediction; the GDDP continuously attempts to find 
matches between active attentional patterns and incoming information. Upon such a 
match, the priority of the goal or prediction that generated the attentional pattern is 
added to the saliency of the matching data item, giving it a greater chance of being 
processed. 

Experience-Driven Process Prioritizer (EDDP) 

Process control in the system is handled by the EDDP, which prioritizes the processes 
of the system based on active goals. Information required to map goals to processes is 
contained in the Contextualized Process Performance History (CPPH), a structure which 
is continuously updated with contributions of processes to goal achievements. When a 
new goal is generated in the system, a match is sought in the CPPH. If such a match is 
found, this indicates that the system has previously achieved a similar goal and the 
processes that have been associated through experience with successful accomplishment 
of similar goals are given increased activation. 
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Figure 10.1: Overview of a typical situation in the self-driving car task. The cir-
cles are pedestrians, where those colored orange have already been observed by 
the system but the one colored red has not. The red arrows indicate direction of 
movement for each object. 

 

Example #1:  

The car is driving down a street when a child (pedestrian) on the 
sidewalk enters its field of vision.  

When the NDDP processes this observation, it evaluates it for qualitative and 
quantitative novelty. Qualitative novelty is determined by mapping the observation to a 
category in the category tree of the NDDP. If a corresponding node in the category tree 
is not found for the observation, this indicates a previously unseen entity in the 
operating environment resulting in maximum qualitative novelty being assigned to the 
observation and the generation of a node for the observation. In this case, the 
observation may be represented as:  
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[Obs Pedestrian_1 Position -100, 100] 

New instances of known types of entities are always assigned unique identifiers in the 
system. The next time the system observes a pedestrian, the identifier might be 
“Pedestrian_2”.  

In this case, no category node exists in the categorization tree for the observation 
because nothing has been observed for Pedestrian_1 recently. Thus, the observation 
carries semantic novelty. As there is no record of prior values for such an observation, 
maximum quantitative novelty is also assigned. The average of both types of novelty 
values (1.0 in this case) is added to the saliency of the observation as a result. The 
increase in saliency has ensured (in the absence of a large amount of equally salient data 
items) that this observation will be allowed as valid input for eligible processes (i.e. 
processes with sufficient activation and an input specification that is compatible with 
the observation). 

The observation then proceeds to activate the processes associated with persistent goal 
number 6 (avoid collisions with pedestrians, see list of persistent goals above). This in 
turn generates a goal to avoid a collision with this specific pedestrian for the period it 
takes the car to drive past him. The priority of this goal is identical to that of the 
persistent goal (1.0). The creation of the new goal generates a new attentional pattern in 
the GDDP which targets all information related to that specific pedestrian. This 
attentional pattern is active for the duration of the goal, causing the system to track the 
pedestrian while the car drives by. 

The pedestrian remains stationary as the car drives by. 

In this case a specific task-level response on part of the system due to appearance of the 
pedestrian was not necessary. After the car has passed the pedestrian, the goal expires 
and the corresponding attentional pattern is removed. 

 

 

Example #2:  

The car is driving down a street when a child (pedestrian) on the 
sidewalk enters its field of vision.  

This example is identical to the first one up until the point after which the GDDP is 
tracking the pedestrian by having an attentional pattern focusing on that entity. 
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Suddenly, the pedestrian starts moving in a direction to cross the 
street. 

As all observations related to the pedestrian are now the targeted by the GDDP, the new 
observations that indicate movement on part of the pedestrian are given increased 
saliency. When the pedestrian starts moving, there is also quantitative novelty in the 
new values of his position, resulting in additional saliency being provided to the 
movement observations by the NDDP. This triggers predictions into the immediate 
future as to how this will affect the goals of the system. 

Critically, a chain of predictions is generated that involves the car colliding with the 
pedestrian at a particular location (Lc) on the street just ahead of the car at a specific 
time (Tc). This generates a maximum priority goal Gc of avoiding the collision. 

From training in the simulator, the system is familiar with the following strategies to 
achieve this critical goal (Gc ) of avoiding a potentially fatal collision for the pedestrian. 
Processes for activating these strategies are mapped to a goal such as this one by way of 
the CPPH in the EDPP. 

