
Autonomous Causal Generalization

Arash Sheikhlar

Dissertation submitted to the School of Technology, Department of
Computer Science at Reykjavík University in partial fulfillmentof the

requirements for the degree of Doctor of Philosophy

October 6, 2024

Thesis Committee:
Dr. Kristinn R. Thórisson, Supervisor
Professor, Reykjavík University, Iceland

Dr. Carlos Hernández Corbato, Committee member
Associate professor, Delft University of Technology, Netherlands

Dr. José Hernández-Orallo, Committee member
Professor, Technical University of Valencia, Spain

Dr. Marjan Sirjani, Examiner
Professor, Mälardalen University, Sweden

ISBN Print version 978-9935-539-40-3
ISBN Electronic version 978-9935-539-41-0
ORCID: 0000-0002-0568-075X
Copyright © 2025 Arash Sheikhlar cbnd

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/). You may copy and redistribute the material in any medium
or format, provide appropriate credit, link to the license and indicate what
changes you made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. You may not use
the material for commercial purposes. If you remix, transform or build upon
the material, you may not distribute the modified material. The images or
other third party material in this thesis are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material.
If material is not included in the book’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright
holder. The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the absence of
a specific statement that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

ii

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Report on Arash Sheikhlar’s Ph.D. Thesis and Defense

"Autonomous Causal Generalization"

Dr. Carlos Hernandez Corbato, Committee Member
Dr. Jose Hernandez-Orallo, Committee Member

Dr. Marjan Sirjani, Examiner

Summary of Scientific and Technical Contributions

The doctoral dissertation under review contributes to the study of artificial
intelligence, more specifically the generalization of the experience of an
autonomous agent, in the service of self-guided artificial transfer learning in the
physical world. Harking back to Alan Turing’s ideas about “child machines” that can
learn like human babies, the work extends ideas in constructivist AI methodology
and autonomous causal knowledge generation, demonstrating new ways of
achieving self-guided cumulative learning. It presents a theory and implementation
of software systems that can use analogical reasoning, in-situ, to learn about
things, events and phenomena that they have not encountered before, without
requiring intervention from its designers. The methods presented can be used to
engineer new kinds of systems that can handle, in a self-guided way, novelty
resulting from under-specified tasks and environments.

The work addresses many challenging topics, from philosophy, psychology and AI,
whose shape, definition and interrelatedness are sharpened in the process,
including causal relations, generalization, non-axiomatic reasoning, unified
ampliative reasoning, goal-driven analogy and even creativity.

The work has several implications for the coming decades in AI research for how
uncertainty and predictability may be implemented by autonomous systems in
complex environments. Among the notable contributions to this effect are its proof
of the non-generalizability of correlational models and an algorithm for autonomous
cumulative transfer learning through analogy making.

Evaluation of the dissertation

This is an ambitious thesis, presenting several new ideas and proof-of-concept
through a set of implemented demonstrators. Collectively, the results presented
represent a substantial step towards truly autonomous systems that can handle
exceptions, unpredicted events, and underspecified environments and tasks. The
results have already led to several publications in venues such as Proceedings of
Artificial General Intelligence and Proceedings of Machine Learning Research.

The thesis is well motivated and the technical content is sound, thoroughly
contextualized in both common and not so common theories relevant to the
artificial intelligence domain and intelligence research. The candidate is well aware
of the relevant state of the art and shows an expert knowledge of the various models
he uses and a mastery of the associated methods.

iii

The thesis document is well structured with a good balance of background and
original material, as well as detailed discussions and illustrating examples where
relevant. On the whole, the thesis is clearly written, self-contained and clear. As a
minor remark, it would have strengthened the thesis if the examples used to
demonstrate the ideas had been a bit more complex and diverse. The candidate has
incorporated the numerous comments and feedback received throughout the thesis
writing, from the Thesis Committee, with great aplomb.

In conclusion, Arash Sheikhlar’s thesis presents a number of original and significant
scientific contributions. In particular, it contributes to the broad and difficult
enterprise of cumulative learning, autonomy and non-axiomatic reasoning. The
thesis clearly fulfills the requirements for a PhD degree in Computer Science, under
the usual international standards.

Thesis Presentation and Defense

The candidate gave an engaging presentation of the work in a way that was
informative yet accessible to a general computer science audience, in spite of its
technical nature and broad scope. The accessibility of his material in the
presentation led to a number of good questions from members of the audience,
many who are not familiar with the field. The candidate confidently answered the
questions he received in a way that showed deep understanding of the context for
the work, its limitations and possible extensions.

Recommendation

Arash Sheikhlar’s doctoral dissertation offers several novel and challenging
contributions to an ambitious research programme that advances the state of the
art in artificial general intelligence and reasoning. The thesis clearly demonstrates
without a doubt that the author is able to conduct research that meets the
international requirements for a doctoral degree.

During the defense, Arash Sheikhlar showed that he can give complex technical
presentations that are accessible to a general audience. The answers to the
questions he received were good, to the point, and showed scientific maturity. We
are very happy to recommend that the candidate be awarded the PhD degree in
Computer Science from Reykjavik University.

The thesis work is accepted by this Committee “as is” with no requests for additions
or modification.

Reykjavik, August 9, 2024,

Dr. Carlos Hernandez Corbato Dr. Jose Hernandez-Orallo Dr. Marjan Sirjani

iv

Autonomous Causal Generalization
Arash Sheikhlar

October 6, 2024

Abstract

For any agent to effectively learn how to achieve its goals via interaction
with environments, it must have causal reasoning capabilities. Causal rea-
soning enables an agent to predict actions’ consequences and hypothesize the
necessary conditions for taking appropriate actions. Effective mechanisms
for generalizing causal knowledge and reasoning lead to more adaptive and
autonomous artificial intelligence (AI) systems. While the topic of general-
ization has extensively been researched in AI over the past few decades, the
question of which mechanisms are required to enable causality-based agents
to leverage their familiarity with tasks in order to generalize their knowl-
edge when trying to achieve their goals has remained to be addressed. In
this thesis, we present a cumulative learning-based generalization mechanism
that allows AI agents to use their familiarity with experienced situations to
guide their causal hypothesis generation and exploration processes, thereby
making their task planning more flexible and well-informed. The mechanism
also makes AI systems more flexible and imaginative by enabling them to
exploit both good and bad analogies to invent fresh approaches to new tasks.
Constructivism and causality serve as the primary foundations of this work’s
methodology. To validate the proposed mechanism, we have implemented
it into a general machine intelligence (GMI) aspiring control system called
Autocatalytic Endogenous Reflective Architecture (AERA) and tested it on
multiple robot learning tasks as a proof of concept. We have also compared
the extended AERA to another GMI aspiring system called Non-Axiomatic
Reasoning System (NARS) in terms of their generalizability. The mechanism
presented showcases its efficacy through empirical evidence and analytical
evaluation.

Keywords: General Machine Intelligence, Artificial general intelligence,
Causality, Generalization, Knowledge Representation, Autonomy, Reasoning

Algrím fyrir alhæfingar um orsakasambönd
Arash Sheikhlar

October 6, 2024

Útdráttur

Gervigreind kerfi (e. artificial intelligence systems, AI) sem eiga að ná mark-
miðum í fjölbreyttu umhverfi, og sem læra sjálf gegnum vélrænt nám, þurfa
að tákna orsök og afleiðingu þannig að það nýtist til sjálfstæðrar hugsunar
og röksemdarfærslu. Sé sú krafa uppfyllt geta kerfin fært rök fyrir afleið-
ingum aðgerða sinna, spáð fyrir um nauðsynlegar forstendur þeirra, og séð
fyrir hvernig best sé að ná settum markmiðum. Nytsamlegar alhæfingar um
orsakatengsl eru forsenda þess að gæða gervigreind kerfi sjálfstæðri aðlögun-
arhæfni (e. autonomy). Þótt ýmsar aðferðir til framleiðslu alhæfingarreglna
hafi verið skoðaðar í gervigreind á undanförnum áratugum er spurningunni
enn ósvarað hvernig gervigreind geti nýtt til þess eigin reynslu af orsaka-
samhengi í fyrri verkefnum. Hér kynnum við aðferð fyrir alhæfingagerð í
vélrænu námi sem gerir gervigreind kleift að nota uppsafnaða þekkingu sína
til að spinna nýjar orsakatilgátur og sannreyna þær með skipulagðri íhlutun
við umhverfið. Aðferðin gerir gervigreind kerfi betur í stakk búin að aðlagast
nýjum aðstæðum og nýta betur þekkingu í nýjum verkefnum. Aðferðin gerir
gervigreindarkerfi sveigjanlegri og hugmyndaríkari með því að leyfa þeim að
nýta bæði góðar og slæmar samlíkingar og myndlíkingar til að finna upp
nýjar aðferðir við verkefni. Aðferðin á rætur að rekja til hugsmíðahyggju
(e. constructivism) og sjálfstæðrar táknunar orsakasamhengis (e. autonomus
generation of causal knowledge). Til að sannreyna aðferðina höfum við inn-
leitt það í kerfi sem er hluti af rannsóknum á alhliða gervigreind (e. general
machine intelligence/artificial general intelligence) og kallast Autocatalytic
Endogenous Reflective Architecture (AERA). Sýnt er hvernig aðferðin virk-
ar í nokkrum verkefnum. Þá er AERA borin saman við Non-Axiomatic
Reasoning System (NARS) hvað varðar alhæfingargetu, þar sem hugmynda-
fræðilegur grunnur NARS er vel fallinn til slíks samanburðar. Aðferðin og
virkni hennar er metin með bæði empírískum og analýtískum hætti.

Efnisorð: Alhliða gervigreind, orsakatengsl, alhæfing, þekkingartáknun,
sjálfstæði, röksemdafærsla

vi

Acknowledgements

This research was partially funded by the Icelandic Institute for Intelligent
Machines, Cisco Systems, Reykjavik University Research Fund, and the De-
partment of Computer Science at Reykjavik University. With the completion
of this thesis, the author gratefully acknowledges the Department of Com-
puter Science at Reykjavik University for their assistance. Special thanks
go to Kristinn R. Thórisson for his encouragement, support, and time he
dedicated to guiding this thesis in the right direction. Carlos Hernández
Corbato, José Hernández-Orallo, Stefán Ólafsson, and Marjan Sirjani also
provided helpful comments and feedback. Lastly, the AERA team members
Jeff Thompson, Leonard Eberding, and Chloe Schaff deserve recognition for
their invaluable feedback.

Contents

Acknowledgements vii

Contents viii

List of Figures xi

List of Abbreviations xiii

1 Introduction 1
1.1 Introduction . 1
1.2 Research questions . 3
1.3 Research hypotheses . 5
1.4 Contribution and impact . 6
1.5 Organization of thesis . 7

2 Theoretical & Methodological Framework 9
2.1 Introduction . 9
2.2 Child machine and constructivism 9
2.3 Learning controllers and feedback loops 10
2.4 Causality . 10
2.5 Assumption of insufficient knowledge and resources 11
2.6 Ampliative reasoning . 11
2.7 Real-time processing and temporal grounding 12
2.8 Scalable knowledge representation 12
2.9 Summary . 13

3 Related Work 15
3.1 Introduction . 15
3.2 Transfer learning . 15

3.2.1 Reinforcement learning 16
3.3 Logic frameworks . 17

3.3.1 Situation calculus . 17

viii

3.3.2 Non-Axiomatic Reasoning System (NARS) 18
3.4 Automated planning . 20

3.4.1 Classic planning . 20
3.4.2 Probabilistic planning 21
3.4.3 Artificial Neural Networks 21

3.5 Causality . 22
3.5.1 Observation-based causal inference 22
3.5.2 Intervention-based causation 22
3.5.3 Causality in NARS . 23

3.6 Analogy . 24
3.6.1 Analogy by artificial neural networks 24
3.6.2 Analogy in symbolic AI 24
3.6.3 Analogy in NARS . 25

3.7 Summary . 25

4 Problem Description 27
4.1 Introduction . 27
4.2 Causal relations: designer’s perspective 27
4.3 Causal knowledge: a new formulation 31
4.4 Causal Generalization . 39

4.4.1 Abstraction . 39
4.4.2 Selective attention . 40
4.4.3 Induction . 42
4.4.4 Knowledge pruning . 42

4.5 Summary . 44

5 Autonomous Cumulative Transfer Learning 47
5.1 Introduction . 47
5.2 A theory for autonomous cumulative transfer learning 48
5.3 Reformulation of ACTL theory: Dynamic processes as phe-

nomena . 49
5.4 Similarity dimensions . 50
5.5 Autonomous causal generalization 53

5.5.1 Goal-Driven Analogy 57
5.5.2 Planning/exploration 61
5.5.3 Learning from failure 62
5.5.4 ACTL mechanism . 63

5.6 Summary . 63

6 Design & Implementation 65
6.1 Introduction . 65
6.2 Knowledge representation and reasoning in AERA 66
6.3 Frame problem and AERA 67

6.4 ACTL in AERA . 68
6.4.1 Integrated mechanism for goal-driven learning and plan-

ning . 69
6.4.2 Analogy in AERA . 72
6.4.3 Learning from failure 73
6.4.4 Planning/exploration in AERA 74

6.5 Summary . 74

7 Results & Evaluation 77
7.1 Introduction . 77
7.2 Invariant causal learning . 77
7.3 Motor skills learning . 83
7.4 NARS . 83
7.5 AERA . 89

7.5.1 SizeMatterGrab experiment 90
7.5.2 AlignGrab experiment 96
7.5.3 Discussion of results 100

7.6 Summary . 101

8 Conclusions and Future Work 109

Bibliography 113

A Definitions 119

x

List of Figures

5.1 ACTL guiding cognitive agents in environmental interactions by
generalizing patterns and specializing models 54

5.2 An example of model learning via experimentation, analogy and
learning from failure . 55

5.3 Analogy Process: Matching, Comparison, and Model Induction . 59
5.4 Model chain induction based on matching with predicted situations 60

6.1 Integrated ACTL: generalizing preconditions for planning 70

7.1 An illustration for Rendezvous task and circular trajectory tracking 81
7.2 Results of comparison between the invariant causal model and

correlational model . 82
7.3 Webots simulation of SizeMatterGrab and AlignGrab experiments 90
7.4 An illustration of SizeMatterGrab and AlignGrab experiments

done by OpenAERA . 91
7.5 Learned models and composite states in the experimentation phase 92
7.6 Observation facts showing the properties of entities in SizeMat-

terGrab at different times . 93
7.7 Planning process in OpenAERA in SizeMatterGrab experiment . 103
7.8 AlignGrab Experiment’s illustration 104
7.9 Learned composite states and model in the experimentation phase

of AlignGrab . 105
7.10 Analogy-based generated models and composite states in Align-

Grab experiment . 106
7.11 Anti-requirement model generated by the learning from failure

mechanism in AlignGrab experiment 106
7.12 Generalized requirement models and composite states via cumu-

lative learning . 107

xii

List of Abbreviations

Ph.D. Doctor of Philosophy
AI Artificial Intelligence
AGI Artificial General Intelligence
GMI General Machine Intelligence
AERA Auto-Catalytic Endogenous Reflective Architecture
NARS Non-Axiomatic Reasoning System
LHS Left-hand side
RHS Right-hand side

xiv

Chapter 1

Introduction

1.1 Introduction

Creating machines that can autonomously grow their knowledge by inter-
acting with their environment, much like a human child, has been a goal of
Artificial Intelligence (AI) since Turing first proposed the idea (1950). The
interaction of such machines calls for taking action, leading to changing the
state of environments, which may cause the machines to face unfamiliar situ-
ations. So, they must be able to create hypotheses about what their actions
might cause in novel but partly familiar situations based on their prior causal
knowledge. New hypotheses can be created by generalizing prior experience
about the tasks based on how familiar they are, as it is not always practical to
perform all possible experiments to learn to solve the tasks. This limitation
is often due to the lack of sufficient resources. Therefore, designing effective
generalization mechanisms enables the creation of intelligent machines that
adapt under insufficient knowledge and resources (P. Wang, 2019).

General-purpose AI systems must be capable of generalizing their knowl-
edge in an autonomous manner (Thórisson, 2021b). In this work, we investi-
gate the requirements for autonomous generalization of causal knowledge and
introduce a mechanism that allows AI systems to learn to take appropriate
actions in novel situations based on extending their causal understanding.
Our methodology is based on the constructivist AI framework (Drescher,
1991; Thórisson, 2012), where an AI system is a learning controller, i.e.,
an agent, that grows its knowledge from a small "seed" through interaction
with its surroundings and learns through feedback loops based on a scalable,
non-axiomatic, temporal knowledge representation and ampliative reason-
ing (unified deduction, abduction, analogy, and induction). In our study, an
agent is an embodied AI system interacting with its environment through
its I/O devices. It must be autonomous, meaning that it can generalize its

2 CHAPTER 1. INTRODUCTION

knowledge of its own accord and in line with its goals. This section briefly
describes the terms generalization, autonomy, and causality, the fundamen-
tal notions of this research.

Generalization
Generalization means extending the scope of an agent’s current knowledge
so that it fits the requirements of performing new tasks (Sheikhlar et al.,
2022). One way of generalizing knowledge is to create general hypotheses
from specific experiences, which might be accurate or inaccurate and, thus,
must be evaluated in action and revised if necessary. This implies that
agents need to validate their created general hypotheses, which must be an
essential consideration when designing effective generalization methods for
autonomous agents (Sheikhlar and Thórisson, 2024).

Analogical reasoning enables humans to create hypotheses about how to
solve novel but partly familiar tasks based on comparing relevant pieces of
knowledge with the experienced tasks, choosing the proper knowledge pieces
to be transferred, generalizing the knowledge pieces through adjusting/prun-
ing them, and applying the new knowledge pieces through taking relevant
actions (Sheikhlar et al., 2022)1. In other words, analogy involves analyzing
a phenomenon’s familiar and unfamiliar aspects and, accordingly, generaliz-
ing the relevant pieces of knowledge and taking relevant actions when novel
situations/tasks are encountered (Thórisson, 2021b). Similarly, if designed
and implemented effectively, the analogy process can guide AI agents’ hy-
pothesis generation and subsequent interactions, enabling them to come up
with sensible solutions when facing partially familiar and uncertain situa-
tions/tasks.

Autonomy
An autonomous agent can perform its tasks automatically without a nec-
essary reliance on external guidance and supervision. Autonomous agents
require proper seed knowledge and interaction mechanisms provided at de-
sign time that enable them to perform their tasks, adapt themselves to novel
circumstances, and bootstrap learning new pieces of knowledge whenever re-
quired (Thórisson, 2021b). An important benefit of incorporating autonomy
in AI systems is that it allows the AI system designers not to preprogram
all required operational knowledge for the systems, which is, in fact, close
to impossible for complex tasks and environments, such as physical tasks,
as there exist many situations and scenarios that systems may encounter
but can not be predicted at design time. Therefore, autonomy must be a

1We consider analogy a process that does not necessarily require intentional efforts
to make analogies for the sake of analogy. Our concept of analogy relies on comparisons
between processes or phenomena as a natural process that occurs in light of achieving a
purpose.

1.2. RESEARCH QUESTIONS 3

fundamental assumption for AI agents that are used in environments with
unpredictable features.

Causality
Effective interaction with environments demands the agents’ ability to pre-
dict how their actions change the state of their surroundings. Additionally,
they need to be capable of hypothesizing the most salient conditions and
reasons for choosing specific actions. Such capabilities require an agent to
create and use causal knowledge. The knowledge about causal relations has
other features, such as that it has to do with the physical properties of
environments that do not easily alter when the agents try to solve differ-
ent variations of tasks in the same environments (Pearl, 2009a). Therefore,
causality can be a solid foundation for the representation of knowledge and
its transfer when the agents deal with tasks that are novel but partly familiar
(Sheikhlar et al., 2021). However, although causal knowledge has to do with
the physics of environments, an autonomous agent must assume the knowl-
edge to be a defeasible hypothesis that can be modified or even falsified as
the agent accumulates contradictory evidence.

1.2 Research questions

A proper formulation of causality provides a knowledge representation that
allows for task-independent transfer of knowledge and generalization over
task variations (Pearl, 2018). One way to learn causal relations is to inter-
vene in environmental properties (Peters et al., 2017a). Therefore, our first
question is:

• Q1: How useful and robust is the causal knowledge learned from an
agent’s interventions for task-independent generalization?

The learned causal knowledge by an agent can be composed of a set
of causal relations between events, actions, and environmental properties.
Different relations in different contexts may or may not be relevant to the
agents’ goal achievement, leading us to ask:

• Q2: How can an agent generalize the aspects of its causal knowledge
relevant to its goal-achievement, allowing it to generate new hypotheses
about solving novel tasks efficiently?

According to Wang’s (2020) theory of intelligence, reasoning is a funda-
mental aspect of a general-purpose, autonomous mind. This theory suggests
that learning and reasoning are not separate but rather intertwined. In other
words, hypothesizing new pieces of knowledge and drawing conclusions are

4 CHAPTER 1. INTRODUCTION

inherently linked. Also, extending the scope of knowledge calls for utilizing
the existing knowledge to generate new hypotheses, which might be correct
or incorrect (Thórisson, 2021b). So, our last research question is:

• Q3: What are the essential processes for reasoning and learning in
a unified manner, allowing an agent to autonomously learn from cor-
rectly or incorrectly generated causal hypotheses?

To summarize, a machine seeking autonomous generalization must have
causal knowledge representation, reasoning, and generalization mechanisms,
allowing it to generalize relevant pieces of knowledge efficiently and perform
reasoning and learning in a unified manner to generalize the knowledge ef-
fectively.

Research aim
While the concepts of knowledge generalization and transfer learning have
been extensively studied in AI, most machine learning (ML) based approaches
rely on the heavy involvement of human programmers and their prior knowl-
edge about the tasks, limiting the autonomy of their proposed methods, as
studied in (Sheikhlar et al., 2020). Besides, there is no holistic approach to-
wards the design of general-purpose AI systems where interconnections are
considered between different cognitive information processing parts such as
reasoning, learning, and resource management.

Therefore, the primary aim of this research is to develop a new mechanism
for an agent that unifies the following.

• (a) to hypothesize new, generalized conditions for different actions the
autonomous agent can take for performing new tasks that have never
been encountered before,

• (b) to verify and evaluate the correctness of the generated hypotheses
via direct interventions made by the agent’s actions while helping the
agent to perform the novel tasks and achieve its goals,

• (c) to unify the outcomes of the agent’s actions via integrating newly
hypothesized pieces of knowledge with the existing knowledge.

The triad of hypothesizing, verification, and unification leads to an efficient
knowledge generalization and an effective guided experimentation (a.k.a. ex-
ploration), where the general hypotheses created steer the agent’s subsequent
actions. As such a generalization process aligns with goal achievement, the
agent spends fewer resources exploring multiple possibilities.

To summarize, the primary contribution of this research is to introduce
a reasoning mechanism by which AI agents can extend the scope of their

1.3. RESEARCH HYPOTHESES 5

causal knowledge to make it more applicable for planning and exploring
environments for new pieces of knowledge.

1.3 Research hypotheses

For autonomous learning, knowledge representation must allow an agent to
generate and verify its hypotheses through both observations and interven-
tions (Pearl and Mackenzie, 2018). It must also enable the agent to learn
the importance of relations and properties in particular situations. Such
knowledge representation can effectively generalize beyond task variations.
Therefore, we propose our first hypothesis that

• H1: A causal knowledge representation can be generalized over vari-
ations of tasks with new goals, initial conditions, etc, thus increasing
adaptivity when encountering novel tasks compared to correlational
knowledge representations.

As knowledge acquisition in partially familiar environments must occur in
a gradual manner, a cumulative learning process is called for, which in-
volves automatically and seamlessly integrating new information with ex-
isting knowledge (Thórisson and Talbot, 2018). In fact, autonomous gen-
eralization should be a side effect of identifying and utilizing familiarities
of environments via using analogies while gradually accumulating and test-
ing knowledge through interaction with environments (Thórisson, 2021b).
Therefore, our second hypothesis is

• H2: A goal-driven analogical reasoning-based knowledge accumula-
tion enables an agent to generalize knowledge while hypothesizing and
exploring different solutions for goal achievement. Such guided explo-
ration based on defeasible analogy-based hypotheses is more efficient
and effective than unguided random exploration.

A goal-driven analogy-making approach provides an agent with high flexi-
bility in reasoning by creating multiple hypotheses about how to solve novel
tasks (Sheikhlar and Thórisson, 2024). Yet, some of these hypotheses might
be incorrect due to over-generalization. Thus, our third research hypothesis
is

• H3: A causality-based system that integrates goal-driven analogy-
making with learning from prediction failures can cumulatively learn
from correct or incorrect analogies and generalize its knowledge in an
effective manner. This calls for ampliative reasoning within a con-
structivist AI framework, enabling the agent to unify and use different
types of reasoning, i.e., deduction, abduction, induction, and analogy.

6 CHAPTER 1. INTRODUCTION

Ampliative reasoning based on goal-driven analogy-making steers the agent’s
exploration processes, allowing the agent to unify the agent’s new experiences
with existing knowledge and gradually improve its hypothesis generation.

1.4 Contribution and impact

Designing an autonomous mechanism that can incrementally improve a causality-
based learner’s knowledge acquisition and planning over time is a challenge
in AI research that still needs to be addressed. This research is one of
the first attempts to present a mechanism for analogical reasoning to guide
causal knowledge generalization with the aim of improving the planning and
exploration for agents.

The thesis will have several contributions to the fields of intervention-
based causal AI, autonomous control, and general machine intelligence, de-
tailed as follows:

• C1: We propose an intervention-based causal discovery algorithm for
learning an invariant model and evaluate the model’s robustness in
solving new tasks (Sheikhlar et al., 2021). We study the limitations of
such invariant models and why more comprehensive knowledge repre-
sentations are called for.

• C2: We present a theory that relates an agent’s familiarity with situa-
tions to the predictability of intervention outcomes in those situations.
The theory is explained in Section 5.2 and in detail in (Sheikhlar et al.,
2020).

• C3: We design and implement a goal-driven analogy mechanism based
on the notion of familiarity, integrated with a causality-based gen-
eral machine intelligence (GMI) aspiring control architecture, Auto-
catalytic Endogenous Reflective Architecture (AERA) (Nivel, Thóris-
son, Dindo, et al., 2013). The mechanism extends AERA’s abductive
and inductive reasoning capabilities, allowing it to generalize its causal
models, identify the significance of environmental properties, and gen-
erate and try multiple plans for goal achievement. The mechanism is
described in Section 5.5 and partly by papers (Sheikhlar and Thóris-
son, 2024; Sheikhlar et al., 2022).

• C4: We evaluate the proposed mechanism in terms of extending AERA’s
reasoning capabilities by testing it with a few motor skills learning
tasks within a robot simulation environment and comparing its gen-
eralization features with those of another GMI-aspiring system. The
evaluations are described by Sections 7.4 and 7.5 and partly by paper
(Sheikhlar and Thórisson, 2024).

1.5. ORGANIZATION OF THESIS 7

Autonomous causal generalization by cumulative learning and analogy-
making is a significant contribution to various practical fields, including au-
tonomous control, cognitive robotics, and any field that uses AI systems
within partially unknown environments. More specifically, it becomes useful
for tasks where causal reasoning-based AI agents cannot be fully pre-trained
due to unforeseen conditions that might occur within the environments they
interact with. This approach provides flexibility when facing novelty, an
inherent property of complex physical tasks. The introduced mechanism
guides an agent towards pruning out irrelevant pieces of knowledge through
interaction and learning relevant pieces over time. The mechanism can be a
foundation for guided exploration for agents, presenting multiple solutions
with varying confidence levels for task-solving. In summary, this approach
is a practical step towards higher levels of autonomy and generality in AI
systems, and due to its flexibility, it can be used in a variety of applications.

1.5 Organization of thesis

The thesis has eight chapters. Excluding the introduction, the second chap-
ter covers the theoretical and methodological framework of the thesis, which
is briefly discussed in our paper (Sheikhlar and Thórisson, 2024). Chap-
ter three investigates related work, discussing transfer learning methods,
planning frameworks, causality literature, and analogical reasoning methods.
Some sections of chapter three include content from related work sections of
our published papers (Sheikhlar and Thórisson, 2024; Sheikhlar et al., 2020,
2021, 2022). Chapter four describes the problem of causal generalization in
detail. The section Causal relations: designer’s perspective of this chapter
is adapted from the causal interventions’ formalization in (Sheikhlar et al.,
2021). Chapter five outlines our proposed autonomous cumulative transfer
learning (ACTL) mechanism. The sections related to analogy-making, a key
element of the ACTL mechanism, are adapted from our papers (Sheikhlar
and Thórisson, 2024; Sheikhlar et al., 2020, 2022). Chapter six describes
the details of implementing the ACTL mechanism in AERA. Chapter Seven
provides an empirical, analytical, and comparative evaluation of the general-
ization capabilities of AERA and non-axiomatic reasoning system (NARS).
A part of AERA’s implementation results and the related evaluations can
be found in (Sheikhlar and Thórisson, 2024). Chapter eight concludes the
thesis by briefly discussing the results, implications, and future work.

8

Chapter 2

Theoretical & Methodological
Framework

2.1 Introduction

When it comes to Artificial Intelligence (AI), setting forth an explicit method-
ological framework from the beginning becomes useful, as it leads to the in-
vestigation’s directedness, coherence, and clarity of concepts being studied.
This chapter, therefore, introduces the direction and the methodology of this
research, which is built upon constructivism that allows cognitive agents to
grow their knowledge through interaction and reasoning (Piaget et al., 1951;
Thórisson, 2012).

Disclosure: This chapter provides a more comprehensive description of
methodological framework sections in our papers (Sheikhlar and Thórisson,
2024; Sheikhlar et al., 2022).

2.2 Child machine and constructivism

Turing (1950), around seven decades ago, suggested that the first step to-
ward realizing human-level intelligence in machines is to make them mimic
a human child’s learning and cognitive processes. He proposed that such a
machine could learn from scratch by observing its environment, interacting
with it, and writing and modifying its own code. This work follows Turing’s
suggestion of building machines capable of gaining knowledge from a tiny
"seed", based on which the knowledge grows gradually through experiments
(Thórisson, 2012).

Piaget (1951), in his constructivist theory, posits that human children,
through interaction with their surroundings, build and adjust mental mod-

10
CHAPTER 2. THEORETICAL & METHODOLOGICAL

FRAMEWORK

els that represent their understanding of the world. This knowledge creation
and integration that occurs at different stages of cognitive development in-
volves using logic as a tool for organized thinking, creating hypothetical
scenarios, and performing reasoning over abstract concepts. According to
Piaget, a learning human mind acquires and constructs its knowledge and
understanding from experiences; teachers do not “instruct” their students so
much as they guide them in their construct and their cognitive development
and growth.

Piaget’s theory has inspired AI researchers to build new methodologies
for general machine intelligence development (Drescher, 1991; Thórisson,
2009). Our work is based on the principles of constructivist AI, introduced
by Thórisson (2012), addressing how an agent can effectively grow and accu-
mulate its knowledge via direct interaction. Some of the essential principles
of constructivist AI are briefly discussed in this chapter.

2.3 Learning controllers and feedback loops

A learning controller is an agent with a physical or virtual body, e.g., an
electro-mechanical robot or a virtual character in a simulation environ-
ment, that can interact with its surroundings using its sensors and actuators
and learns to control things through manipulating them in its desired way
(Thórisson, 2021b). According to Conant and Ashby’s theorem (1970), “ev-
ery good regulator of a system must be a model of that system”. A good
learning controller processes information to create better models of itself and
its environment via taking actions and analyzing the outcomes (Thórisson,
2012). Feedback loops allow agents to take actions based on their current
models and evaluate whether and how the actions lead to achieving specific
goals, enabling the agent to learn new models or adjust the existing ones
based on assessing how accurate the utilized models are in terms of goal
achievement (Sheikhlar et al., 2022).

2.4 Causality

Pearl (2009a) considers cause-effect relationships as “autonomous mecha-
nisms” that have strong connections to the physics of environments and
can be manipulated separately. He asserts that causality has the following
"rungs": 1) association, which has to do with an agent’s ability to make pre-
dictions based on correlations; 2) interventional reasoning, which is about
inferring how the actions change the world; and 3) counterfactual reasoning,
which refers to reasoning about imaginary scenarios that the agent has not
yet experienced but could have experienced under different conditions (Pearl
and Mackenzie, 2018). Thórisson (2016) adds explainability and recreation

2.5. ASSUMPTION OF INSUFFICIENT KNOWLEDGE AND
RESOURCES 11

ability to the levels of understanding, which its higher levels enable agents
to not only learn from interventional reasoning but to utilize counterfactuals
to make new guesses about how to deal with situations that might happen in
the future. These imply that learning controllers with causal understanding
are required to realize higher levels of intelligence in machines.

2.5 Assumption of insufficient knowledge and
resources

Wang (2009b) argues that the Assumption of Insufficient Knowledge and
Resources (AIKR) must be considered for the design of general-purpose AI
systems. According to this assumption, knowledge is assumed to be insuffi-
cient, implying that it must not have fixed axioms (P. Wang, 1995). Instead,
the knowledge pieces must be considered as hypotheses with confidence val-
ues that can alter when the agent collects evidence for the hypotheses. Also,
according to AIKR, knowledge is defeasible and can be falsified as contradic-
tory evidence is collected. This implies that an agent dealing with novelties
must be able to base its reasoning on insufficient collected information, un-
certain hypotheses, and limited resources (e.g., time)(Sheikhlar et al., 2021).

2.6 Ampliative reasoning

Reasoning components used by generally intelligent agents must not be in-
dependent of each other, as the components may require to be connected
or integrated to accumulate knowledge effectively and efficiently (Thórisson,
2021b). More precisely, a unified reasoning mechanism is called for based on
the following principles (Thórisson, 2021b).

• (a) deduction allows an agent to use hypothesized rules/knowledge
pieces to reason forward from actions toward changes in the environ-
ment’s properties,

• (b) abduction allows for reasoning backward from the desired states
to potential actions or the conditions under which the actions can be
taken,

• (c) analogy can be used for comparing different hypotheses with faced
situations/tasks, analyzing the similarities and differences, and hy-
pothesizing new pieces of knowledge to be applied to the novel sit-
uations/tasks.

• (d) induction allows the agent to use different learning mechanisms to
hypothesize new rules/knowledge pieces.

12
CHAPTER 2. THEORETICAL & METHODOLOGICAL

FRAMEWORK

The above-mentioned reasoning components together refer to ampliative
reasoning1 (Thórisson, 2021b; P. Wang, 2013), by which the learning con-
trollers can generalize their knowledge autonomously and learn to focus their
attention by excluding unimportant aspects of environments from consider-
ation and taking into account the important ones when taking their actions
(Sheikhlar et al., 2020).

2.7 Real-time processing and temporal grounding

It is essential for learning controllers to explicitly incorporate time into their
knowledge representation, as only in this way will it be possible to calculate
the precise timing of the predicted situations and infer the correct sequences
of actions that need to be taken during a generated plan. This is a critical
feature of real-time controllers, which take into account an agent’s ability to
accurately predict behaviors using its current knowledge (Sheikhlar et al.,
2022).

Real-time processing is also essential for controllers that constantly verify
their predictions via their existing knowledge in parallel with pursuing an
already generated plan. In other words, while monitoring prediction via
deductions, a real-time controller may generate plans via abduction and, at
the same time, generate new hypotheses through induction. The reason is
that the agent must not ignore monitoring its predictions when achieving its
goals or put learning on hold when planning. This means that some (or even
all) of abduction, deduction, analogy, and induction components may occur
simultaneously and require precise timing. The requirement for real-time
control is that the knowledge representation must be based on fine-grained
models, as prediction monitoring of complex models is impractical (Nivel
and Thórisson, 2013b).

2.8 Scalable knowledge representation

The knowledge representation for a learning controller must handle amplia-
tive reasoning in real time under AIKR. Therefore, it must be compositional
and thus scalable to represent complex behaviors/processes via chains and
hierarchies of representations of simpler behaviors/processes. A composi-
tional knowledge representation has the potential to be controlled, analyzed,
analogized, and scaled entirely or partially. It also eases task-independent

1The term ‘reasoning’ can be ambiguous, as reasoning in different AI systems might
involve different information processing paradigms. ‘Ampliative reasoning,’ however, em-
phasizes the collective role of deduction, abduction, induction, and analogy, allowing for
creating and verifying new hypotheses and knowledge, as explained in (Thórisson, 2021b).
Note that the definition and integration of these components can vary in different systems.

2.9. SUMMARY 13

reasoning by dividing the causal knowledge of an agent up into smaller,
meaningful pieces and then connecting them in multiple different ways for
reasoning in various contexts and tasks (Belenchia et al., n.d.). A dynamic,
interlinked network of causal relations enables the agent to learn and solve
variations of tasks in a more flexible manner (Sheikhlar et al., 2022). Also,
such a representation enables a learning controller not only to represent but
also to manipulate environments’ properties at the desired level of detail.
This can only be achieved if the causal relations are captured and formu-
lated as peewee- (small) size models to represent simple relations, which can
also be used as building blocks of representing complex relations in different
task-environments (Sheikhlar et al., 2022) 2.

2.9 Summary

In this chapter, we went over the key principles of constructivist AI and
their necessity for the design and development of agents learning from direct
experience and hypothesizing new knowledge via reasoning. Constructivism
is based on agents’ cognitive growth and interaction with environments, in-
dependently selecting, hypothesizing, and using knowledge in novel situa-
tions/tasks. Learning agents call for feedback loops, allowing them to learn
from their interventions. They also need causality, providing a foundation for
reasoning and generalizing causal relations both through and beyond their
direct experiences. Such causal reasoning must be under the AIKR; that is,
the knowledge has degrees of truth and is falsifiable. The commitment to
AIKR allows AI systems to adapt to novel situations where sufficient knowl-
edge is unavailable. Learning agents also require ampliative reasoning, which
unifies multiple reasoning types, including deduction, abduction, induction,
and analogy, essential for effective and efficient knowledge acquisition and
generalization. The knowledge representation and reasoning processes must
also consider temporal aspects of environments, allowing for predicting ac-
tion sequences at the right time and enabling the controllers to monitor,
plan, and generate hypotheses simultaneously. Lastly, such a learning con-
troller calls for a scalable and compositional knowledge representation by
which an agent can learn and perform complex tasks. Such representation
supports the manipulation and comparison of knowledge at multiple levels
of detail, allowing for flexible and adaptable learning and planning.

2The reason for using the term ’task-environments’ instead of only ’tasks’ or ’envi-
ronments’ is that, from a human task designer’s perspective, it is not always trivial to
distinguish the elements/variables/relations of each, especially for agents exploring com-
plex environments for solving complex tasks (Belenchia et al., 2022).

14

Chapter 3

Related Work

3.1 Introduction

As detailed in the previous chapter, achieving autonomous knowledge trans-
fer and generalization necessitates a holistic approach that unifies multiple
reasoning types while taking practical assumptions, e.g., Wang’s (2009b)
Assumption of Insufficient Knowledge and Resources (AIKR), into account.
This chapter delves into the current methods used in machine learning (ML),
automated planning, and symbolic AI research that are related to this con-
text while analyzing why each method falls short of meeting the requirements
for autonomous causal generalization. The chapter also explores the meth-
ods regarding causality and analogical reasoning, as these notions are closely
related to the mechanism that will be introduced later in the thesis.

Disclosure: The transfer learning and analogy sections of this chapter are
partly adapted from the related work section of our papers (Sheikhlar et
al., 2020, 2021) and (Sheikhlar and Thórisson, 2024; Sheikhlar et al., 2022),
respectively.

3.2 Transfer learning

The closest notion to generalization in ML is often referred to as transfer
learning (TL). A well-known example is deep transfer learning (DTL) ap-
proaches based on stand-alone Artificial Neural Networks (ANNs), which are
primarily domain-dependant and supervised approaches (Tan et al., 2018;
Yosinski et al., 2014), making DTL techniques overlook the possibility of
self-guided, autonomous transfer of knowledge (Sheikhlar et al., 2020). Yet,
we briefly explore a few ANN-based robot planning methods later in another
section 3.4. This section, however, mainly explores reinforcement learning

16 CHAPTER 3. RELATED WORK

(RL) techniques that allow learning agents to take action and learn from
how their actions affect their environment. This section is partly adapted
from the related work sections of the papers (Sheikhlar et al., 2020, 2021).

3.2.1 Reinforcement learning

In reinforcement learning (RL), the rewards guide the agent’s subsequent
interventions (a.k.a. actions) in environmental variables/properties via feed-
back, eventually allowing it to find the optimal solutions for goal achievement
(Sutton and Barto, 2018). In this context, transfer learning approaches, re-
ferred to as reinforcement transfer learning (RTL), allow an RL-based agent
to interact with an environment while performing a particular source task,
acquire some pieces of knowledge, and then use that knowledge in order to
solve other variations of the source task in analogous environments (Tay-
lor and Stone, 2009). Yet, the knowledge pieces transferred between task
variations depend on task goals, meaning that the transferred knowledge
may become inaccurate when the goals change. RTL methods are usually
defined in model-free RL frameworks, where the learned policies mapping
states to actions depend on their reward system and not the environments’
causal structures. However, model-free RL differs from what is needed for
autonomous generalization, as when the tasks, goals, or causal structures
change, the inaccurate transferred knowledge usually leads to a slow un-
learning and relearning of required policies (Eberding et al., 2020).