However, the success of any of these strategies is largely dependent on conditions in the 
operating environment at any given time. The Utility of each strategy is listed with each 
strategy, which represents how useful the strategy was found in the simulator 
environment. 

 

x S1. Brake. Experience-based utility = 0.7. 
 

x S2. Sound the horn. Experience-based utility = 0.3. 
 

x S3. Bypass the pedestrian on another lane. Experience-based utility = 0.4 
 

x S4. Bypass the pedestrian on the sidewalk. Experience-based utility = 0.3. 
 

x S5. No reaction. Experience-based utility = 0.05. 

 

When the goal Gc is matched with the CPPH in the EDPP, a match is found for each of 
the strategies above. These four matches result in processes that are associated with 
each strategy being given increased activation. In each case, the amount of activation is 
dependent on the experience-based utility value. 
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In order to find the most useful strategies in the current operating context, the system 
uses prediction. The overall utility of each strategy in this situation are evaluated using 
the methodology of Section 7.3.2 (predictive heuristics) to generate a utility value. What 
predictions reveal with regards to each strategy is the following: 

S1. Brake: As there is another car driving close behind the system, executing this 
strategy involves some risk that the action will result in the vehicle behind colliding 
with the system. This would cause the failure of persistent goal 5 (avoid all collisions). 
If the system is sufficiently advanced, it may also attempt to evaluate the alertness of 
the driver in the oncoming car from gaze and other visual features. However, all 
predictions for this strategy avoid running over the pedestrian. This results in a final 
utility value of 0.7. 

S2. Sound the horn: Analysis of the predicted of effects of this strategy reveals that 
that there is a 30% chance that the pedestrian will register the alarm and change his 
direction of travel to avoid the collision. The strategy has no side-effects that make it 
mutually exclusive to any of the other strategies. Plainly put, the system has nothing to 
lose by trying this strategy and predictions also reveal that doing so slightly increases 
the chance of success for the Brake (S1) strategy, as it may increase the alertness of the 
driver in the car driving behind. This results in a final utility value of 0.4. 

S3. Bypass the pedestrian on another lane: The system has observed an oncoming car 
from the opposite direction approaching on the other lane. Predictions indicate that a 
collision between the system and this oncoming car would likely result from running 
this strategy and that there is also a possibility of evasive maneuvers on part of the 
oncoming car would result in the pedestrian being run over. The final utility value 
assigned for this strategy in this case is 0.2. 

S4. Bypass the pedestrian on the sidewalk: Other pedestrians were already being 
observed on the sidewalk when this example began. Predicted effects of executing this 
strategy are the collision between the system and a different pedestrian. The resulting 
utility value is 0.0. 

S5. No reaction: Predicted effects of unchanged course of action result in the system 
colliding with the pedestrian with high likelihood, resulting in a utility value of 0.0. 

After this evaluation of each strategy the system has the choice of executing one of: 

S1. Brake. Present utility = 0.7. 

S3. Bypass the pedestrian on another lane. Present utility = 0.2. 

S4. Bypass the pedestrian on the sidewalk. Present utility = 0.0. 
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S5. No reaction. Present utility = 0.0. 

Additionally, the system has the option of executing S2 without a negative impact on 
any of the other strategies and a slightly positive impact on S1. In other words, a future 
state where the system sounds the horn and brakes is currently evaluated to be most 
desirable. When these two strategies are implemented, one of two outcomes is likely: 

The system sounds the horn and brakes. The significance of the alarm 
is registered by both the pedestrian and the driver in the car behind. 
The pedestrian stops on his trajectory across the street and the car 
behind brakes. Both collisions are avoided. 

In this example, this is the most favorable outcome for the system that is likely to be 
possible. All of its goals are achieved and the system is free to resume its high level, 
which will become the focus of processing within the system in the absence of more 
important goals. 

The system sounds the horn and brakes. The significance of the alarm 
is not registered in time by the pedestrian or the driver in the car 
behind. The pedestrian continues on his trajectory across the street and 
the other car does not slow down or brake in time. The system 
experiences a collision with the car driving behind. 