Which constructivist AI principles do reinforcement learning al-
gorithms not meet?
In a project we conducted, different model-free RL agents, such as Q-learning
and DDQNs, undergo evaluations in terms of their autonomous transfer
learning capability (Eberding, Sheikhlar, et al., 2022, 2020). The tests are
done within ABA settings, where the agents are trained on a classic control
task A, i.e., inverted pendulum task, tested on a similar task B, and retested
on the original task A again. The evaluation results have demonstrated that
all RL agents struggle with generalizing to phase B and relearning in phase
A due to the changes in the causal structure of the phases.

• Model-free RL and Deep-RL algorithms are designed to learn policies
that maximize expected rewards, implying that their knowledge rep-
resentation and learning are task-dependent, as when the goals and
environments alter, the existing knowledge becomes inaccurate.

• When RLs are utilized in new tasks, they may catastrophically forget
their previously acquired knowledge, hindering the ability to transfer
knowledge effectively. We will see later in this thesis that autonomous

3.3. LOGIC FRAMEWORKS 17

knowledge transfer calls for tweaking existing knowledge to meet the
requirements of a new situation.

As explained in (Bareinboim et al., 2022), model-free reinforcement learning
does not support the second and the third rungs of causal understanding (see
Section 2.4). However, model-based RLs are more effective in learning and
representing the environment’s dynamics (Sheikhlar and Fakharian, 2018).
Yet, they are based on restrictive assumptions, such as the prerequisite that
all the state variables must be at hand and the dynamics of their environ-
ment must remain constant, none of which align with the requirement for
knowledge defeasibility (detailed in Section 2.5).

3.3 Logic frameworks

When it comes to explicit knowledge representation, logic provides proper
ways to represent properties and relations and reasoning over them. First-
order logic (FOL) is a widely used form of logic in AI due to its expressiveness
and is a basis for various formalisms that enable reasoning, knowledge rep-
resentation, and planning (Russell and Norvig, 2016). This section analyzes
a FOL-based formalism, known as situation calculus, widely used in agent-
based AI and cognitive robotics (Van Harmelen et al., 2008) due to its focus
on temporal reasoning about actions and plans.
Then, we discuss the Non-Axiomatic Reasoning System (NARS), which per-
forms multi-layered inferences over logic statements (P. Wang, 1995, 2013).
We explain how the NARS framework better fulfills the requirements of
constructivist AI, providing sufficient justification for choosing it for com-
parative evaluations with our proposed mechanism.

3.3.1 Situation calculus

Situation calculus, first introduced by McCarthy (1981), consists of three
fundamental concepts: situations, actions, and fluents. Situations represent
the complete state of the world at a time. Fluents represent transitions
describing the action effects, which can be relational (with boolean values)
or functional. Situation calculus is based on the assumption that the sets
of possible actions and fluents are specified upfront. This framework allows
for quantification over actions and situations, enabling the language to ab-
stractly model dynamical properties and define broad rules. The sequences
of actions imply the passage of time, as time is tree-like.

18 CHAPTER 3. RELATED WORK

Which constructivist AI principles does situation calculus not meet?
Despite being a valuable tool in AI, situation calculus has some limitations
that must be considered when choosing it as a reasoning framework.

• Deterministic world assumption: Situation calculus is based on
the assumption of a deterministic world, where the actions have pre-
dictable outcomes under relevant situations. Yet, in real-world appli-
cations, not all actions lead to the expected outcomes. It is usually
non-trivial to extend situation calculus to handle AIKR, detailed in
Section 2.5.

• Lack of induction support: As situation calculus does not inher-
ently support learning and inductive reasoning, it usually needs to be
integrated with domain-specific ML algorithms. This can be consid-
ered a hurdle to effective generalization of rules.

It is important to note that FOL has a special focus on deductive rea-
soning and thus does not inherently support abduction, which is an essential
reasoning component for inferring the potential causes of events and the
best actions to take (see the requirement detailed in Section 2.6). Also, au-
tonomous generalization requires dealing with complex behaviors and, thus,
needs higher-order objects that describe and control other objects, implying
that a learning controller needs a representation of knowledge at different
levels of detail (see the requirement detailed in Section 2.8). A logic frame-
work that is based on AIKR and performs inductive reasoning on compound
symbolic knowledge representation is NARS.

3.3.2 Non-Axiomatic Reasoning System (NARS)

Non-axiomatic reasoning system (NARS) is a term-based logic framework de-
veloped to perform reasoning under AIKR (P. Wang, 1995). NARS assumes
that the system must be capable of adapting its insufficient knowledge to
new environments based on its experience, selecting and applying the pieces
of knowledge supported by collected evidence.

The expressive language of NARS, referred to as Narsese, is built around
the concept of statements, representing relations between terms. Each term
can represent objects, properties, or events. For instance, a Narsese state-
ment can be represented with A→ B f, c, where→ shows an inheritance
relation between the subject A and the predicate B, stating that A is a type
of B. Also, the semantics allow for handling uncertainty through truth val-
ues, which are confidence and frequency, c and f , respectively, quantifying
the system’s belief in the statement’s truth. The frequency and confidence
values can be calculated via f = w+

w ∈ [0, 1], c = w
w+1 ∈ [0, 1], where

3.3. LOGIC FRAMEWORKS 19

w+, w−, and w denote positive, negative, and total evidence for the state-
ment. The truth value combines f and c, providing a summary of the two
via exp(f, c) =

(
c
(
f − 1

2

)
+ 1

2

)
(Hammer, 2021). NARS has deductive, in-

ductive, and abductive reasoning capabilities. Deduction requires two state-
ments A → B and B → C, leading to inferring the statement A → C.
Abduction of the statements A → C and B → C yields A → B. Induction
of A→ B and A→ C leads to B → C.

How does NARS meet the requirements of constructivism?
We chose the NARS framework for a comparative evaluation (see Section 7.4)
due to the features of its knowledge representation and reasoning. Here, we
briefly describe learning control, ampliative reasoning, and AIKR features
in NARS. Later in this chapter, in Sections 3.5 and 3.6, we discuss if and
how NARS meets the requirements for causality, temporal grounding, and
analogical reasoning.

• "Self" in NARS: The concept of Self realizes agency in NARS and
generates relations between the agent and the world it interacts with
through operations performed by the agent. For example, a Narsese
statement representing the sentence "grasp the cube" is represented as
< (∗, SELF , cube) → ˆgrasp >, which may lead to receiving a new
statement later, implying that the state of something in the environ-
ment has changed. This feature meets the requirement of learning
controllers, as detailed in Section 2.3.

• Assumption of Insufficient Knowledge and Resources (P. Wang,
2009b): Narsese statements have degrees of truth, revised by the ac-
cumulation of experience via the revision rule. This implies that the
agent has to start learning and reasoning based on insufficient knowl-
edge. The frequency and confidence values in NARS allow the system
to choose more salient hypothesized statements when a task is assigned
to a NARS-based agent.

• Ampliative reasoning: The use of deductive, inductive, and ab-
ductive reasoning capabilities enables NARS to perform ampliative
reasoning (see Section 2.6), providing the system the capability of gen-
eralizing Narsese statements at multiple representation layers. Note
that NARS’s induction rule is different than our definition of induc-
tion in the next Chapter 4.4. However, NARS uses a multi-layered
inference mechanism to generate new hypotheses based on the existing
knowledge and received inputs.

A NARS agent’s reasoning capabilities under AIKR meet three significant
principles of constructivism, described in Sections 2.3, 2.5, and 2.6, making

20 CHAPTER 3. RELATED WORK

it a suitable candidate to compare it with the presented mechanism in this
thesis.

3.4 Automated planning

Autonomous learning agents must be able to infer sequences of actions to test
their hypotheses and achieve their goals. Thus, task planning is integral to
ampliative reasoning (see Section 2.6). This section explores a few planning
methods, such as Stanford Research Institute Problem Solver (STRIPS) and
Planning Domain Definition Language (PDDL), which are commonly used
frameworks in classic planning, as well as Markov decision processes (MDPs)
utilized for planning under uncertainty.

3.4.1 Classic planning

The STRIPS is a formalism for deterministic representations of planning
tasks and is a descendant of first-order logic (Fikes and Nilsson, 1971). The
STRIPS’s representation language is more restricted than the situation cal-
culus. It comprises predicates (states), objects, goals, and actions; every
action taken has a precondition set. The objective of classical planning
problems is often to minimize the length of the generated plan (Sabbadin et
al., 2020). The first limitation of STRIPS is that it assumes actions to be in-
stantaneous, while they can have duration in reality, and thus, the language
needs to be revised for temporal planning. Also, the changes in quantities
cannot be represented via STRIPS. However, these problems are solved by
the Planning Domain Definition Language (PDDL), extending STRIPS by
introducing object types, functions, and numeric properties of actions, ef-
fects, and goals (Sabbadin et al., 2020).

What are the limitations of classic planning?
In the following, we briefly go over a few assumptions both STRIPS and
PDDL are based on,

• Closed world assumption: Classic planners do not adequately take
knowledge uncertainty into account. For instance, an agent using
STRIPS must always know the outcome of actions upfront, and any-
thing unknown is considered false, implying that the AIKR assump-
tion, detailed in Section 2.5, does not fit such frameworks.

• Boolean logic: The binary truth values of predicates and rules make
the logic of STRIPS and PDDL less effective, especially when the
ranges of the truth values become important for a planning process.
As explained in 2.5, a learning controller calls for a range of truth

3.4. AUTOMATED PLANNING 21

values that dynamically change over time as the agent accumulates
experience.

Some of the mentioned limiting assumptions of classic planning have led
to task planning methods focusing on uncertainty representation through
probabilistic frameworks.

3.4.2 Probabilistic planning

Probabilistic planning involves assigning probability distributions to action
outcomes based on a modeler’s familiarity with the uncertainties of a spe-
cific domain. Probabilistic planners usually choose the solution paths with
actions with higher probability outcomes. As a probabilistic framework,
Markov decision processes (MDPs) represent the states, actions, transitions,
and rewards as probabilistic properties. RL algorithms can learn policies
that maximize the expected rewards in an MDP. However, as detailed in
Section 3.2, RLs focus more on learning the policies than on learning the
transitions between states or between actions and states.

MDPs can extend classical planning so that predicates and rules have
probabilities assigned to them to represent the non-deterministic action out-
comes. An example is probabilistic PDDL (PPDDL) frameworks, and there
are PPDDL-based cognitive architectures that update the outcome probabil-
ities based on the success or failure of a plan (Jiménez et al., 2013), implying
that they do some forms of inductive, abductive, and deductive inferences.
However, being a powerful tool for planning problems, probabilistic frame-
works have some limitations regarding updating the probability of beliefs
when contradictory pieces of evidence are accumulated and their overreliance
on the initial condition of the probability distributions (P. Wang, 2004).

3.4.3 Artificial Neural Networks

Different architectures of stand-alone ANNs can be utilized in robotic plan-
ning tasks (Sung et al., 2021; J. Wang et al., 2021). For instance, Feed-
forward Neural Networks (FNNs) have been used for reactive control in
mobile robots, where the sensory information is directly mapped to a set
of control signals (Velagic et al., 2010). Also, Recurrent Neural Networks
(RNNs) can be utilized for motion-planning robotic tasks, because they are
capable of capturing sequential and temporal data dependencies (Xu et al.,
2019). Other ANN types, such as Convolutional Networks and transformer
attention systems, combined with traditional planners, have been used for
detecting particular regions in the planning spaces (Johnson et al., 2021).
However, autonomous retraining of these ANNs is far-fetched, as self-guided
learning controllers call for output-feedback loops within their architectures

22 CHAPTER 3. RELATED WORK

1 (see Section 2.3). Also, ANN models make correct predictions only when
they are fed sufficient data during the training, while a cognitive system
must be able to solve tasks where knowledge and resources are limited (P.
Wang, 2006). In addition, cognitive systems must be able to contextualize
their knowledge and falsify their hypotheses when the models make incorrect
predictions.

3.5 Causality

Causal representations of knowledge are more transparent and verifiable
than ML-based models, allowing an agent to perform reasoning over given/i-
dentified/hypothesized causal relations and learn to deal with uncertainties
(Pearl, 2018; Thórisson et al., 2019a). This section is partly adapted from
the related work section of our paper (Sheikhlar et al., 2021).

3.5.1 Observation-based causal inference

Starting by discussing observation-based causal discovery is important, as it
is the first rung in Pearl’s causality ladder (Pearl and Mackenzie, 2018). Ob-
servational casual learning (and inference) is predominantly utilized to tackle
a well-known issue in ML, referred to as ’covariate shift,’ which arises from
changes in the input data distribution during the training process (Shuang
and Mohd Pozi, 2024; R. Wang et al., 2022). Learning causal structures
allows ML models to adapt to the distribution changes resulting from agent
interventions (Bengio et al., 2019). Yet, the application of causal discov-
ery is restricted to models where the notion of time is not usually explicitly
included. Yet, there exists a handful of approaches that consider temporal
causal influences and discovery, one of which is Granger’s (1969) causality.
In Granger’s causality, however, there are restrictive assumptions regarding
the types of model classes and uncertainties that influence the dynamical
processes, which do not hold in most real-world processes.

3.5.2 Intervention-based causation

As many other papers also have shown the significance of causal discovery
through interventions (c.f. Imbens and Rubin, 2015; Pearl, 2009b; Peters et
al., 2017a; Spirtes et al., 2000), interventional reasoning as the second rung
of Pearl (2018)’s causal ladder must not be disregarded when designing in-
teractive agents. Besides, a more accurate representation of causal behavior

1Note that feedback loop in RNNs only feds the hidden state of the "recurrent cell"
(ht) back into itself. In other words, we have ŷt = f(xt, ht−1), meaning that the output
at the current state does not affect the output at the next state.

3.5. CAUSALITY 23

must explicitly incorporate temporality (Peters et al., 2017a). In dynamical
processes, agents can use interventions to identify cause-effect relationships
between a finite set of observables and action types using state-space mod-
els (Baumann et al., 2020). Our controller presented in (Sheikhlar et al.,
2021) which is also presented in Sections 4.2 and 7.2 uses a modified version
of (Baumann et al., 2020) where the presented invariant state space model
is revised during the controllers’ experiments, meaning that the model can
be used for solving the task at any time during the learning process. Yet,
our method presented in (Sheikhlar et al., 2021) relies on intervening on all
available variables, making it impractical when controllers deal with a large
number of variables. As we will see in this thesis, we solve this problem
by enhancing the knowledge representation based on the concept of causal
relational models (Thórisson and Talbot, 2018).

The mathematical model classes introduced in the causality literature fo-
cus more on robust prediction-making than other types of reasoning, such as
planning; they can be less straightforward for an agent to utilize ampliative
reasoning based on them (see Section 2.6). In addition, causal inference in
ML is based on the assumption of causal sufficiency; all causal variables are
already at hand and can be observed. In many practical applications, how-
ever, confounding variables might negatively influence the causal discovery
processes. To develop a versatile learning controller, it is essential to estab-
lish a conceptual framework, a new model for inferences, and a programming
language that facilitates causal knowledge representation and reasoning.

3.5.3 Causality in NARS

As NARS aligns well with the principles of constructivist AI, we chose NARS
for the comparative evaluation and investigated the system’s procedural im-
plications (P. Wang, 1995), which is the closest notion to the causal repre-
sentation of events. Procedural inference in NARS occurs at the higher level
of non-axiomatic logic when two events are observed at different times. In
other words, if event A occurs before event B, then A⇒ B will be inferred.
A special case of this is where operations, e.g., a NARS agent’s actions, are
considered executable events, that is, (A,Op)⇒ B. This means that B will
occur when operation Op happens immediately after A occurs. The truth
values of this implication can be calculated through the pieces of evidence,
w+ and w−, where w+ denotes the number of instances where A occurred,
Op was executed, and B occurred subsequently, whereas w− represents the
number of instances where A occurred, Op was executed, but B did not
occur afterward. As we will see later, in Chapter 7, temporal implications
in NARS do not explicitly incorporate the timings of the events A and B,
which may lead to imprecise selection of operation sequences.

24 CHAPTER 3. RELATED WORK

3.6 Analogy

Analogical reasoning enables agents to identify the overlaps between their
existing knowledge and the patterns they observe or imaginatively generate
and, subsequently, to create new hypotheses about how to solve new tasks.
The hypotheses can be about the behavior of task entities and distinct events,
which can be formulated as causal relations and then, if used correctly, can
be a foundation for designing effective exploration mechanisms for agents
(Sheikhlar et al., 2022). Most of the current AI systems are not able to
make explicit analogies that systematically and gradually improve the sys-
tems’ reasoning, preventing them from effectively being used for transferring
knowledge from old experiences to newly encountered situations and goals
(Sheikhlar et al., 2022). Here, we explore a few approaches concerning analo-
gies in the contexts of artificial neural networks (ANNs) and symbolic AI.
The section is partly adapted from the related work sections of our papers
(Sheikhlar and Thórisson, 2024; Sheikhlar et al., 2022).

3.6.1 Analogy by artificial neural networks

As we previously mentioned, stand-alone ANNs are not suitable options
to be utilized by interactive agents that aim to adapt and generalize their
knowledge to novel tasks and situations whenever required (see Section 3.4).
Yet, we briefly explored the literature of analogy via ANNs.

ANNs performing analogies are utilized in different domains, from lan-
guage and text similarities (Mikolov et al., 2013) to visual analogies be-
tween images and Raven’s Progressive Matrix problems (Hu et al., 2021; M.
Mitchell, 2021). However, they perform task-specific analogies, are based on
non-transparent models, and require an enormous amount of data to be fed
to them (Sheikhlar et al., 2022), making them far from the principle of the
constructivist AI.

3.6.2 Analogy in symbolic AI

In symbolic AI, analogical reasoning methods rely on explicitly defined sym-
bols and relations usually represented in formal languages. They rely on
detecting the matches between symbolic statements given to a system, e.g.,
structure mapping engine (SME), which considers task-related conditions
when it maps the source to the target network of statements (Falkenhainer
et al., 1989).

Case-based reasoning (CBR) is a method for solving new tasks that are,
of course, partly familiar, where the four steps of retrieval, reuse, revise, and
retain could enable an agent to solve the tasks by retrieving and applying
analogous cases from its memory and storing how the agent’s actions change

3.7. SUMMARY 25

the world’s attributes and revising the agents’ subsequent actions if needed
(Aamodt and Plaza, 1994). Although successful in particular domains, the
approaches do not assume an agent that has active goals and intends to use
analogies for dynamic plan generation.

• The underlying theory of the SME system intentionally disregards dis-
tinct properties of task elements and only considers a network of sym-
bolic relations, which may or may not be causal (Gentner and Mark-
man, 1997). However, as will be seen in the thesis, distinct properties
of entities might have unknown relations to behaviors that may need
to be considered.

• A standard CBR does not learn to modify the preconditions of actions
based on their successes and failures. This is essentially rooted in the
system’s axiomatic learning; that is, no learning/forgetting mechanism
exists to disregard/remove knowledge that may not be accurate any-
more. As a result, when the number of cases increases, the limited
resources might not allow for effective search and retrieval of relevant
cases.

Proper analogical reasoning must allow an agent to learn the conditions
of actions (through identifying matches between situations, goals, and con-
ditions of known actions) via interaction and modify the conditions when
predictions about the outcomes of actions fail.

3.6.3 Analogy in NARS

The term-based logic architecture NARS hypothesizes similarity relations
based on not only concepts’ shared properties and ontology classes but also
systems of relations (P. Wang, 2009a). Analogy relations are formed due
to the sameness of the predicates or properties of subjects. For example,
the statements < cube → [lightweight] > . and < box → [lightweight] >,
which means that the cube and the box are lightweight, yield the inference
< cube ↔ box > meaning that the cube is similar to the box. NARS is
considered an appropriate framework for a comparative evaluation in relation
to the analogy-making mechanism proposed in the thesis. We will, however,
see that the analogy relations are inferred but not utilized for hypothesizing
new statements in NARS.

3.7 Summary

In the context of generalization, different approaches in machine learning
(ML) and symbolic AI were explored. Artificial Neural Net-based transfer

26 CHAPTER 3. RELATED WORK

learning (TL) methods have limitations regarding autonomous generaliza-
tion, as they require large data and human supervision and do not provide
explicit knowledge representations. In model-free reinforcement learning,
however, TL approaches exist where policies can be transferred between
task variations. Yet, we argued these knowledge components depend heav-
ily on the defined reward systems, making the reinforcement TL methods
task-dependant and unscalable. We also discussed the pros and cons of
First-Order Logic based frameworks, e.g., situation calculus, which, in its
standard form, does not support inductive and abductive reasoning, inte-
gral components of ampliative reasoning. Additionally, we explored task
planning approaches, both classic and probabilistic frameworks, which do
not properly model task uncertainties for agents that learn cumulatively
under AIKR, preventing the reasoning agents from learning to revise their
knowledge properly or falsify their plans when necessary. Then, NARS was
studied and selected as a baseline for comparative evaluation in this thesis
due to its features’ alignment with some of the key constructivist principles:
agency, AIKR, and ampliative reasoning. We also explored the literature on
causality and NARS’s temporal implications, which allow agents to perform
operations/interventions for task-solving. Additionally, we study analogical
reasoning frameworks in the contexts of ANNs, symbolic AI and, specifically,
NARS’s analogy-making. We argued why stand-alone ANNs do not learn
from inaccurate analogies and explored symbolic AI frameworks’ lack of the
potential to revise their knowledge accumulation and analogical reasoning
processes according to the agents’ experience.