This outcome will leave the system damaged to some extent, possibly rendering it 
incapable of pursuing the original goal (G1) of arriving at a particular location before a 
certain time. While potentially causing the failure of G1, the success of the maximum 
priority goal in the system (G6: avoid collision with pedestrians) is achieved. 

These synthetic examples demonstrate how the attention mechanism enables the hosting 
system to meet the top-level design requirement originally presented in Chapter 4: 

“The attention mechanism of an AGI system must enable the system to pursue goals 
while being reactive to unexpected events in dynamic environments of real-world com-
plexity containing abundant information, while operating with limited resources and 
time constraints.” 

In these examples, the system benefits from the attention mechanism in several ways. 
First, it is capable of performing a demanding task in an environment providing abun-
dant information. The information prioritization processes of the mechanism (GDDP 
and NDDP) are essential for this purpose: Without this functionality, the system would 
be overloaded with inputs, lose the ability to perform in real-time, and fail at its task. 
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Even if the system had sufficient resources to process all information from the operating 
environment the attention mechanism allows it to do so with notably less resources.  

Due to the bottom-up attentional processes of the NDDP, the system is constantly alert 
to novelty in the operating environment. This allows it to react quickly to unexpected 
events, such as the sudden appearance of a new pedestrian in the examples above. As a 
result of architectural requirement #1 (fine-grained processes and units of data; see 
Chapter 6) there are no time-consuming control loops or large, complex processes that 
block processing for extended periods of time, and therefore the system is always in a 
reactive and interruptible state. The NDDP and this architectural requirement enable the 
system to react quickly when needed, to avoid failure of high-priority goals. Without 
these, the pedestrian from the second example would surely be in the hospital or the 
morgue.  

As for process control, the EDDP allows the system to use prior experience, from real-
world operation or training in the simulator, to efficiently identify processes likely to be 
relevant to an operating scenario based only on the specification of an active goal 
(which by definition must already exist). This affords the system more time to evaluate 
the effects of taking different actions likely to be useful in the present situation, as op-
posed to spending vast amounts of resources on blindly searching for such actions. The 
utility value assigned to each entry in the CPPH also guides resources allocation to con-
sideration of actions, where actions most likely to lead to a favorable outcome are con-
sidered before others. 

The architectural requirement of a unified sensory pipeline (requirement #3, see Chapter 
6) also has important implications for the system. As mentioned earlier, this means that 
all information is treated identically when it comes to attention – separate or special at-
tentional sub-systems for each are not needed; thus the problem of implementing – and 
in particular – coordinating such sub-systems is eliminated. Safety issues aside, a sys-
tem hosting this attention mechanism can theoretically be hooked up to a brand new 
type of sensor at run-time and learn how to use it to improve its performance. Sensory 
unification also means that no additional attentional functions are needed for introspec-
tion. Introspection is necessary – or at least highly beneficial – for allowing the system 
to improve its inner working. 

The architectural requirements of Chapter 6 have already been cited several times, and 
their importance should not be underestimated, as many of the benefits discussed above 
are directly derived from these. If these requirements initially seemed unnecessary, ec-
centric or arbitrary to the reader, a second look at them with this example in mind may 
be worthwhile. 
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Finally, let us examine what sets the proposed attention mechanism presented in the 
present thesis apart from the limited existing work on attention in context of artificial 
intelligence. Firstly, bottom-up attention has been given serious consideration through-
out the design as first-class citizen. Secondly, attention is addressed here in a holistic 
sense, where information selection and process control are both fully addressed. Third-
ly, the attention mechanism presented here is specifically designed for a unified sensory 
pipeline, which can equally target information from the external environment and in-
formation relating to internal system operation. This is an important feature for harness-
ing the full benefits of a constructivist AI approach (Thórisson 2012a; see Chapter 5). 
Last but not least, the attention mechanism presented here is general; its design is not 
based on any assumptions regarding possible tasks or environments, except for real-
world complexity. And with the possible exception of this last point, none of the cogni-
tive architectures reviewed in Chapter 3 make serious efforts towards meeting any of 
these requirements. The attention mechanism presented in this thesis directly and suc-
cessfully addresses all of them.  