Chapter 4

Problem Description

4.1 Introduction

In this chapter, we describe the problem of causal generalization by defining
several aspects of it. Our first step involves defining causal relations and how
they can be represented. This requires us to analyze the concept of causal-
ity from both an agent’s and a task designer’s perspectives, as overlaps and
discrepancies exist between the actual cause-effect relations and the agent’s
causal understanding. According to Wang’s (2009b) Assumption of Insuffi-
cient Knowledge and Resources (AIKR), extracting knowledge about causal
relations by an agent is usually accompanied by uncertainty; that is, some
confounding properties may not allow an agent to accurately create a causal
model for an observed behavior (Agrawal et al., 2023). We then proceed to
examine different types of knowledge generalization problems that arise in
this context.

Disclosure: This chapter is partly adapted from our papers (Sheikhlar and
Thórisson, 2024; Sheikhlar et al., 2021). Section 4.2 describes the problem
formulation and causal discovery formalization of (Sheikhlar et al., 2021).
Sections 4.3 and 4.4 are partly derived from (Sheikhlar and Thórisson, 2024).

4.2 Causal relations: designer’s perspective

We start by formulating causal relations from a designer’s perspective based
on the principles of task theory (Belenchia et al., 2022). According to Pearl
(2009a), a causal relation is a physical attribute of the world that controls
how some effect properties can change following some cause events or actions.
These effects may or may not be directly controllable through the actions of
an agent. In other words, the effects are the results of some operation in the

28 CHAPTER 4. PROBLEM DESCRIPTION

world, not necessarily those of an agent’s actions. In case actions cause the
changes, the related commands are produced by a controller, transmitted to
the agent’s actuators, and applied similarly to local modifications (Thórisson
and Talevi, 2024). As the task designer is assumed to know all governing
rules and their relevant properties, the tasks can be represented in a deter-
ministic manner. From a Platonic point of view, cause-effect relationships
are physically invariant mechanisms (i.e., relations that never change) if all
relevant properties are considered (i.e., no unknown confounding properties
exist), as Pearl (2009a) points out. This section is adapted from our paper
(Sheikhlar et al., 2021), describing the causal formulation of processes and
interventions.

Given no agent’s actions influence the state of a dynamic process, the
representation of transitions in the process only depends on the process’s
initial state. A dynamic process is a set of sequential (state) transitions
that change the state of environments. A (state) transition refers to the
changes in the values of observable properties due to actions/events. Then,
assuming this process has a finite set of properties, a representation of it is
(Sheikhlar et al., 2021)

V(T) := f(V(0)), (4.1)

where V(T) and V(0) represent the set of properties’ values at time T
and their initial conditions, respectively. However, if we add an interactive
agent to this process that takes action by issuing internal commands (given
the commands are consistently executed by the taken actions), then the
vector V will contain two sets of values: values of observable properties V
and values of commands CMD. Therefore, the representation (4.1) can be
reformulated as follows (Sheikhlar et al., 2021).

V (T) := g(V (0), CMD(0), ..., CMD(T − 1)) (4.2)

showing that the commands issued at different times (CMD(0), ..., CMD(T−
1))), together with the initial conditions/values of the observables V (0),
cause the values of the observable to be V (T) at T . To represent the (state)
transitions between times, we can rewrite the equation (4.2) using the
following memory-less, discrete-time transition function (Sheikhlar et al.,
2021),

V (T) := h(V (T − 1), CMD(T − 1)) with V (0) := λ (4.3)

in which λ denotes the initial values of observables.
With the above formulation, we can describe input intervention, which allows
an agent to discover the relationships between commands and observables

4.2. CAUSAL RELATIONS: DESIGNER’S PERSPECTIVE 29

(Sheikhlar et al., 2021).

The following input intervention types can help an agent identify the
structure in dynamic processes under the conditions explained later in Def-
inition 4.1.

• Input Intervention 1: setting new initial values for the observable
properties V (0) for dynamic processes does not alter function h, mean-
ing that the causal structure of the processes remains the same when
their initial conditions change, rooted in the "Principle of Independent
Mechanisms" (Peters et al., 2017b, Section 2.1).

• Input Intervention 2: an agent can set the values of the commands
CMD to apply control inputs, which causes the values of observables
V to change but does not cause the causal structure h to change.

A systematic application of the two input intervention types enables an
agent to identify an invariant causal structure and learn h. The algorithm
in Section 7.2 will be an example of how systematic interventions can be ap-
plied to discover causal relations between observables and commands. There,
we will also demonstrate the generalizability of this representation, Equa-
tion (4.3), beyond the agent goals and initial conditions. Causal discovery
through intervention is based on the assumption that the agent has learned
some correlations between properties’ values, allowing it to know about some
relevant properties that might be affected by processes (Sheikhlar et al.,
2021). In Section 7.2, we will also practically prove that a correlational
model is not generalizable, and therefore, having causal models for task-
independent generalization is essential. However, as mentioned, some corre-
lations would enable an agent to gain prior knowledge, based on which it can
start exploring its surroundings to discover the causal relations and perform
the tasks.

Causal discovery in dynamic tasks
We need a formulation that allows an agent to perform distinct experiments
with the aim of causal discovery. To formalize causal discovery in this con-
text, we adapt and use the definition and notations from our paper (Sheikhlar
et al., 2021) and the paper (Baumann et al., 2020), as follows.

Definition 4.1 (Baumann et al., 2020; Sheikhlar et al., 2021): Based on
the two input interventions introduced, two different types of causal discov-
ery methods can be defined as follows.

Causal discovery 1: Assume i and j are two different observ-
able properties, with vi and vj representing their related values,

30 CHAPTER 4. PROBLEM DESCRIPTION

between which there is a correlation relation. Then, we have
(Baumann et al., 2020; Sheikhlar et al., 2021)
(∀i vi ̸⊥ vj , vi → vj if)

∀ p ̸= i vkp(0) = vk
′

p (0) vki (0) ̸= vk
′

i (0),

∀ p, T cmdkp(T) = cmdk
′

p(T) ⇒ (vkj (T)) ̸= (vk
′

j(T))

(4.4)

In simple terms, i causes j if changing the initial state of i in
experiment k leads to a change in the value of j in experiment
k′. In other words, vi and vj are the values of two different
properties between which a causal influence exists.

Causal discovery 2: Also, assume a command value cmdi and
the observable j’s value vj are correlated. Then, we have (Bau-
mann et al., 2020; Sheikhlar et al., 2021)

(∀i cmdi ̸⊥ vj , cmdi → vj if)

∀ p vkp(0) = vk
′

p(0) ∀ T, p ̸= i cmdki(T) ̸= cmdk
′

i(T)

∀ T cmdkp(T) = cmdk
′

p(T) ⇒ (vkj (T)) ̸= (vk
′

j(T))

(4.5)

In simple terms, command i causally influences observable j if
changes in cmdi lead to changes in vj , assuming the initial con-
ditions are the same in both experiments k and k′. This means
that observable property values (a.k.a. variables) and commands
can also be correlated, as certain commands may only change the
values of specific observable properties while leaving the values
of other properties unchanged. We will see an example of this
in Section 7.2, wherein in a multi-robot scenario, the command
applied to one robot only causally influences the position of that
specific robot and not the other robots.

Why does this representation still have generalizability issues?
It is worth noting that causal discovery based on input interventions is based
on the assumption of causal sufficiency, which refers to the invariance of the
causal structure when all observable properties in a dynamic process are
at hand. However, when it comes to the agent’s modeling perspective, the
agent, due to AIKR (see Section 2.5), may not consider all the relevant prop-
erties in its modeling process. In high-dimensional observation spaces, an
agent must autonomously acquire sufficient knowledge to be able to focus
its attention on important properties involved in processes. Also, a single
nonlinear forward model h in equation (4.3) takes in all existing observables

4.3. CAUSAL KNOWLEDGE: A NEW FORMULATION 31

and, thus, cannot be easily inverted for backward planning to infer essential
commands from observations. Therefore, such centralized large-scale formu-
lation of dynamic processes is not proper for causal modeling in a learning
controller dealing with complex tasks due to its lack of scalability (see Section
2.8) and also lack of support for abductive inference (see Section 2.6). In-
stead, a learning controller calls for a set of fine-grained small causal models
relating single causes, e.g., single command value changes, to single effects,
i.e., change in the value of single observable properties. If such models also
incorporate precondition-postcondition sets, they can be chained or hierar-
chized if their cause-effect sets match, representing complex processes while
allowing the controller to manipulate and learn only the required transi-
tions of the processes. The precondition sets involve the assumed important
properties (only a subset of observables and their values) and constraints
on them. As some transitions and their preconditions-postconditions can be
hypothesized through observations and comparisons, they might prove to be
inaccurate in action. In other words, applying input interventions may be
needed to validate the generated hypotheses about cause-effect relationships,
enabling the agent to know whether its hypotheses/knowledge are accurate.
Therefore, the small models must be capable of being falsified and must
include confidence values that change via experience. Therefore, we need
a new formulation of causal models with the mentioned consideration, as
explained in the following section.

4.3 Causal knowledge: a new formulation

Agent input interventions do not change the physical processes but may lead
to changes in the knowledge structure, as explained in the previous section.
In other words, an agent’s causal knowledge, as opposed to physical causal
relations, is not invariant because the agent may need to modify or falsify
its knowledge as it proves to be inaccurate. The source of inaccuracy might
be confounding properties, i.e., unconsidered properties, that may lead to in-
accurate predictions (Peters et al., 2017b). Prediction failures should make
the agent hypothesize the reasons for what might have been the source of
failure. We will later see in Section 5.5 how the unconsidered properties can
be identified through a new cumulative learning mechanism we introduce.
This section provides a detailed description of how causal relational models
can be formulated, partly explained in our paper (Sheikhlar and Thórisson,
2024).

Causal relational models
This subsection formulates causal relational models (CRM) introduced by
Thórisson and Talbot (2018), a different causal knowledge representation

32 CHAPTER 4. PROBLEM DESCRIPTION

designed in accordance with the requirements detailed in Chapter 2. The
provided definitions are based on the syntax and semantics of the Replicode
programming language (Nivel and Thórisson, 2013a).

A CRM is a piece of knowledge that relates a set of cause patterns to
the effect patterns. The definition of CRMs calls for precisely defining pat-
terns. We will also define situations and goals, which are significant concepts
in forming CRMs. The following definition is adapted from Replicode pro-
gramming language syntax (Nivel and Thórisson, 2013a) with small changes
regarding the naming of the patterns and constraints 1, and categorization
of facts.

Definition 4.2: Patterns are distinct information structures having two
types, facts and constraints, which may contain variables.

Facts are statements with specific time intervals, having two
types: observable facts and commands 2 (cf. Nivel and Thóris-
son, 2013a).

Command: A command is a fact representing an in-
ternal operation within the controller leading to tak-
ing a physical action and may change the state of the
agent’s environment. Commands can take one or two
arguments as follows.

(cmd CMD[entity] T1)

or

(cmd CMD[entity X] T1)

where X and T1 are variables and can be bound to a
numeric value.
E.g., CDM : (cmd release[hand] 100msec) means
that CMD release the entity hand at time 100msec.
E.g., CDM2 : (cmd move[hand 3] T1) means that
the command CMD2 moves the entity hand by 3 units
at time T1.

Observation fact: An observation fact represents an
observed pattern at a time with the following structure:

(entity property value time)

1Constraints are called guards in Replicode programming language.
2In this study, we focus on these two, as facts may also incorporate other statements,

such as instantiated composite states and models, supporting higher-order logic.

4.3. CAUSAL KNOWLEDGE: A NEW FORMULATION 33

where the value can be either numeric or symbolic. En-
tity and property are symbols, with the difference that
entities can be replaced with variables as a result of
abstraction while properties cannot. As an example,
F : (ball velocity X 200ms) refers to a fact repre-
senting a ball with the velocity X at 200ms. Note that
X is a variable.

Constraint: A constraint represents a logical or numerical con-
straint such as an equation (a.k.a., transition function) or in-
equality. They specify the transition functions, ranges of
admissible values, logical conditions or timing equations
relating the variables in commands and facts. A constraint on
fact F on the above example can be (X < 10), meaning that the
ball’s velocity cannot be more than 10 units. As another exam-
ple, (POS2 = X ·∆T + POS1) represents a transition function
pattern showing how positions can change. The instances of tim-
ing equations will be shown later in Example 1.

Definition 4.3: A situation is all existing observable facts at a time,
representing the complete observable state of the process. A situation S can
be formally represented as a set of fact patterns with the same occurrence
time T :

S = {f1(T), f2(T), . . . , fk(T)}

where each pattern fi is an observable fact.

Definition 4.4: A goal G is a fact3 representing the desired state the agent
tends to achieve. A goal can either be given or derived by the agent. The
derived goals are called subgoals SubG.

Definition 4.5: A causal relational model (CRM) represents a transi-
tion as follows4

M : [A(T1)→ B(T2)], 0 ≤ cdf ≤ 1 (4.6)

3In Replicode programming language (Nivel and Thórisson, 2013a), goals are objects
referring to related goal facts. Here, for simplicity of explanation, we consider them facts.

4We will use the notation of propositional logic to communicate the ideas more clearly
and not for the actual formalities. There exist fundamental differences between our logic,
i.e., ampliative reasoning, and propositional logic. Also, CRMs represent non-boolean
physical state transitions and do not necessarily follow the rules of formal logic.

34 CHAPTER 4. PROBLEM DESCRIPTION

where A is the set of precondition causes (left hand side - LHS) at time T1
and B is the set of postcondition effects at time T2 (right hand side - RHS).
cfd denotes the confidence value of M . A special case of CRMs includes
a command pattern in its preconditions, with the same timing as the other
preconditions, as follows.

M : [(P (T1) ∧ CMD(T1))→ B(T2)], 0 ≤ cdf ≤ 1 (4.7)

where P represents the preconditions, excluding the command pattern CMD,
that hold true at the same time as when CMD(T1) is issued. The precondi-
tion P is a set of collected facts and constraints representing the conditions
of the transition’s occurrence. An example of such a CRM is provided as
follows.

Example 1: The following CRM represents the moving behavior of a hand.
The causal influence occurs via move command changing the position of a
hand. The CRM is M=[(P ∧CMD)→ B], where

CMD = (cmd move[H ∆_POS] T1)

representing the command move with two variables (a.k.a arguments)
H and ∆_POS, meaning that the command moves H by ∆_POS units.
The precondition set of patterns P for the above move command can be
represented as the following set of facts and constraints,

P =

(H essence hand T1)∧
(H position POS1 T1)∧
(POS2 = POS1 + ∆_POS)∧
(T2 = T1 + 100ms)

where the first two patterns are facts, and the last two patterns are

constraints. The facts represent that H has the essence of hand and is at
position POS1 at time T1. The essence, position, and hand are ontology
symbols, whereas H, POS1, POS2, T1, T2 and ∆_POS are variables and
can be instantiated. The third and fourth patterns are forward equations
that calculate numerical values in the postcondition (RHS) patterns based
on their values in precondition (LHS) patterns. The constraint (POS2 =
POS1 + ∆_POS) is a forward transition function meaning that the next
position of the hand POS2 depends on the current position POS1 and
the position change ∆_POS applied by the CMD. The pattern (T2 =
T1 + 100ms) is a timing equation, meaning that the next time frame T2 is

4.3. CAUSAL KNOWLEDGE: A NEW FORMULATION 35

calculated by current time T1 plus sampling time, which is 100ms here. After
the move command is applied, we will have the following post-condition B.

B =

(H position POS2 T2)∧
(POS2 ̸= POS1)∧
(∆_POS = POS2− POS1)∧
(T1 = T2− 100ms)

where the first pattern shows the fact representing the hand’s new po-

sition POS2 at a later time T2. The constraint (POS2 ̸= POS1) shows a
condition that the first and second positions of H must not be the same. The
third and fourth patterns are equations for representing backward transition
function and the calculation of initial time T1 from T2 backward in time.
M has a confidence value between 0 and 1.

The following describes how CRMs, as fundamental knowledge representa-
tion components, satisfy the principles of constructivism.

• Learning control: CRMs enable learning controllers to use their I/O
devices to interact with environments by issuing commands (and tak-
ing actions), and then learning from the subsequent changes in the
values of observable properties. Observations about environments are
captured in the form of facts occurring at different times. Interventions
occur through commands. CRMs allow an agent to issue a command
and learn/test tempro-causal relations between facts occurring at con-
secutive times.

• Causality: A CRM is a model that represents a causal influence from
a set of preconditions to postconditions. The preconditions, including a
command, trigger a change in a later situation where postconditions are
observed. In other words, CRMs represent physical state transitions
of properties, in which a command leads to taking an action, which
itself causes a change in the value of a property. CRMs can be used
for causal reasoning by allowing the agent to predict how the actions
influence the state of observables and/or, inversely, inferring the best
plausible commands or conditions under which the commands need to
be issued to achieve certain goals.

• Assumption of insufficient knowledge and resources (P. Wang,
2009b): The AIKR implies that CRMs are subjective non-axiomatic
hypotheses rather than objective axiomatic ground truth, meaning
that CRMs’s truth degrees can dynamically alter when the agent uses
them in action and thus, collects evidence for them (Sheikhlar and
Thórisson, 2024). The degrees of truth, referred to as confidence in

36 CHAPTER 4. PROBLEM DESCRIPTION

this thesis, can be updated as evidence is accumulated based on the
ratio of the collected success count sc of the CRM to the collected total
success plus failure count sfc, that is, cfd = sc

sfc , with the constraint
that 0 ≤ cfd ≤ 1 (Sheikhlar and Thórisson, 2024).

– Confidence value reflects the non-axiomatic falsifiable nature of
knowledge, which can change by experience.

– Confidence value will later be connected to the notion of famil-
iarity introduced in Section 5.4, which specifies the confidence of
the CRMs induced via analogy-making.

The confidence values of CRMs change as the agent accumulates ev-
idence for them, allowing the agent to choose CRMs/solutions with
higher confidence.

• Ampliative reasoning: CRMs can be chained in the forward and
backward directions, realizing deduction and abduction respectively
when CRMs match situations and goals. When a situation matches
the preconditions of a CRM, its postconditions are instantiated, mean-
ing that a property’s value can be predicted at a later time. If the
predicted change is a fact with symbolic value, there will be no transi-
tion functions in the pre- and post-condition patterns of the CRM (see
an instance of this in Example 2 in this chapter). Otherwise, there
will be transition functions such as the ones shown in Example 1, i.e.,
(POS2 = POS1 + ∆_POS). Note that timing equations are always
included in both cases, as the change in values of the related proper-
ties occurs in time. Generally, the forward transition function patterns
have the following structure.

vi(T) := akvi(T − 1) + bkcmdj(T − 1))

vi(0) := β0
(4.8)

with vi ∈ V ∈ Rn, cmdj ∈ CMD ∈ Rm, in which the parameters
n and m represent the number of all existing observable properties V
and agent’s commands CMD , respectively. Note that vi is the value
of ith observable, and cmdj is the value of jth command sent through
the I/O device. There are also timing equations and variables in the
pre- and post-condition patterns, regardless of whether the changed
property’s value is boolean or not.

On the other hand, backward chaining occurs for goal achievement. If
a goal fact matches the postcondition patterns of a CRM, the precon-
ditions are instantiated, leading to the creation of other goals whose
achievement allows for achieving higher-level goals. If the matched
goal fact is a boolean relation, there will be no backward transition

4.3. CAUSAL KNOWLEDGE: A NEW FORMULATION 37

functions. Otherwise, there will be transition functions such as the
ones shown in Example 1, i.e., (∆_POS = POS2−POS1), which are
the inverse of the forward transition functions mentioned above. The
backward transition functions are, therefore, as follows.

cmdi(T) := (1− a)/b(vi(T + 1)− vi(T))
vi(0) := β0

(4.9)

Note: The linear modeling of transitions is based on piecewise lin-
earization, which approximates complex nonlinear transitions with a
set of linear transitions, each with a range of permissible values (Nivel
and Thórisson, 2013a).

• Scalability: CRMs support hierarchization and chaining.

– Hierarchization: In hierarchical representations, CRMs represent-
ing simple behaviors can be reused by other CRMs representing
more complex behaviors. For instance, let CRMs beM1 : [A→ B]
and M2 : [C → D]. Then, M2, as a complex CRM, can reuse M1

on its preconditions meaning that

M2 : [[A→ B]→ D]

if A ⊂ C, that is, A’s patterns are a subset of C’s patterns.

– Chaining : Chaining of CRMs allows for generating plans (a.k.a.
solutions) and performing forward and backward reasoning. For
instance, let models be M2 : [C → D], and M3 : [E → F]. Then,
in both forward chaining, M2 → M3, and backward chaining,
M2 ← M3, we must have D ⊂ E and not the other way around.
This is because M2 and M3 are initially linked through backward
chaining, meaning M3 will chain to M2 if patterns of E match
D.
Note: Postconditions (RHS) of CRMs have one single fact pat-
tern as opposed to preconditions. The reason is that the fact
pattern on the RHS represents one single change in the value of
an entity’s property. Therefore, in the above example, if one of
the patterns of E matches D, then the two CRMs match. The
following example explains the chaining process.

Example 2: Assume we have two CRMs: M2 and M3, where M2
represents a hand grabbing a cube behavior and M3 represents the
cube’s releasing behavior. M2 has a command grab on its LHS patterns
represented as

CDM2 = (cmd grab[H] T1)

38 CHAPTER 4. PROBLEM DESCRIPTION

meaning that grab command is applied on H (representing a hand) at
time T1. The precondition patterns are as follows:

P2 =

(H essence hand T1)∧
(H holding [] T1)∧
(C essence cube T1)∧
(T2 = T1 + 100ms)

where (H holding [] T1) means that the hand is holding nothing
(the hand is empty). Then, the post-conditions (RHS patterns) of M2
are as follows:

B2 =

(
(H holding [C] T2)∧
(T1 = T2− 100ms)

)
meaning that the command CMD2 under conditions P2 will lead to
the hand holding the cube represented as (H holding [C] T2) at a
later time T2. The fact (H holding [C] T2) has a symbolic value,
and thus, the CRM does not need to have a transition function, whereas
the timing equations are present.
M3, on the other hand, releases the cube via the following command

CDM3 = (cmd release[H] T1)

meaning that release command is applied on H at time T1. The
precondition (LHS) and post-condition (RHS) patterns of M3 are as
follows

P3 =

(H essence hand T1)∧
(H holding [C] T1)∧
(C essence cube T1)∧
(T2 = T1 + 100ms)

B3 =

(
(H holding [] T2)∧
(T1 = T2− 100ms)

)
meaning that release command changes the state of the hand from
holding the cube (H holding [C] T1) to hand holding nothing
(H holding [] T2). Then, M2 and M3 can be chained via abduc-
tion, as the fact onB2 matches a fact on P3, i.e., (H holding [C] T1).
In other words, for grabbing and then releasing a cube, the models M2
and M3 can be chained and used.
The causal-chaining ability and the potential to build hierarchies of
causal relations provide an agent with depth and breadth of knowledge
regarding a phenomenon. Therefore, CRMs provide scalable knowl-
edge representation, realizing reasoning on multiple levels of detail.

4.4. CAUSAL GENERALIZATION 39

• Real-time and temporal grounding: CRMs contain explicit time
variables as a part of their LHS and RHS patterns, e.g., in their facts,
commands, and timing equations. They also use transition functions
(4.8) and (4.9) to represent properties’ state transitions. These fea-
tures allow for real-time control through continuous reality-checking
and precisely scheduled planning.

Reasoning mechanisms that use CRMs allow for designing a context-
aware agent with a reflective control capability, meaning that the agents can
learn, inspect, verify, and modify multiple CRMs according to their needs
(Thórisson and Talbot, 2018).

4.4 Causal Generalization

For learning agents performing tasks in partially known physical environ-
ments, it is important to generalize behaviors effectively and efficiently, al-
lowing the agent to create reasonable plans and infer correct sequences of
actions. Causal generalization happens across multiple levels, progressing
from basic abstraction to knowledge pruning and induction (Sheikhlar and
Thórisson, 2024). This section is an extended version of the causal general-
ization section in (Sheikhlar and Thórisson, 2024).

4.4.1 Abstraction

In this thesis, abstraction is considered a basic generalization problem, where
an AI system must use the concept of variables to represent the observed or
stored data in such a way that they match a broad spectrum of tasks and sce-
narios (Sheikhlar and Thórisson, 2024). According to Mitchell (1997), any
instance of a specific hypothesis satisfies a more general hypothesis. With
small alterations to Mitchell’s definition, the following definition can be de-
rived.

Definition 4.6: If two patterns exist, p1 and p2, we can say that p2 is
more general than or equal to p1 only if any instance that satisfies p1 also
satisfies p2. But, not all instances of p2 satisfy p1. In other words, let I(p)
be the set of instances satisfying a pattern p. Then, p2 is more general than
p1 can be written as 5:

p2 ≥ p1 ⇐⇒ I(p1) ⊆ I(p2) (4.10)

where ≥ represents the more general than relationship in this context.

5This definition is a modified form of restriction’s definition presented by Harmelen
et al., (2008).

40 CHAPTER 4. PROBLEM DESCRIPTION

Then, abstraction can be formulated as a function α(p1) → p2, where
p2 ≥ p1. To apply the abstraction process, the values of the known proper-
ties and/or the known entities having those properties can be replaced with
variables in information structures whenever required.

Example 3: Assume the following facts p1 = (ball shape sphere T1)
and p2 = (X shape sphere T1), where ball is an entity, shape is the
property, and sphere is the value. Then, p2 ≥ p1, as p2 is partly abstracted
from p1 by replacing the entity ball with variable X. In other words, p2
matches to any entity with the shape sphere.

Based on the above definitions, the agent must create more general pat-
terns via abstraction as needed. The abstraction of LHS and RHS patterns
of CRMs allows the agent to apply the same CRMs for a wider range of
values and task entities for other tasks.

4.4.2 Selective attention

In his situation calculus, McCarthy (1986) defines a situation as “the com-
plete state of the universe at an instance of time.” It is impossible, however,
to consider all observable properties in the universe at once. Humans typ-
ically represent situations as abstracted subsets of patterns that can be
observed simultaneously. A cognitive process known as selective attention
(Cherry, 2020) helps make this happen, and therefore we call this form of
generalization selective attention. Selective attention leads to an initial prun-
ing of irrelevant observable facts when modeling an observed transition when
no models for the transition exist.

In the context of CRMs, selective attention calls for selecting a subset
of the observation facts from a situation and excluding the rest of them to
form preconditions for CRMs. One way of creating an initial precondition
set is introduced by Nivel et al. (2013a), where the observation facts are
selected that match the entities, properties, and values directly involved in
transitions. This may, of course, lead to over-specification of CRMs, as not
all the properties and values are important in a transition. We will later
see in Chapter 7 how our introduced mechanism prunes the irrelevant facts
via knowledge pruning (introduced in Section 4.4.4) from this initial set of
preconditions and dynamically adjusts the selective attention process. More
formally, selective attention can be defined as the following.

Definition 4.8 (Sheikhlar and Thórisson, 2024): Selective attention A is a
function that identifies the observation facts in a situation S that need to
be considered for modeling transition T . A transition is a change in the
value of a property due to an action taken as a result of an issued command.
Formally, A(S, T) → Pfact in which Pfact ⊆ S (Sheikhlar and Thórisson,

4.4. CAUSAL GENERALIZATION 41

2024), meaning that function A takes in situation facts S and transition T
and selects a subset of S, which is precondition set Pfact. The function A
may use the abstraction process to create and include more general patterns
in the precondition sets so that they match a wide spectrum of transitions.
An example of selective attention is as follows.

Example 4: Assume that there exists a set of observation facts representing
the situation S,

S =

 (ball shape sphere 100ms),
(hand position 5 100ms),
(hand essence robot 100ms)

meaning that a spherical ball and a robotic hand in position 5 at time 100ms
are observed. Assume the following move command is issued at the same
time 100ms

CMD = (cmd move[hand 3] 100ms)

which leads to observing a change in the value of the hand’s position later
at 200ms such that the following fact will be observed.

(hand position 8 200ms)

The selective attention function A selects a subset of observable facts in
the situation S by generating the precondition set P ′

fact:

P ′
fact =

{
(hand position 5 100ms),
(hand essence robot 100ms)

}
which only includes the observation facts that are relevant to the transition
T from (hand position 5 200ms) to (hand position 8 200ms) and
excludes the observation fact (ball shape sphere 100ms) that has noth-
ing to do with the movement of a hand. Transition T only involves hand
and its property position. Therefore, all properties of hand, i.e., position
and essence, along with their values, are considered by the selective at-
tention function. As mentioned above, selective attention may involve the
abstraction of the entities and the numeric value, which leads to having the
following abstracted precondition set:

Pfact =

{
(H position POS T),
(H essence hand T)

}
where H, POS, and T are variables replaced with related entities and values
due to abstraction.

42 CHAPTER 4. PROBLEM DESCRIPTION

4.4.3 Induction

Causality-based agents can create multiple CRMs that model the properties’
state transitions via different types of actions. In this work, the generation
of new CRMs is called induction, which may result from various learning
mechanisms. Note that induction may also involve the above-mentioned
abstraction and selective attention processes during the generation of pre-
and post-conditions for CRMs (Sheikhlar and Thórisson, 2024). Induction
generates CRMs due to 1) observed transitions, 2) pattern matching between
observations and known CRMs (i.e., via analogy-making), and 3) failure in
observing expected patterns. We introduce an instance of induction through
analogy-making in this thesis, as shown later in Section 5.2.

4.4.4 Knowledge pruning

Although patterns in CRMs can be abstracted using variables so that they
match different task entities and values, a proper generalization mechanism
also calls for the ability to modify the patterns in CRMs once the agent finds
this modification useful. Modifying CRMs requires identifying the relevant
patterns and, subsequently, eliminating irrelevant ones from their pre- and
post-conditions, enabling CRMs to be applicable to more encountered tasks
and situations (Sheikhlar and Thórisson, 2024).

Definition 4.9: Let M : [A → B] = [(FA ∧ CA) → (FB ∧ CB)]] where
Fi and Ci with i = A,B represent fact and constraint patterns, respectively.
Then a pruning mechanism G takes in M and returns a more general version
of it via pruning its patterns. In other words, G :M →M ′, where M ′ is the
generalized CRM. The pruning may involve any of the following

• Constraint pruning : The adjusted/pruned set E′ = G(CA, CB) ac-
commodates a more accurate set of transition functions and conditions
where the spurious correlations are pruned. The spurious correlations
are constraints that do not affect the actual transitions, do not hold
true (e.g., false logical conditions), or are inaccurate (e.g., inaccurate
transition functions). We will see an instance of this type of pruning
later in the results chapter in Section 7.2 based on an algorithmic set
of input interventions through causal discovery introduced in Section
4.2, which eliminates inaccurate transition functions from a model.

• Fact pruning : Pruning the facts requires mechanisms for selectively
eliminating facts deemed irrelevant for transitions, which leads to fewer
conditions on the transitions. Consider a CRM with the original facts
F = FA ∪FB . Then, function G must take in F such that G(F) yields
the pruned set of facts, denoted as F ′, where F ′ ⊆ F and/or F ′ ≥ F

4.4. CAUSAL GENERALIZATION 43

(Sheikhlar and Thórisson, 2024). We will see several instances of this
later in Chapter 7.5 based on a mechanism we introduce in Section 5.2.

Such a pruning process is essential when the CRMs’ patterns only par-
tially match the encountered situations. This can be done by comparing
the situations with the CRMs’ patterns. In such cases, knowledge can be
pruned via an analogy-making process, detailed later in Section 5.5. How-
ever, a pruning mechanism might incorrectly eliminate significant patterns
that must not have been eliminated. The agent can find this out by test-
ing the pruned CRMs via making interventions. If the pruned CRMs prove
to be wrong in some situations, the CRM must be revised by adding addi-
tional patterns as a result of negative analogy, which will be explained later
in Section 5.5. The following example shows how induction and knowledge
pruning can occur.

Example 5: Assume that there exists a set of observation facts representing
the situation S. In this situation, a ball, a box, and a hand, along with their
properties, can be observed.

S =

(ball shape sphere 100ms),
(ball color red 100ms),
(box shape cube 100ms),
(box color blue 100ms),
(hand essence robot 100ms),
(hand holding [] 100ms)

where the following grab command is issued at the same time 100ms

CMD = (cmd grab[hand] 100ms)

which leads to observing a state change later at 200ms such that

(hand holding [ball] 200ms)

meaning that command CMD leads to hand holding the ball at 200ms.
This state change can be captured by an induction process to generate a
new CRM represented as M1 : [(P1 ∧ CMD) → B1] with the following
preconditions P and postconditions B1.

P1 =

(B shape sphere T1)∧
(B color red T1)∧
(H essence robot T1)∧
(H holding [] T1)∧
(T2 = T1 + 100ms)

44 CHAPTER 4. PROBLEM DESCRIPTION

B1 =

(
(H holding [B] T2)∧
(T1 = T2− 100ms)

)
P1 results from a selective attention process that only includes the rel-

evant abstracted facts. Selective attention involves the properties, robot,
sphere and red, as their related entities (hand and ball) are involved in the
transition. In other words, the patterns related to entity box and its prop-
erties are disregarded, as it is not involved in the transition. Also, P1 itself
can be pruned via other mechanisms, e.g., by the analogy mechanism that
will be introduced in the next chapter.

Then, assume in another situation, S2, the aim is to grab another ball,
i.e, ball2 that is blue and not red.

S2 =

(ball2 shape sphere 500ms),
(ball2 color blue 500ms),
(hand essence robot 500ms),
(hand holding [] 500ms)

with the following goal fact
G = (hand holding [ball2] T)
As S2 and G match the learned CRM which is M1, a new CRM which is

M2 can be hypothesized. M2 is a pruned version of M1, as the knowledge
pruning process removes the non-matching property’s value, i.e., blue, from
preconditions P1. Then, we have M2 : [(P ′ ∧ CMD)→ B1] where P ′ is as
follows.

P ′ =

(B shape sphere T1)∧
(H essence robot T1)∧
(H holding [] T1)∧
(T2 = T1 + 100ms)

where only the matching facts between P1 and S2 are kept and abstracted,
while the difference (i.e., the color-related fact) is pruned. In the next chap-
ter, we present a new mechanism that systematically uses analogy-based
knowledge pruning and induction.

4.5 Summary

In this chapter, we first introduced two different causal modeling perspec-
tives: axiomatic representation from a designer’s perspective and non-axiomatic
agent-based representations which are causal relational models (CRMs). The
axiomatic representation includes a large-scale, invariant, centralized repre-
sentation of value changes of observables through issued commands, which
does not meet the requirements of constructivism. However, the second

4.5. SUMMARY 45

introduced representation, CRM, is designed based on the principles of con-
structivist AI, as they represent small, decentralized, falsifiable hypotheses
about transitions in environments that can be contextualized, chained, and
hierarchized.

Then, we defined different dimensions of causal generalization problems,
ranging from abstraction, selective attention, induction, and knowledge prun-
ing. Abstraction involves replacing task entities and values with variables,
selective attention selects relevant, abstracted patterns observed in situa-
tions, induction generates CRMs, and pruning eliminates patterns deemed
irrelevant. Later, we will introduce a mechanism allowing learning agents to
use analogy-making to prune their existing CRMs and induce new abstracted
CRMs autonomously.

46

Chapter 5

Autonomous Cumulative Transfer
Learning

5.1 Introduction

This chapter outlines the architectural design of a knowledge generalization
mechanism that enables learning controllers to grow their knowledge cumu-
latively and generalize it autonomously. The introduced architecture relies
on reasoning based on causal relational models (CRMs) discussed in Section
4.3, allowing an agent to use the familiarities of the task environments at
hand to create falsifiable hypotheses about how to deal with situation-goal
novelties, choose the most salient hypotheses, and perform input intervention
to both achieve the task goals and verify the generated hypotheses (Sheikhlar
et al., 2022).

To achieve this, first, we introduce a theory for autonomous cumu-
lative transfer learning (ACTL) (Sheikhlar et al., 2020), which relates
an agent’s prediction capabilities to its familiarity with the situation it is in
and the goal it tries to achieve, allowing for the transfer of the relevant pieces
of knowledge to that situation. Cumulative learning can be described as an
agent’s ability to incrementally and actively collect and integrate small pieces
of knowledge about a phenomenon over its lifetime, leading it to gain a better
understanding of the phenomenon gradually (Thórisson, 2021b; Thórisson
et al., 2019b). We will also introduce similarity measures that serve as a tool
for computing the level of the agent’s familiarity with situations in relation to
achieving specific goals and, subsequently, applying the relevant knowledge
to those situations. Finally, we introduce an ACTL mechanism based on
the ACTL theory, which is a new schema for cumulative learning, allowing
agents to generalize their CRMs over their knowledge accumulation process
when they try to achieve their goals and, thus, to automatically solve the

48
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

causal generalization problems described in Section 4.4.

Disclosure: This chapter is partly adapted from our papers (Sheikhlar and
Thórisson, 2024; Sheikhlar et al., 2020, 2022). Sections 5.2 and 5.4 partly
explain the autonomous cumulative transfer learning- theory and detailed
arguments from similarity sections of (Sheikhlar et al., 2020). Subsection 5.4
provides an extended version of the goal-drive analogy section of (Sheikhlar
and Thórisson, 2024).

5.2 A theory for autonomous cumulative transfer
learning

Here, we first introduce our theory called autonomous cumulative transfer
learning (ACTL) (Sheikhlar et al., 2020), which is the basis of the ACTL
mechanism we will introduce later in Section 5.5. The theory is based on
several new concepts that are solely introduced in this section and not in
other sections. These concepts will be mapped to the concepts defined in
Chapter 4 in the next section and then will be formulated so that they can
be used for the design of the ACTL mechanism. This section is adapted
from our paper (Sheikhlar et al., 2020).

Assume that a cognitive agent is able to evaluate how familiar it is with
a certain phenomenon Φ. The phenomenon Φ is made up of a finite set
of parts {φ1 . . . φn} that can be observed and are referred to as aspects,
between which various types of relationships can be defined (Sheikhlar et
al., 2020; Thórisson, 2021b). Then,

“The agent can predict a particular selected as-
pect φi ∈ Φ, i ∈ 1, ..., n, using its prior knowledge,
if and only if φi is familiar to the agent, and
non-novel.” - (Sheikhlar et al., 2020)

To compute familiarity, a similarity function Ψ is called for that cap-
tures the overlap between newly observed aspect and the retrieved relevant
piece of knowledge ki from the existing knowledge stored in the agent’s
knowledge base KB (Sheikhlar et al., 2020). In other words,

Φfam = Ψ(ki, φi) (5.1)

where ki ∈ KB and φi ∈ Φ.
Retrieving ki from KB calls for identifying its connection to the active

goals of the agent, meaning that the familiarity computation must be in line
with the agent’s goal achievement. As the agent is assumed to know what
the goals are, it performs backward reasoning from them to find the pieces

5.3. REFORMULATION OF ACTL THEORY: DYNAMIC PROCESSES
AS PHENOMENA 49

of knowledge in KB that best match the goals of the agent (Sheikhlar et al.,
2020).

In the next section, we will map the ACTL theory and its concepts to the
notions of CRMs, situations, transitions, and dynamic processes, allowing
us to use it in practice for designing the ACTL mechanism.

5.3 Reformulation of ACTL theory: Dynamic
processes as phenomena

To relate the ACTL theory to our definitions in Chapter 4, the phenomenon
Φ is considered a dynamic process DP . Then, the aspects of Φ are the sit-
uations, where each situation S represents all existing observable patterns
at a time. Transitions exist between situations that change the state of a
dynamic process from one situation to another. The cause of transitions is
considered the actions of an agent resulting from internal commands issued
by the agent.

The familiarity of a situation S encountered by the agent must be de-
termined by comparing it with the agent’s relevant knowledge in relation
to a particular goal. The agent’s knowledge is formulated as causal rela-
tional models (CRMs) that represent hypothesized transitions with pre- and
post-conditions. The knowledge base is the set of known CRMs. Ampliative
reasoning, detailed in Section 2.6, allows for retrieving the relevant CRMs
based on abductive reasoning, which identifies the properties related to the
agent’s goals (Sheikhlar et al., 2020). In other words, CRMs are considered
relevant when the goal facts match the postconditions of CRMs, making the
patterns of the CRMs both in their pre- and post-conditions relevant. This
means that the familiarity computation needs to be done by calculating the
overlap between the CRM patterns and situation patterns in relation to the
agent’s active goals (Sheikhlar and Thórisson, 2024). Now, the ACTL theory
can be reformulated in the context of CRMs, as follows.

The agent can make a correct prediction in a situation
S, using its known CRMs, if and only if S is familiar to
the agent.