10.4 Summary 

Ultimate evaluation of the proposed attention mechanism is presently out of reach, as 
this requires the mechanism to be fully implemented in one or more architectures, and 
evaluated against several operating scenarios and environments. Evaluation of attention 
in AGI-level systems requires fully implemented attention mechanisms in reasonably 
advanced AGI architectures and must take into account that performance of attention 
varies between operating scenarios and environments. A near-optimal attention mecha-
nism in one operating scenario cannot be assumed to be appropriate for other operating 
scenarios. Furthermore, attention (as approached in the present work) is dependent on 
architecture, making comparison of attention mechanisms between different architec-
tures challenging. Holistic evaluation methods are needed to solve this high-
dimensional problem. 
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Chapter 11 

Conclusions and Future Work 

Unlike previous attempts to design attentional capabilities for intelligent systems, the at-
tention mechanism design presented here takes a general and holistic approach to atten-
tion, where the phenomenon is viewed as system-wide prioritization of information and 
processes in the architecture of cognitive systems aiming for high levels of autonomy. 
The design is primarily inspired by the constructivist AI methodology (Thórisson 
2012a) and models of attention from cognitive science (Knudsen 2007, Desimone & 
Duncan 1995). Simultaneously active functions are included in the design for top-down 
and bottom-up attention, allowing systems implementing this mechanism to focus on 
active tasks while remaining alert to the operating environment. Context-sensitive prior-
itization of processes is also featured in the design as a function that learns from opera-
tional experience and improves over time. As the attention mechanism is designed to 
operate on a unified sensory pipeline, it can be applied equally to any sensory modality 
as well as to internal system data. This is a critical feature for systems designed under a 
constructivist AI methodology. 

A number of existing artificial general intelligence (AGI) architectures have been dis-
cussed that all take substantially different approaches to attention than is done here. 
Most of these approaches are limited in comparison with the design proposed here, be-
ing limited to data filtering and ignoring control aspects and process prioritization. In 
stark contrast, attention is viewed as a system-wide architecture-level function here. 
Furthermore, few cases exist where attention is applied to internal system data. With the 
exceptions of AERA (Nivel et al., 2012a, 2013) and Ikon Flux (Nivel 2007), none of the 
AGI architectures discussed follow a constructivist AI methodology or fully support re-
al-time processing. The attention mechanism of the present work and its architectural 
requirements are intended to endow the surrounding architecture with capabilities for 
real-time processing. Bottom-up attention is not featured in any of the architectures dis-
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cussed (except in AERA to a limited degree) and has been a largely unexplored topic 
for intelligent systems but is addressed directly by the present work. 

Future work includes full implementation and evaluation of the attention mechanism 
design. Successful results have already been confirmed for the AERA architecture, 
which represents the closest existing implementation of the attention mechanism pre-
sented here. However, the functionality proposed here for bottom-up attention has not 
been implemented as of yet. Bottom-up attentional functionality (as viewed in the pre-
sent work) is resource intensive; pure novelty computation is likely prohibitively so. Of 
special interest is the evaluation of the approximation methods for computing novelty 
presented here, which are intended to make resource requirements of the problem more 
tractable. Furthermore, investigation of the attention mechanism in specific domains 
and in context of specific modalities is of great interest. Vision and visual attention is an 
obvious example vision, where symbolic low-level features would need to be extracted 
from images and input as data items into the system. The capability and learning charac-
teristics (such as learning rate) of a system to improve control of attention over time, us-
ing the control parameters of the attention mechanism, is also an interesting research 
subject as it represents a complex meta-control problem. Approaches to evaluating at-
tention mechanisms of intelligent systems in general have been discussed. In particular, 
the need for task-complexity metrics has been identified, representing another direction 
of possible future work.  

The critical importance of attention and sophisticated, adaptive mechanisms for re-
source management has been highlighted for resource-bounded intelligent systems op-
erating in open-ended everyday environments under time-constraints. In particular, I 
have argued the need for these capabilities is fundamentally different and much greater 
in the case of generally intelligent (AGI) systems than traditional narrow AI systems. 
That being said, there is reason to believe that the proposed attention mechanism, and 
the requirements it rests on, represent a valid and useful step in the direction of more 
capable intelligent systems.  
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