As the goals determine the relevance of the CRMs involved in a compar-
ison, the similarity function Ψ of Equation (5.1) must compare CRMs and
situation-goal pairs. Therefore, if we assume we have a CRM called M and
a situation-goal tuple, τ :(S, G), the familiarity of M is relation to τ can be
calculated as follows

Φfam(M, τ) = Ψ(M, τ) (5.2)

How the above equation is calculated will be explained later in detail in
the analogy section (see Section 5.4). Also, in Section 5.4, different dimen-

50
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

sions of comparison and similarity are discussed. According to the ACTL
theory, high values of Φfam(M, τ) means M ’s higher capability in making
predictions in situation S.

Familiarity is a continuous concept that depends on how accurate and
confident the existing CRMs can represent the transitions between situa-
tions. The more accurate and confident CRMs, the more accurate the pre-
dictions. Familiarity with situations, therefore, must determine the agent’s
predictability in those situations. The CRMs and, therefore, familiarity can
be tested through agents’ actions/commands, which leads to changes in the
confidence of the models and subsequent familiarity values. However, the
initial familiarity computation in the context of CRMs relies on a similari-
ty/comparison computation explained (in detail in section 5.4) as well as the
initial confidence of the CRMs involved in the comparison (explained later
in 5.4.1). This comparison captures the overall similarity between CRMs
and given situation-goal patterns.

5.4 Similarity dimensions

In this section, we present some of the dimensions of similarity function Ψ
in Equations (5.1) and (5.2). The basis of our argument is the comparison
between discrete states, where the states are subsets of situations consisting
of the patterns the agent can observe or imaginatively generate (Sheikhlar
and Thórisson, 2024). Here, we define states in the context of CRMs. This
section is adapted from the "Detailed argument from similarity" section of
our paper (Sheikhlar et al., 2020) with some modifications in relation to the
terminology and naming.

Definition 5.1: State ζ is an arbitrary subset of a situation S. Situation
S is a complete set of observable facts S = {f1, f2, . . . , fn}, where fi repre-
sents the i-th observable fact. Then, a state ζ is a subset of S, that is, ζ ⊆ S.

Pattern similarity in cardinality
According to (Sheikhlar et al., 2020), two states, ζ1 and ζ2, have pattern
similarity in relation to cardinality (SSPC) if some of their patterns match
while others do not. The value of SSPC is determined by calculating the
following ratio (Sheikhlar and Thórisson, 2024; Sheikhlar et al., 2020).

SSPC(ζ1, ζ2) =
|ζ1 ∩ ζ2|
|ζ1 ∪ ζ2|

(5.3)

where |ζ1 ∩ ζ2| represents the number of matching patterns between the
two states and |ζ1 ∪ ζ2| is the number of all patterns including shared and
non-shared patterns. Note that 0 ≤ SSPC ≤ 1 must always hold true, where

5.4. SIMILARITY DIMENSIONS 51

1 refers to the case where the two states completely match, ζ1 ∩ ζ2 = ζ1 ∪ ζ2,
while 0 indicates the case where none of the patterns match, ζ1 ∩ ζ2 = ∅.

Relational similarity
Relational similarity is about comparing the states between which there exist
transitions (Sheikhlar et al., 2020). We formulate this in the context of com-
paring CRMs and situation-goal tuples, introduced in Section 5.3. Assume
that we have a CRM called M : [ζ1(T1)→ ζ2(T2)] and a situation-goal tuple,
τ : (ζ3(T1), ζ4(T2)). The states ζ1(T1) and ζ2(T2) are precondition (LHS) and
post-condition (RHS) patterns of M , respectively. Also, ζ3(T1) and ζ4(T2)
represent the situation and goal patterns, respectively. To compare M and
τ , left-hand side (LHS) pairs {ζ1(T1),ζ3(T1)} and the right-hand side (RHS)
pairs {ζ2(T2), ζ4(T2)} must be compared in relation to SSPC measure. In
other words, relational similarity in CRMs calls for an overall similarity Ψ
calculation based on the similarity between pairs ψ as follows

ψ(ζ1(T1), ζ3(T1)) = SSPC(ζ1(T1), ζ3(T1)) (5.4)

ψ(ζ2(T2), ζ4(T2)) = SSPC(ζ2(T2), ζ4(T2)) (5.5)

Ψ(M, τ) = ψ(ζ1(T1), ζ3(T1)) · ψ(ζ2(T2), ζ4(T2)) (5.6)

Note that the RHS patterns in CRMs only contain one observable fact,
implying that SSPC(ζ2, ζ4) must be 1 so that ζ2 and ζ4 are similar. If
we represent the CRM as M : [(P ∧ cmd) → B], the tuple as τ : (S,G),
and remove the time notation for clarity, then the above equation can be
rewritten as follows.

Ψ(M, τ) = ψ(P, S) · ψ(B,G) (5.7)

As mentioned in Chapter 4, B contains a single fact representing the
property value’s change. As G is also a single fact, then the value of ψ(B,G)
is either 0 or 1. In other words, a goal either matches the RHS of a CRM or
not.

Comparison between CRMs and situation-goal pairs can either be

• top-down: first comparing the ψ(B,G), meaning that if the similar-
ity between the goal and postcondition pattern is 1 (if the two facts
match), then ψ(P, S), the similarity between situation and precondi-
tions, is calculated.

• bottom-up: first comparing ψ(P, S) and then ψ(B,G), meaning that if
the similarity between the preconditions and the situation is greater
than a threshold, γ, then the similarity between the postcondition and
the goal is calculated.

52
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

Note: The analogy-making mechanism we will introduce later in Section
5.5 uses a top-down comparison.

Implications useful for analogy-making
The theory of autonomous cumulative transfer learning has several implica-
tions for autonomous agents intending to use analogical reasoning to generate
new models for dealing with novel situations.

• Familiarity level and prediction confidence: The similarity func-
tion Ψ allows the agent to assess its familiarity with the situation in
relation to a goal. The more familiar a situation is to an agent, the bet-
ter the agent can make predictions in that situation. Predictions are
done via CRMs, whose accuracy depends on their confidence values.
In partly familiar partly novel situations, the agent has to generate
new CRMs (which fully match the new situations) but with confi-
dence values lower than the ones they are derived from. Therefore, we
can state that familiarity with situations determines the confidence of
newly generated hypotheses about how to achieve certain goals. We
will see that this allows our analogy-making mechanism to hypothesize
new CRMs with different confidence values determining how plausible
it is to reach desired effects from partially known situations.

• Comparison based on importance: To identify the importance of
patterns, the backward chaining allows the agent to identify CRMs
whose conditions match the goals. This leads to inferring the con-
ditions required for achieving the goals, which are the precondition
patterns of the CRMs. Those precondition patterns are what we call
important patterns PI and need to be involved in their comparison
with the situation patterns. The instantiation of those precondition
patterns themselves can lead to generating new goals, called subgoals,
that have to follow the same matching process to identify other impor-
tant patterns (Sheikhlar and Thórisson, 2024; Sheikhlar et al., 2020).

• Negative knowledge transfer: Negative transfer of knowledge is
the result of incorrect familiarity estimation where important patterns
are not involved in the comparison, due to the lack of precise models,
i.e., the CRMs whose preconditions are incorrect. Such preconditions
do not include a proper set of patterns and do not accurately describe
the conditions of transitions. In such cases, wrong analogies and thus,
wrong hypotheses are created that do not hold for the situation-goal
patterns and lead to incorrect predictions. This can be identified by the
feedback loops when the agent creates and uses new hypotheses based
on the comparison/analogy which checks whether the hypotheses lead
to expected outcomes. Therefore, the negative transfer of knowledge

5.5. AUTONOMOUS CAUSAL GENERALIZATION 53

can be identified by the agent and modified by creating other more
accurate CRMs.

Our ACTL theory considers the above-mentioned dimensions when using
similarity calculations to identify how familiar a situation is in relation to a
goal.

5.5 Autonomous causal generalization

We introduce a novel cumulative learning mechanism that enables an agent
to leverage its existing CRMs to hypothesize new CRMs (called models in
this section) and then integrate them into the agent’s model base KB, as
illustrated in Figure (5.1). The agent uses an analogy process to compare
the patterns of models in KB with situations and generate new models for
planning and exploration. During exploration, the agent evaluates gener-
ated models and plans by issuing related commands. This way, the agent
interacts with its environment and tests its models and plans in practice.
From an explanation hypothesis generation perspective (Thórisson, 2021a),
the analogy-based models are new explanations for why a decision in a novel
situation/task must be made by an agent. If a model generated through
analogy proves to be inaccurate, the learning from failure mechanism spe-
cializes the analogy-based inaccurate model by adding more models to the
KB that control the applicability of the inaccurate model in future situa-
tions. In other words, explanations for the agent’s decisions can dynamically
change as a result of the agent’s interventions (Eberding et al., 2024). Note
that the goals and subgoals are critical in identifying the important patterns
and models that must be analogized, generalized, and generated. The fol-
lowing example shows how the mentioned processes occur.

Example 1: As shown in Figure (2), assume we have a robot hand h that,
after successfully learning to grasp a blue cube (c1), is assigned to grasp
two new cubes (c2 and c3) with different colors, green and red. Grasping c1
means applying the command (cmd grab [h] T1) in situation S1, which
causes a transition from (h holding [] T1) in S1 to (h holding [c1]
T2) in S2. This makes the agent learn the model M1 : [A1→ B1], where

A1 =

(cmd grab[H] T1)∧
(C color blue T1)∧
(C essence cube T1)∧
(H essence hand T1)∧
(H holding [] T1)∧
(T2 = T1 + 100ms)

54
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

Figure 5.1: Autonomous cumulative transfer learning (ACTL) mechanism controls
the interactions of a cognitive agent with its environment. The mechanism involves
both generalization and specialization. Generalization prunes non-matching con-
ditions (through analogizing important patterns with observable situations) from
models and accordingly generates new models, while specialization adds new con-
straints to overly/incorrectly generalized models when they fail in practice (learn-
ing from failure). Important patterns are the components of precondition sets of
models that are obtained from backward chaining from (sub) goals. The relevant
models, in this context, are the ones that the planner selects based on the priorities
it calculates.

B1 =

(
(H holding [C] T2)∧
(T1 = T2− 100ms)

)
The modelM1 can be generalized when needed. Assume that in situation

S3, the goal fact is

G1 :
(
H holding [c2] T2

)
meaning that the hand is desired to be holding the green cube (c2). G1
matches the postconditions (RHS) of M1. In other words, when G1 matches

5.5. AUTONOMOUS CAUSAL GENERALIZATION 55

Figure 5.2: The experimentation has to do with learning M1 after grabbing c1,
which is then used for deriving M2 in Task Solving 1 for grabbing c2. Yet, h fails
to grab c3 using M2, leading to the induction of M3.

(H holding [C] T2) in B, backward chaining from G1 leads to the in-
stantiation of fact patterns in A1, selecting the important patterns in situa-
tion S3. Then, the instantiated important patterns become

PI =

(c2 color blue T1)∧
(c2 essence cube T1)∧
(h essence hand T1)∧
(h holding [] T1)

The analogy mechanism has to compare the patterns in PI with the cur-
rent observation facts of situation S3. In S3, the cube c2 is observed to be
green, which does not match the color value (blue) in PI , bolded in the set.
The pruning mechanism in the analogy process removes the non-matching
fact (c2 color blue T1) and keeps the rest. Then, the induction mecha-
nism in analogy generates a new modelM2 similar toM1 but with the differ-
ence that M2 does not include the pattern (C color blue T1), meaning
that the color property of the cubes is disregarded in the new model M2. In
other words, the newly inducedM2 : [A2→ B2] injected into the model-base
is as follows.

56
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

A2 =

(cmd grab[H] T1)∧
(C essence cube T1)∧
(H essence hand T1)∧
(H holding [] T1)∧
(T2 = T1 + 100ms)

B2 =

(
(H holding [C] T2)∧
(T1 = T2− 100ms)

)
M2 is a generalized version of M1 with fewer precondition patterns on its

LHS, which will immediately be used by the planner, leading to issuing the
command of (cmd grab [h] T1). The issued command successfully grabs
and leads to observing the fact (h holding [c2] T2), which increases the
confidence of M2. However, such generalized models may not always be ac-
curate and thus useful. Situations S5 and S6 (Task solving 2) is an instance
of such scenarios, where the goal is to grab and hold a red cube (c3) in
situation S5. Based on a process similar to what was shown above, the goal
fact G2 = (H holding [c3] T2) matching the RHS of the analogy-based
induced model M2, leading to issuing the grab command. After the grab
command is issued in S5, the grabbing action fails in situation S6, leading to
the failure of M2. This makes the learning-from-failure mechanism induce a
new model M3 that restricts the use of M2 when the cube is red. In other
words, we M3 : [A3→ B3] is learned, where

A3 =

(C essence cube T1)∧
(C color red T1)∧
(H essence hand T1)∧
(H holding [] T1)

B3 =

(
mdl ¬M2 T1

)
where ¬ indicates negation. M3 prevents M2 from being used in future

encounters with red cubes. Incorporating the bolded fact (C color red
T1) results from the negative analogy where all the differences between the
current situation and known preconditions must be included in the newly
induced precondition set A3 for grabbing action. Such a mechanism does not
allow overgeneralization of models learned during goal achievement. Now,
the models M1, M2, and M3 together mean that the grab command works
for cubes with any color except red.

The following section explains how each component of the introduced
cumulative learning mechanism works.

5.5. AUTONOMOUS CAUSAL GENERALIZATION 57

5.5.1 Goal-Driven Analogy

The analogy process starts with a top-down comparison between models and
situation-goal pairs, computes the familiarity, performs knowledge pruning,
and induces new models (detailed in Chapter 4), guiding the agent to learn
to incorporate fewer yet more relevant patterns in the new models it cre-
ates over time (Sheikhlar and Thórisson, 2024). The goal-driven analogy
also allows for the generation of new hypotheses as explanations of why
certain properties of processes must be considered when performing a task
(Thórisson, 2021a). This subsection is adapted from Goal-Driven Analogy:
A Mechanism section of our paper (Sheikhlar and Thórisson, 2024).

Top-down comparison1

The first step to performing analogical reasoning is comparing the known
with the new pieces of information. Assume the agent knows a model
M : [LHS → RHS]. To compare M with encountered situation-goal pairs,
discussed in Section 5.4, the top-down method must be chosen, as the com-
parison must involve the important patterns identified by backward chain-
ing from the goals. This means that as shown in Figure 5.3 (Sheikhlar and
Thórisson, 2024), the comparison is first initiated by pattern matching be-
tween the model’s post-conditions and the goal patterns, and then between
the preconditions and situation patterns (Sheikhlar and Thórisson, 2024).

Knowledge pruning2

Analogy solves the knowledge pruning problem, detailed in Section 4.4, by
eliminating unmatched patterns between LHS and S and retaining the
matched ones. In a top-down comparison, as detailed in Section 5.4, if
ψ(RHS,G) = 1, then the pruned M will have the following pre- and post-
conditions.

LHS∗ = LHS ∩ S (5.8)

RHS∗ = RHS (5.9)

Such knowledge pruning generalizes the preconditions by creating the
new precondition set LHS∗, which has fewer patterns and, thus, has the
potential to match a wider range of situations in comparison to the original
precondition set LHS.

1This part extends the description of Figure 5.3 (Sheikhlar and Thórisson, 2024).
2Here we explain the details of knowledge pruning introduced in "Analogy, induction,

and knowledge pruning" subsection of our paper (Sheikhlar and Thórisson, 2024).

58
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

Induction3

The pruned preconditions and postconditions (LHS∗ and RHS∗) form the
the new model M∗, represented as follows (Sheikhlar and Thórisson, 2024)

M∗ = [LHS∗ → RHS∗], cfd∗ < cfd (5.10)

where cfd∗ must be lower than cfd, because M∗ is a hypothesis inferred
from M in a novel situation-goal. In the next subsection, we will show how
cdf∗ is computed based on the notion of familiarity and the confidence of
old models.

As shown in Figure 5.3 (Sheikhlar and Thórisson, 2024), the pattern
matching of M∗ is tested in forward chaining from LHS to the goal fact.
Note that there is no guarantee that the generalized model M∗ makes a
correct prediction in practice. Therefore, interventions from the agent are
needed to verify the accuracy of the new model M∗ generated via induction.
Also, models like M∗ must allow the agent to come up with solutions when
facing new situation-goals, which requires analogy to be based on a top-down
abductive process.

Familiarity computation
The analogy process constantly computes the agent’s familiarity with situa-
tions to guide the agent’s planning and exploration. The relational similarity
equation (5.2) can be used to estimate how familiar the situation-goal is in
relation to a model, implying that every model has an accompanying famil-
iarity degree.

According to equation (5.2) familiarity of a situation in relation to a
model depends on how similar the situation is to the preconditions of the
model. In other words,

Φfam(M, τ) = ψ(LHS, S) (5.11)

The above equation will be useful for causality-based frameworks whose
RHSs of cause-effect models are abstracted, single patterns, and can fully
match the (sub)goals.

Confidence computation4

According to our ACTL theory (see Section 5.2), familiarity value gives
clues to the agent about how predictable the situations are. An important

3This part describes the details of the induced models via goal-driven analogy, briefly
explained in the "Analogy, induction, and knowledge pruning" subsection of our paper
(Sheikhlar and Thórisson, 2024).

4This part explains the computation details of the confidence of newly induced models
via goal-driven analogy, briefly described in "Confidence Computation" subsection of our
paper (Sheikhlar and Thórisson, 2024).

5.5. AUTONOMOUS CAUSAL GENERALIZATION 59

Figure 5.3: The first step in the analogy process is to check if the RHS of M
matches (sub) goals (1st comparison). If so, the patterns of LHS will be compared
to the current or predicted situations (2nd comparison), leading to the induction
of M∗, generated over the abductive backward chaining from the goal state. M∗’s
matching will be verified over the deductive forward chaining from the LHS∗

towards the RHS∗ and the goal state.- figure from (Sheikhlar and Thórisson, 2024)

implication of the theory, as discussed in the previous section, is that the level
of familiarity, which has to do with to what extent the situation-goal pairs
match the known models’ patterns, specifies how confident the predictions
can be in relation to the situation-goal (Sheikhlar and Thórisson, 2024). As
the predictions are made via models, familiarity value is considered a factor
in calculating the confidence values of the models induced via the analogy
process.

The analogy process induces the new model M∗ with confidence cfd∗.
The familiarity value Φfam(M, τ) computed by equation (5.11) and the con-
fidence of the original model M , i.e., cfd, together determine the induced
model’s confidence cfd∗ (Sheikhlar and Thórisson, 2024). Therefore, as in
(Sheikhlar and Thórisson, 2024), we have

cfd∗ = Φfam(M, τ) · cfd = ψ(LHS, S) · cfd (5.12)

where 0 ≤ cfd∗ ≤ cfd ≤ 1 holds true as long as it has not been tested
through intervention.

60
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

Note that cfd∗ will change once M∗ is tested through input interven-
tions that is, applying the related command on the LHS of M∗. The predic-
tion success of M∗ collects positive evidence, which in turn increases cfd∗,
whereas its failure and, thus, negative evidence does the opposite.

Generalizing CRM chains 5

As shown in figure (5.4) (Sheikhlar and Thórisson, 2024), models can be
chained both in the forward and backward directions. Yet, as the analogy
process is a top-down mechanism, the induction of new models must hap-
pen during the backward chaining. This leads to the creation of multiple
variations of the existing models. The induction of multiple models enables
the planning system (explained later in this chapter) to chain those models
(and the old models) in different ways and to generate extra solutions to the
same task, which the agent will test based on their priority, partly specified
by the confidence of their models.

Figure 5.4: If LHS2 matches RHS1 and partially matches the relevant predicted
situation, then M2∗ will be induced. Similarly, when LHS1 matches the RHS of
another model and partially matches the relevant predicted situation, then M1∗

will also be induced. The induction of M2∗ and then M1∗ follows the same process
shown in figure (5.3).- figure from (Sheikhlar and Thórisson, 2024)

5This part is adapted from the "Generalizing chains of models" subsection of our
paper (Sheikhlar and Thórisson, 2024).

5.5. AUTONOMOUS CAUSAL GENERALIZATION 61

5.5.2 Planning/exploration

The newly generated models through analogy, can chain and create new so-
lutions (a.k.a. plans for goal achievement) when no solutions exist to achieve
the agent’s active goals. Therefore, the analogy-based model creation must
occur while the agent performs planning. A solutions’ dynamic confidence
computation partly specifies the priority of choosing and deciding which
solutions to explore. The analogy process creates multiple models in each
predicted situation, by which the agent can create a set of solutions with dif-
ferent confidence values and durations, leading to a systematic goal-driven
exploration that evaluates each generated solution and the models it uses in
light of the goal achievement. The solutions are tested individually via the
agent’s command sequences (i.e., input interventions) based on their prior-
ity. The priority partly depends on the confidence of a solution, which can
be computed via the product of confidence of each model involved in the
chain from the first command towards the final goal fact. This means that
if there exist n models in a chain where m models are induced via analogy
(m < n), then the solution confidence can be calculated as follows.

cfdsolution =

m∏
i=1

cfd∗i ·
n∏

j=m+1

cfdj (5.13)

The solution’s priority is dependent on both the solution’s confidence and
the length of its chain (a.k.a. duration). According to AERA architecture
(Nivel, Thórisson, Dindo, et al., 2013), the longer it takes to reach the goal
state, the less inclined the planner is to choose that solution. Therefore,
when there exist multiple valid solutions to a task, the priority of the kth
solution, pk, is calculated with its confidence cfdsolution,k over the solution’s
duration dk, as follows (Nivel, Thórisson, Dindo, et al., 2013).

pk = α.
cfdsolution,k

dk
(5.14)

where higher α values make the exploration more conservative, as α’s value
depends on the assigned deadline to reach the goal state, with smaller values
for shorter deadlines.

While performing its tasks, the agent evaluates the solutions in practice
by issuing the relevant sequences of commands using newly hypothesized
models. The initial confidence computation for each model results from the
analogy mechanism explained earlier, guiding the goal-driven exploration
process based on the priority order. Note that the confidence values of
the solutions are updated as the agent issues the commands and takes the

62
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

relevant sequences of actions, which updates the confidence of the involved
models. In other words, the verification of plans generated based on analogy-
based induced models occurs once the related commands are issued, which, if
they lead to expected outcomes, increases the confidence value of the models,
solidifying the newly induced models via increasing their confidence values.
On the other hand, if the outcomes of commands prove the induced models
are incorrect, their confidence decreases, and anti-models for them will be
hypothesized, preventing those models from being used in similar situations
later. In the next section, we will see how the anti-models are induced via
learning from failure mechanism.

5.5.3 Learning from failure

While analogy removes some conditions on the use of models, learning from
failure adds new conditions. Some models induced by the analogy process
may lead to unexpected outcomes due to over-generalization or incorrect
generalization. An instance of a learning-from-failure mechanism has al-
ready been implemented in the AERA system through an algorithm called
prediction targeted pattern extractor (PTPX) (Nivel and Thórisson, 2013a;
Nivel, Thórisson, Dindo, et al., 2013). In the next chapter, we will see how
we integrate our goal-driven analogy mechanism to effectively use PTPX to
prevent incorrect- or over-generalization.

Learning from failure is a specialization mechanism that falsifies or re-
stricts the incorrectly generalized models. When the agent’s intervention
proves some models’ inaccuracy, the mechanism revises the misbehaved mod-
els by learning new models that control the failed models’ use in future sit-
uations (Nivel and Thórisson, 2013a; Nivel, Thórisson, Dindo, et al., 2013).
In our work, the learning-from-failure mechanism induces new models that
include all non-matching patterns disregarded when generalizing the mod-
els via analogy. A negative analogy , therefore, creates anti-models Manti,
that is, models that incorporate non-matching patterns between model pre-
conditions LHS∗ and situation S in its preconditions V . The following
anti-model restricts the situations in which M∗ holds.

Manti : [V ¬M∗] cfdV (5.15)

where ¬ indicates negation, and V is a new set of preconditions, includ-
ing the differences (non-matching patterns) between LHS and S, specify-
ing under which circumstances M∗ does not hold true. In other words,
(S ∪ LHS) − (S ∩ LHS) ⊆ V . The confidence value cfdV is considered 1,
as the Manti is generated as result of the intervention of the agent.

The next chapter describes the mechanism’s implementation details in
a general machine intelligence (GMI) aspiring system called AERA (Nivel,

5.6. SUMMARY 63

Thórisson, Dindo, et al., 2013). We will also see how we expect the AERA
system to extend its models through the introduced ACTL mechanism.

5.5.4 ACTL mechanism

Figure (5.1) shows that the ACTL mechanism is a goal-oriented process.
When the goals and subgoals match the RHS of models in the model-base
MB (a.k.a. knowledge base), important patterns on the LHS of matched
models are extracted. The important patterns (P_I) are compared with
situations via the analogy process, leading to the induction of new mod-
els with generalized patterns and various confidence values. The analogy-
based models are sent to and stored in the agent’s MB and employed during
the task-solving process, where model chains with higher confidence and
shorter lengths are chosen. The selected solutions and, thus, the chosen
commands are applied, leading to the evaluation of the generated models. If
the utilized analogy-based models fail to make correct predictions in practice,
the learning-from-failure process induces new anti-models injected into MB,
which restricts the use of models in similar situations in future encounters.
In other words, learning-from-failure specializes the incorrectly generalized
models.

5.6 Summary

In the chapter, we introduced a new schema for cumulative learning that
uses an analogy-based generalization mechanism to build new models based
on existing models, learns from the failure of the analogy-based models,
performs planning by generating different hypothesized solutions using the
analogy-based, failure-based, and existing models, and does an exploration
process that tries each generated solution (a.k.a. plan) based on the as-
signed priority to it. Analogy induces new models that only contain the
overlaps of the old models with encountered situation-goal pairs during the
planning process, allowing the agent to immediately verify the accuracy of
the new models. If they are wrong, new models, called anti-models, will be
produced, preventing the analogy models from being used later in similar
situations. The models are tested by applying the generated solutions for
goal achievement. If a solution fails, another solution with a lower initial
priority is chosen. Solutions are explored based on a priority order deter-
mined via the confidence of the models used in the solution and the length of
the causal chain. The confidence of the analogy-based models results from
familiarity computations. These are the elements of an explicit cumulative
learning mechanism working together to allow an agent to learn from correct
or incorrect analogies made to achieve goals. The mechanism is integrated

64
CHAPTER 5. AUTONOMOUS CUMULATIVE TRANSFER

LEARNING

into and tested by a running causality-based system described in the next
chapter.

Chapter 6

Design & Implementation

6.1 Introduction

The following chapter explains how the autonomous cumulative transfer
learning (ACTL) mechanism is implemented and integrated into an exist-
ing cognitive architecture autocatalytic endogenous reflective architecture
(AERA) (Nivel, Thórisson, Dindo, et al., 2013), a GMI-aspiring, causality-
based control architecture designed based on the principles of constructivism.
The integration enables an AERA agent to generate different falsifiable hy-
potheses about how to achieve goals and, subsequently, steer its exploration
toward goal achievement. The hypotheses are in the form of new models
that carry uncertainty by their assigned confidence values, initially calcu-
lated based on the confidence of the original models they are derived from
and the amount of the original models’ overlap with the experienced situ-
ations (see Section 5.4). The interventions of the agent verify whether the
hypothesized models are correct/accurate. The explicit models in the AERA
system enable an AERA-based agent to inspect the significance of models’
patterns used for planning and revise the models when needed.

The introduced ACTL mechanism extends AERA’s learning and plan-
ning capabilities, allowing it to autonomously perform explicit analogies and
efficiently generalize its models while achieving its goals. The current im-
plementation of the AERA framework, called OpenAERA,1 is chosen to
integrate the ACTL mechanism. First, we introduce the knowledge repre-
sentation and reasoning components of the OpenAERA system. Then, we
describe how the ACTL mechanism is integrated with this system.

Disclosure: This chapter is partly adapted from our papers (Sheikhlar and
Thórisson, 2024; Sheikhlar et al., 2022). Section 6.2 describes the knowledge

1See http://www.openaera.org — accessed Apr. 2, 2024.

http://www.openaera.org

66 CHAPTER 6. DESIGN & IMPLEMENTATION

representation and reasoning in AERA section of (Sheikhlar et al., 2022).
Section 6.4 provides an extensive description of extension via anaogy sub-
section of (Sheikhlar and Thórisson, 2024).

6.2 Knowledge representation and reasoning in AERA

We provide a high-level description of the relevant syntax and semantics
of replicode, OpenAERA’s programming language (Nivel and Thórisson,
2013a). Some related concepts, such as facts, entities, goals, and commands,
were introduced in previous chapters. Here, we focus on describing command
models, requirement models, and composite states in OpenAERA, which to-
gether represent CRMs introduced in previous chapters. We also describe
how these components allow for ampliative reasoning. The section is adapted
from the knowledge representation and reasoning sections of (Sheikhlar and
Thórisson, 2024; Sheikhlar et al., 2022).

• A Command models (CoM) represents an abstracted command pattern
at a time causing a value change of a property at a later time.
E.g. M1: [(cmd release[H] T1)→ (H holding[] T2)] means that
issuing the release command through variable H (abstracted entity
hand) at time T1 will cause H to be holding nothing, i.e., [], at time
T2. Note that H, T1, and T2 are variables that can be present in
AERA facts and be instantiated via pattern matching. Every CoM
has a success rate that specifies the confidence of the model and can
change through evidence collection.

• Composite states (CSTs) represent abstracted precondition patterns
that need to be instantiated all at the same time so that CoMs can
be used for prediction-making or planning (Sheikhlar and Thórisson,
2024). E.g. CST1: [(H position P T0) ∧(C position P T 0)
∧(H holding [C] T 0)] refers to a composite state representing a
subset of a situation where both C and H are at the same position P
at the same time T0, and H is holding C at that time. If H repre-
sents a hand and C represents a cube, then CST1 can represent the
preconditions of releasing a hand holding a cube via M1.

• Requirement models (Mreq) are models that specify the requirements
for using CoMs under specific CST s (Sheikhlar and Thórisson, 2024).
E.g. Mreq:[(icst CST1(H,C,P , T0)) → (imdl M1(H,T0))], is a
requirement model, where icst and imdl represent instantiation oper-
ators on composite state CST1 and M1, respectively. The requirement
models states that when the positions of H and C are identical (P),
then release command will lead to (H holding []). Every Mreq has a

6.3. FRAME PROBLEM AND AERA 67

success rate that specifies the confidence of the model and can change
through evidence collection.

OpenAERA’s planning is based on two mechanisms: forward chaining,
which concerns deductive reasoning, and backward chaining, which realizes
abductive reasoning (Nivel and Thórisson, 2013a; Nivel, Thórisson, Dindo,
et al., 2013; Sheikhlar and Thórisson, 2024), described as follows.

• Forward chaining (deduction) is the chaining of known Mreqs in the
forward direction, which occurs if situation patterns match all the CST
components in a Mreq of a CoM , causing the CoM to predict the effect
of the issued command on its LHS (Sheikhlar and Thórisson, 2024).

• Backward chaining (abduction) is the set of inference steps starting
from the top-level goal, moving backward in time towards the com-
mands, and generating subgoals on the way. The subgoals are instan-
tiated components of the CST s instantiated on LHS of the Mreqs dur-
ing backward chaining. Each subgoal must match the RHS of another
CoM such that backward chaining continues (Sheikhlar and Thórisson,
2024).

• Induction: Standard OpenAERA induces new knowledge pieces via
two algorithms2: 1) change targeted pattern extractor (CTPX) which
creates a CST , a CoM and their Mreq when a command issued by the
AERA agent alters the value of a property in the environment, and 2)
prediction targeted pattern extractor (PTPX), which is triggered when
a known CoM fails to make a correct prediction in a particular situa-
tion causing the AERA agent to generate a new CST -Mreq specifying
the conditions under which the CoM can not predict accurately (Nivel,
Thórisson, Dindo, et al., 2013; Sheikhlar et al., 2022).

6.3 Frame problem and AERA

Introduced by McCarthy and Hayes (1981), the frame problem points to
the insufficiency of effect descriptions in describing what remains unchanged
after an action. The frame problem is also about efficiently updating an
agent’s knowledge about the world (Dennett, 1990). In AERA, command
models and their preconditions are used for continuous prediction monitor-
ing and reasoning at every time frame (Nivel, Thórisson, Dindo, et al., 2013).

2In the current implementation, there also exists a third mechanism called goal tar-
geted pattern extractor (GTPX), which is not involved in any part of this thesis. The
GTPX induces a new triad of CST , Mreq , and CoM when the AERA agent reaches a
goal state accidentally.

68 CHAPTER 6. DESIGN & IMPLEMENTATION

If any prediction fails in reality, the system is notified, and the models with
incorrect predictions are revised and updated immediately. The predictions
are made via temporal models, allowing the AERA agents to constantly
and precisely predict what outcome will be observed at what time. Models
in AERA have preconditions that focus only on a simultaneous subset of
patterns that can be observed in a situation. In other words, AERA se-
lectively pays attention to specific patterns and their values when making
predictions. To achieve this, it uses fine-grained small models and pattern-
matching principles (Thórisson, 2012), which are also used in learning and
reasoning processes through backward and forward chaining. The ACTL
mechanism provides a way to improve selective attention in AERA by en-
abling the system to learn to modify the models’ preconditions and consider
relevant properties when the models are created and used.

6.4 ACTL in AERA

The ACTL mechanism, explained in Chapter 5), cumulatively enhances
the ampliative reasoning in OpenAERA and gradually improves an AERA
agent’s flexibility in dealing with novel tasks and situations.

In the standard OpenAERA, backward chaining from a Mreq happens
only if every component of instantiated CST on its LHS fully matches the
current or predicted situations. Yet, this is a restrictive design decision,
as some CST s may incorporate irrelevant facts that do not fully match
situations, limiting the applicability of learned CoMs during planning. Our
ACTL mechanism can solve this over-specification issue in OpenAERA by in-
ducing new, generalized pairs of composite state-requirement models (CST -
Mreq) for known CoMs (during planning) whose patterns fully match the
newly encountered situations, allowing OpenAERA to learn to incorporate
significant properties and facts in its model preconditions (Sheikhlar and
Thórisson, 2024). The induced CST -Mreqs are generated during backward
chaining and used within the same planning process according to their prior-
ity. In other words, with ACTL integrated into OpenAERA, if some of the
models’ preconditions do not match the situations, an AERA agent can still
commit to reasonable solutions to achieve its goals. The implemented C++
code of OpenAERA integrated with the ACTL mechanism can be found in
3. This section is partly adapted from (Sheikhlar and Thórisson, 2024).

3See https://github.com/IIIM-IS/AERA/tree/analogy-during-backward-chaining -
Accessed Jul. 14, 2024

6.4. ACTL IN AERA 69

6.4.1 Integrated mechanism for goal-driven learning and
planning

Figure (6.1) illustrates the general procedure of how the integrated mecha-
nism works in the OpenAERA system. The system activates the mechanism
during backward chaining, which starts its chaining process from the top-
level goal Gtop towards commands backward in time (Sheikhlar and Thóris-
son, 2024). Gtop is defined by the human task designer. The ACTL mech-
anism runs in parallel with the backward chaining in OpenAERA, starting
when the Gtop matches the RHS of existing CoM s, triggering the instanti-
ation of CST s on the LHS of their Mreqs (Sheikhlar and Thórisson, 2024).
Note that a CoM might have multiple Mreqs, each with its own CST. Instan-
tiation of CST s leads to the creation of subgoals Gsubs, which must either
match the observation facts (current situation) or the RHS of other CoM s
(predicted situations).

If the Gsubs generated from the instantiation of a Mreq fully match the
current or predicted situations, there will be no need for analogy and gener-
alization, as in this case, regular planning can occur without having analogy
models and generalization. In other words, if accurate CST -Mreqs for goal
achievement exist, the system will use those without creating new ones.
However, if the CST -Mreqs of a CoM do not fully match the situations,
the ACTL mechanism creates new CST -Mreqs for that CoM, pruning the
non-matching components of the old CST -Mreqs and keeping the matched
components. The new CST -Mreqs are then immediately used within the
same backward chaining process, allowing the system to continue planning
based on the existing models plus the new induced CST -Mreqs.

Therefore, the new CST -Mreqs generate new Gsubs during the backward
chaining process, allowing the system to add additional plans for solving the
task at hand. Plans are the solutions introduced in Chapter 5. Analogy-
based generalization and backward chaining occur simultaneously, meaning
that the analogies are made and CST -Mreqs are induced while OpenAERA’s
planner chains backward from the Gsubs toward the initial situation Sinit.
Multiple CST -Mreqs for the existing command models are created during
backward chaining. As soon as the backward chaining process reaches Sinit,
all the analogy-based CST -Mreqs (which must fully match the situations as
only the matching components of their original CST -Mreqs were kept) have
already been induced. The CST -Mreqs allow the planner to generate new
plans for goal achievement with different priorities to be employed by the
planner.

The planner explores the generated plans, the order of which is based on
the plans’ priorities (see Section 5.5.2). The first plan to be executed is the
one with the highest priority. If the plan does not lead to the goal state,
the specialization mechanism via learning from failure generates anti-CST -

70 CHAPTER 6. DESIGN & IMPLEMENTATION

Mreqs (see Section 5.5.3), which restrict the use of analogy-based induced
CST -Mreqs. The plan is then removed from the list of generated plans, and
the next plan is explored based on its priority. This procedure goes on until
the goal state is reached, leading to the accumulation of positive evidence for
the plan and the utilized CST -Mreqs, thereby increasing the confidence in
the CST -Mreqs and their related CoM s. The algorithm of this mechanism
is provided in Algorithm 14.

Figure 6.1: The integrated ACTL generalizes the preconditions of known
models during backward chaining, allowing it to generate new solutions dur-
ing the planning process. The created solutions are explored based on a
confidence-based priority order.

4Note that the algorithm only shows a pseudocode of one method of implementing
the ACTL mechanism, which is not limited to the generating preconditions of CoMs
theoretically. Also, the algorithm does not entail all the mechanisms involved in planning
and the parallel processing of information in the OpenAERA system.

6.4. ACTL IN AERA 71

Algorithm 1: ACTL-Based Planning in OpenAERA
Input: 1) The top level goal Gtop,
2) Initial causal and requirement models, CoMs and Mreqs, and
composite states CST s,
3) The current situation S’s observation facts.
Output: Return the successful plan among other generated plans.

Gtop is injected, setting Gsub to Gtop

for each Gsub that match RHS of CoMs do
for each matched CoM do

for each CST -Mreq do
if G′

subs fully match S then
Initial situation reached and plan generated
Break

if G′
subs partly match S and partly match RHS of CoM ′

then
Generate G′′

subs and setting Gsubs to G′′
subs

if Some G′
subs neither matches S nor RHS of CoM ′ then

Generate new CST -Mreq via analogy
Generate new G′′

subs and setting Gsubs to G′′
subs

Assign priorities to each generated plan
for each plan in order of priority do

if the plan achieves Gtop then
Involved CoMs and Mreqs confidence update
Break

else
Generate anti-CST -Mreqs when the plan fails, removing the
failed plan from the list of considered plans

Continue with the next highest priority plan

72 CHAPTER 6. DESIGN & IMPLEMENTATION

6.4.2 Analogy in AERA

The analogy process happens by comparing the situation-goal pairs with the
instantiated LHS and RHS of Mreq (instantiated CST s and CoM s) during
backward chaining and identifying the matching and non-matching patterns.
Other than the comparison, the analogy process prunes CST−Mreqs by leav-
ing out the non-matching patterns and subsequently generating new CST −
Mreqs with matching patterns, where fewer patterns in new CST −Mreqs
mean more general CST − Mreqs that can be applied to more situations
(Sheikhlar and Thórisson, 2024).

As illustrated in Figure 6.1, the ACTL involves reasoning backward
from the Gtop towards the initial situation (Sheikhlar and Thórisson, 2024).
Chaining backward makes the generalization process shown in Figure 6.1
generates multiple CST −Mreq pairs for the existing CoMs. The new CST s
are the pruned versions of the original CST s. The knowledge pruning occurs
via the comparison process (see Figure 5.3) and then generalizing the pre-
conditions where the non-matching patterns are left out. Analogy happens
concurrently with OpenAERA’s planning for goal achievement, leading to
generating new models that can be employed in the same planning, allowing
the agent to create new plans if necessary and immediately utilize them to
infer new plans (a.k.a. solutions).

Comparison and knowledge pruning
First, it is checked whether Gtop matches RHS of a known CoM . If so,
the Gsubs (i.e., instantiated components of CST s) must be compared with
the current or predicted situation facts. Note that the predicted facts are
instantiated RHS patterns of other CoMs. When a Gsub does not match
a situation, the analogy process prevents the agent from adding the non-
matching Gsub’s pattern to the newly created CST and Mreq. This way, it
creates a pruned and generalized version of the original CST and Mreq from
which Gsubs are initially created. The newly created CST s resulting from
analogy are the abstracted intersections between instantiated CST s (i.e.,
Gsubs) and observed/predicted facts (similarities are kept), where the non-
matching patterns are pruned (see Section 5.4 for details). In other words,
a generalized CST consists only of similarities between model preconditions
and the situation patterns.

Planning, exploration, and confidence computation
In the old version of OpenAERA, for a plan to be valid, each Gsub must
either be achievable in predicted situations through a (set of) command(s)
or match the observed facts in the current situation. However, our analogy
mechanism releases OpenAERA from such a restrictive pattern-matching
requirement. Creating new CST s and Mreqs via the analogy process creates

6.4. ACTL IN AERA 73

new plans when no valid plans exist. The mechanism permits committing
to plans that only partially match the CST s of known CoMs. This be-
comes possible when the analogy process creates new CST -Mreq that fully
match when planning and thus can be used right away. Different CST -Mreq

might have different confidence values. The confidence values of models are
called success rate in the AERA framework (Nivel, Thórisson, Dindo, et
al., 2013). The initial success rate of a CST -Mreq is specified based on the
familiarity ratio calculation described in Section 5.4 in detail. The ratio
determines the familiarity of a CST -Mreq in relation to the Gtop-situation.
This will help the AERA agent decide which plan to choose and explore con-
sidering the confidence of CST -Mreqs involved in a generated plan (detailed
in Section 5.5.2).

Analogizing chains of models
The Gsubs generated based on analogy-based induced CST − Mreqs of a
CoM can match the RHS of other CoMs. If some CST −Mreqs of the other
CoMs lead to generating non-matching Gsubs, the goal-driven analogy mech-
anism steps in again and induces new CST −Mreqs whose all derived Gsubs
match the situations. This means that as the backward chaining occurs, the
analogy mechanism generates new CST −Mreqs for different CoMs, allow-
ing them to be employed for the agent’s planning right away. The idea of
pruning and then inducing multiple preconditions, each for a different CoM
makes the agent’s planning more adaptive and allows it to create more plans
for the same task (See Section 5.4).

6.4.3 Learning from failure

The analogy process may generate overly generalized preconditions leading
to failed predictions. The process of learning from failure occurs when the
newly generated preconditions result in the failure of the plans. The failures
trigger OpenAERA’s PTPX mechanism that creates new sets of precondi-
tions (CST -Mreqs), as described in detail in (Nivel, Thórisson, Steunebrink,
et al., 2013). This will help our mechanism to prevent analogy-based, over-
generalized preconditions from being used in similar situations in the fu-
ture. The generated CST -Mreq via PTPX are called anti-requirements
anti−Mreqs, as they state that under the new CST conditions Mreq created
via analogy does not hold anymore, according to the Equation (5.15). In
other words, this mechanism helps to refine and specialize the incorrectly
generalized analogy-based CST -Mreqs by adding new conditions to the use
of their referenced CoMs. Those new conditions are the non-matching pat-
terns that were pruned during the analogy process, as detailed in Section
5.5.3.

74 CHAPTER 6. DESIGN & IMPLEMENTATION

6.4.4 Planning/exploration in AERA

In its planning, OpenAERA generates multiple plans (i.e., solution paths)
to Gtops via backward and forward chaining. The backward and forward
chaining leads to inferring the correct sequences of commands that need to
be taken to achieve the Gsubs and eventually the Gtop. In the standard
OpenAERA system, no model creation, i.e., induction, exists within the
backward and forward chaining process. Our ACTL mechanism, however,
allows the OpenAERA agent to generate new CST -Mreqs during its plan-
ning via backward chaining and test them in forward chaining. As mentioned
in the previous sections, generating new CST -Mreqs leads to the creation of
a set of valid solutions the OpenAERA planner can commit to, each with
confidence values between 0 and 1. The agent calculates these values via
Equation (5.13), selects the most confidence while shorter path based on
Equation (5.14), and issues the inferred sequence of commands. Suppose
the plan does not lead to the Gtop. In that case, the agent removes the plan
from the solution set by reducing its confidence and learning from the fail-
ure based on anti-Mreqs (see Equation (5.15), and tries an alternative plan it
had created before, as illustrated in Figure 6.1. This way, the agent explores
different hypotheses created by the generalization (i.e., analogy) part of the
ACTL mechanism.

6.5 Summary

In this chapter, we discussed the integration of the introduced Autonomous
Cumulative Transfer Learning (ACTL) mechanism into the AERA cognitive
architecture to enhance its learning and reasoning capabilities. We choose
OpenAERA, the main implementation of AERA framework, to evaluate our
proposal. The ACTL mechanism introduces a way to create defeasible hy-
potheses by making analogies between the situation-goals and cause-effect
patterns of known models. The chapter explained the details of implementa-
tion, starting with introducing the OpenAERA system, its knowledge repre-
sentation, and its reasoning processes. The knowledge representation relies
on components called command models (CoMs), composite states (CSTs),
requirement models (Mreqs), and mechanisms for forward and backward
chaining, are what the ACTL mechanism relies on initially. The ACTL mech-
anism extends OpenAERA’s capabilities by deriving new preconditions, i.e.,
CST −Mreqs, for CoMs from their old preconditions so that goal achieve-
ment, planning, and exploration of different plans become facilitated.

The analogy process involves creating new preconditions by pruning non-
matching patterns, which enables an agent to generate new plans for the
same task that can be explored based on their priority. The ACTL also allows

6.5. SUMMARY 75

the agent to learn from failures by refining overgeneralized models and im-
proving their predictions in future tasks. In other words, if the analogy-based
models are generalized incorrectly, learning from failure will fix them by spe-
cializing them via learning other models (called anti-requirement models)
that constrain their use and prevent wrong generalizations. By integrating
ACTL, OpenAERA can make improved goal-driven analogies, thereby more
effectively generalizing its known models beyond strict pattern-matching as-
sumptions, allowing the system to perform more flexible and efficient plan-
ning and exploration in novel tasks and situations.

In summary, the chapter details the design and implementation of ACTL
within the AERA framework, focusing on how this integration enhances
the system’s learning, reasoning, and planning capabilities through analogy,
model generalization, and a systematic approach to learning from failures.
This makes AERA more capable of handling novel, unpredictable environ-
ments and tasks.

76

Chapter 7

Results & Evaluation

7.1 Introduction

This chapter starts with demonstrating the effectiveness of causal models in
providing task-independent knowledge generalization. Then, it describes a
motor-skills learning task presenting a framework for evaluating the perfor-
mance of the autonomous cumulative transfer learning (ACTL) (Sheikhlar
et al., 2020) in the AERA system (Nivel, Thórisson, Dindo, et al., 2013).
We will also compare the ACTL-based extended OpenAERA1 with another
general machine intelligence (GMI) aspiring architecture, the non-axiomatic
logic system (NARS) (P. Wang, 1995, 2006). The experiments and results
achieved with the extended OpenAERA system and a NARS-based imple-
mentation, OpenNARS for Applications (ONA) (Hammer and Lofthouse,
2020) are analyzed.

Disclosure: This chapter is partly adapted from our papers (Sheikhlar and
Thórisson, 2024; Sheikhlar et al., 2021). Section 7.2 describes the presented
algorithm and evaluation results of our paper (Sheikhlar et al., 2021). A part
of the section 7.5 explains the results and evaluation section of our paper
(Sheikhlar and Thórisson, 2024).

7.2 Invariant causal learning

Causality provides task-independent representations, which are information
structures that do not readily change across task variations. In this section,
a controller is presented that allows learning agents to identify the causal
relations between observable properties and commands via systematic ex-
periments and interventions. The controller uses the two types of causal

1See http://www.openaera.org — accessed Apr. 2, 2024.

http://www.openaera.org

78 CHAPTER 7. RESULTS & EVALUATION

discovery methods via input interventions, introduced in Definition 4.1 in
Section 4.2, enabling the agents to remove spurious correlations from an in-
accurate correlational model and eventually learn an invariant causal model.
The robustness of the learned invariant causal model is tested through two
dynamic tasks: Randesvous task and circular path following with mobile
robots. The model generalizes beyond goals and initial conditions, even
though the learned model’s generalizability is limited to the arguments we
provided in section 4.2. This section is partly adapted from the paper
(Sheikhlar et al., 2021).

Causal discovery based on invariant causal models
The presented controller’s algorithm relies on similar definitions of causal
discoveries 1 and 2 (See Definition 4.1 in Section 4.2). The difference
is that the causal discoveries 1 and 2 in (Sheikhlar et al., 2021) call for in-
specting the changes in probability distributions of the property values, as
noises are considered on observables properties and commands to formulate
uncertainty in the related task representation.

According to the definition, a causal influence exists between two dif-
ferent properties if changing the initial conditions of an observable prop-
erty’s value leads to a change in the distribution of another property’s value,
with the assumption that the trajectories of the rest of the values and com-
mand sequences remain the same, called causal discovery 1. Additionally,
a causal influence exists between a command and an observable if changing
a command sequence alters the distribution of that observable, assuming
that the initial conditions of all observables and the trajectory of the rest
of commands remain the same, called causal discovery 2. The algorithm 2
(Sheikhlar et al., 2021) provides the necessary conditions to perform causal
discovery experiments, where CMD represents the command vector, V de-
notes the vector of observable properties’ values, k represents the experi-
ment, and A and B are the matrices in a suggested linear model class as
V (T) = A · V (T − 1) +B · CMD(T − 1) with T representing the time step
(Sheikhlar et al., 2021). Also, p and q represent the number of observables
and commands. Additionally, vi and cmdi denote the chosen observable and
command for performing causal discoveries 1 and 2, respectively.

The model class V (t) = A · V (T − 1) +B ·CMD(T − 1) is a single state
space equation. The aim of Algorithm 2 is to learn invariant dynamics A
and B matrices through the causal discovery experiments mentioned earlier.
Initially, the controller uses a correlational modeling method (i.e., via a stan-
dard system identification-based approach using least squares) to learn some
initial A and B matrices (Sheikhlar et al., 2021)2. Over time, the algorithm

2To calculate the initial correlational model, we first excite the system with some
control inputs to receive the outputs, which generates data to be fed to the black-box

7.2. INVARIANT CAUSAL LEARNING 79

Algorithm 2: Pseudocode of learning the invariant causal model
(Sheikhlar et al., 2021)
Input: Correlation-based initial A and B as well as values of V and

CMD from different initial conditions (CMDk, V k|V k(0))
Output: Matrices A∗ and B∗ estimated through causal discovery

experiments
while 1 do

for i = 1:p do
Causal discovery 1 by changing the initial conditions of vi;
Identify the properties whose distributions do not change;
Eliminate spurious correlations between property values;
Update A and B;

end
for j = 1:q do

Causal discovery 2 by changing the commands on cmdj ;
Identify the properties whose distributions do not change;
Eliminate spurious correlations between commands and
properties;

Update A and B;
end
if mean squared prediction error ≤ γ then

Break;
end

end

80 CHAPTER 7. RESULTS & EVALUATION

refines this model by identifying the properties whose distributions do not
change, leading to detecting and thus removing spurious correlations from
A and B and estimating the actual dynamics A∗ and B∗. Spurious corre-
lations are the learned correlations between observables and/or commands,
which do not causally influence each other. The spurious correlations can be
detected by the two different causal discovery experiments. Causal discovery
1 requires the causal experiments to be performed from different initial con-
ditions while keeping the same command trajectories; the algorithms move
the task to different initial conditions for different experiments. However,
causal discovery 2 requires the causal experiments to be performed from the
same initial conditions with different command trajectories. The state space
equation uses the linear quadratic tracking controller to solve the tracking
control problems for the required trajectories. The model becomes updated
as experiments are performed.

Discussion of results
For evaluating the presented causal discovery algorithm and invariant model,
two tasks are designed: 1) Rendezvous task, where four mobile robots with
eight distinct commands and eight positions (as the robots are simulated in
an x-y plane, each robot’s position and command has x and y dimensions)
use a centralized controller to learn an invariant robot movement model con-
taining the causal relations between the control inputs and positions, which
eventually makes the robots perform the task of all robots meeting each
other at the goal position; 2) Path following, where single robots use the
same invariant causal model learned in Rendezvous task to follow a circular
path. After performing the causal discovery experiments, the robots were
tested with novel command sequences and initial conditions not used during
the training process (i.e., during the causal discovery experiments). This
was considered for both tasks. The tasks are depicted in figure (7.1).

The comparisons are made between a correlational model learned by a
system-identification-based method (for further details, please see (Sheikhlar
et al., 2021)) and the invariant causal models learned through Algorithm
2. Assuming that the state space equation V (T) = A · V (T − 1) + B ·
CMD(T − 1) represents the relations between robots’ command inputs and
position values, the invariant model the robots eventually learn through
Algorithm 2 is V (T) := I · V (T − 1) + I · CMD(T − 1) where CMD =
[cmd1

x, cmd1
y, ..., cmd4

x, cmd4
y] represents the command value vector; V =

[x1, y1, ..., x4, y4] is the position value vector containing the robot’s location
on x-y plane; I is the identity matrix, meaning that the position of each
robot is influenced solely on the its previous position and its command in-

system identification method. The system identification method provides us with the
matrices A and B that describe the behavior of data

7.2. INVARIANT CAUSAL LEARNING 81

Figure 7.1: Left: The Rendezvous task includes four robots that use the
learned causal model with removed spurious correlations to meet each other
at the goal position. Before performing the tasks, the robots learn the causal
model via the experiments done by the proposed algorithm. Right: A single
robot uses the same model learned in the first task (Rendezvous task) for
performing the new task of following a circular trajectory.

put. Simply put, Algorithm 2 will eventually learn that a robot’s position
and control inputs do not affect the positions of other robots, assuming that
no collisions exist between them, which is the knowledge learned through sys-
tematic input interventions. It is important to note that the algorithm starts
performing causal discovery experiments based on a correlational model (as
its initial knowledge) it learns through a system identification method. The
correlational model incorporates spurious correlations in A and B matrices,
which Algorithm 2 removes through causal discovery experiments (replac-
ing non-zero with 0 values) and keeps the causal relations between robot
commands and positions. The causal influences between control input and
position properties are inspected by the maximum mean discrepancy (MMD)
method, which captures the changes in the distribution of the property val-
ues in two different experiments. The results of comparisons, as shown in
the figure (7.2) (Sheikhlar et al., 2021), demonstrate that the learned causal
model has a significantly lower prediction error than the correlational model.

The results of (Sheikhlar et al., 2021) empirically prove our first research
hypothesis (see Section 1.3) that a causal knowledge representation and dis-
covery is a proper foundation for agents solving different variations of learned
tasks with different goals and initial conditions. In other words, causal mod-
els improve the adaptability of agents when facing novel tasks, unlike repre-
sentations based on correlation. The results also demonstrate how pruning
irrelevant constraints (in this particular case, the spurious transition func-
tions) from models improves their accuracy and performance, solving the
knowledge-pruning problem detailed in Section 4.4.

82 CHAPTER 7. RESULTS & EVALUATION

Figure 7.2: Left: Once the robots learn the invariant causal model, they
perform the Rendezvous task based on the learned model. The initial po-
sitions from which the robots begin moving towards each other (to meet at
(x, y) = (0, 0)) are novel initial conditions for the robots that did not exist in
their training, showing the model’s generalizability beyond initial conditions.
The oscillations in the robots’ movements are due to the measurement noise
of the positions. Right: The invariant model learned in the Randevsous
task is compared with the correlational model. The comparison is made by
testing the model’s performance in the new task of the circular path follow-
ing. The results show that the invariant causal model is more effective in
terms of predictability in a new task. - figure from (Sheikhlar et al., 2021)

Yet, the task representation in this work is a single dynamic state space
equation that connects the observable properties to related commands and
is assumed to be invariant. As we argued in Section 4.2, this representation
is limited due to the assumptions it is based on. However, it allows us to
assess the effectiveness of causal model classes in providing task-independent
knowledge generalization in dynamic tasks. Note this algorithm has yet to
be implemented in the OpenAERA architecture but was tested separately.

7.3. MOTOR SKILLS LEARNING 83

7.3 Motor skills learning

In Section 7.2, we investigated the importance of causal representation for
task-independent generalization. To assess the causal generalization capabil-
ities of general-purpose AI agents, we design object manipulation tasks that
require motor skills learning, as engaging in activities that require motor
skills can help agents observe, learn, and generalize cause-and-effect rela-
tionships. The candidates for the tasks, OpenAERA3 and ONA (Hammer
and Lofthouse, 2020) agents, must generalize basic motor movements and
object manipulation skills, such as grasping items with different proper-
ties and under different circumstances. We assess each agent’s ability to
generate general causal hypotheses and use them in its learning and task
execution process. Moreover, we evaluate the agents’ ability to adapt to
varying circumstances and their capacity to create and use their hypotheses.
The chapter also investigates how AERA (Nivel, Thórisson, Dindo, et al.,
2013) and NARS’s (P. Wang, 1995, 2006) generalization mechanisms allow
their architecture to comprehend the relevance of contextual factors, such
as properties and environmental conditions, in determining the appropriate
motor actions to employ.

7.4 NARS

In this section, we evaluate the generalization capabilities of Non-Axiomatic
Reasoning System (NARS) a simple motor skills learning task. The NARS
theory, developed by Pei Wang (1995), concerns the ability to reason un-
der AIKR. NARS is based on non-axiomatic logic, meaning that the rules a
NARS-based system learns or bootstraps its reasoning from are falsifiable,
allowing the system to autonomously adapt its knowledge and reasoning
in new contexts. NARS has different layers of inference, ranging from in-
heritance to variables, events, and temporal implications. It uses several
inference rules, including analogy, comparison, deduction, abduction, induc-
tion, and revision, enabling the system to make hypothetical inferences and
reflect on its internal operations (P. Wang, 1995, 2006).

We choose OpenNars for Applications (ONA) (Hammer and Lofthouse,
2020), a well-known implementation of NARS theory, for performing our
motor skills learning experiments. Although there are differences in knowl-
edge representation, OpenAERA and ONA share similar principles, such as
ampliative reasoning and the AIKR detailed in Section 2.5. Therefore, ONA
is considered suitable for a comparative evaluation, as its design has also
been inspired by the AERA architecture (Hammer and Lofthouse, 2020).

3See http://www.openaera.org — accessed Apr. 2, 2024.

http://www.openaera.org

84 CHAPTER 7. RESULTS & EVALUATION

ONA solving motor skills learning task
We assign the ONA agent to solve a robot arm object-picking task. In this
task, two items exist, each with two properties. The items are a cube and
a sphere, with the cube being small and lightweight and the sphere being
large and lightweight. So, the items’ weight is identical, but their sizes are
different.

Let us assume that first, ONA receives inputs for the cube. The grasp
operation on a lightweight, small cube leads to the cube being picked. The
required Narsese predicates that represent this are as follows

< cube→ [lightweight small] > . : | :

< (SELF ∗ cube)→ ˆgrasp > . : | :

< cube→ [picked] > . : | :

The above inputs are given to ONA in order. The initial frequency and
confidence values of each statement are 1 and 0.5. The terms inside the
brackets, i.e., lightweight, small, and picked, represent the properties. The
sign : | : at the end of each statement denotes a tense and signifies that the
statement is about the current time. Also, signifies an operation. The first
statement is a declarative assertion about the properties of the term cube
with a set denoting that the cube is both lightweight and small. The second
statement describes a grasp operation. The (SELF ∗ cube) is a compound
term representing the relationship between SELF and cube, where SELF
represents the agent taking the grasping operation. The third statement
means that the cube is picked. Then, ONA induces multiple hypotheses
from these events, three of which are the following temporal implications

< (< $1 → [lightweight small] > &/ < (SELF ∗ $1) → ˆgrasp >) =/> <
$1 → [picked] >> .%1.0, 0.24% (1)
,

< (< $1 → [lightweight] > &/ < (SELF ∗ $1) → ˆgrasp >) =/> < $1 →

[picked] >> .%1.0, 0.2% (2)
, and
< (< $1 → [small] > &/ < (SELF ∗ $1) → ˆgrasp >) =/> < $1 →

[picked] >> .%1.0, 0.2% (3)

which all state that grasping some variable $1 will lead to appearance of a
new property for the variable, i.e., the variable being picked. Such abstrac-
tion, which is the replacement of the subject cube with variable $1, is the

7.4. NARS 85

result of the sixth NARS’s inference layer (NAL-6), making the statements
more abstract while keeping the same structure (Hammer, 2021).

The generation of temporal implication hypothesis results from the obser-
vation of events in chronological order. As the event< cube→ [lightweight small] >
. : | : occurs before < (SELF ∗ cube) → ˆgrasp > . : | :, which itself occurs
before < cube→ [picked] > . : | : ", then NARS uses its procedural inference
on its eighth inference layer to generate the temporal implications (1-3) that
can be used by the ONA agent to achieve its goals if needed.

Numbers 1.0 and 0.24 in the first statement and 1.0 and 0.2 in the second
and third statements are the frequency and confidence values, respectively.
According to the hypothesized temporal implications (1-3), the precondition
for the grasp operation is that the object must be lightweight and/or small,
where the and case has higher confidence than the or case. These tempo-
ral relations are general statements based on a "weak inference" as defined
by Wang (1995), which means that their confidence value is considerably
small due to being generated by NARS’s induction rule. The revision rule,
however, allows ONA to make strong conclusions due to accumulated weak
conclusions. Therefore, if ONA had received the first three Narsese state-
ments again in the same order, the confidence, frequency, and, thus, the
truth expectation (a combination of confidence and frequency values) of the
hypothesized temporal relations would have increased significantly.

Let us assume that, later, the ONA agent receives inputs for another
term, a sphere that is also lightweight. But its difference from the cube
is that it is large. After giving input statements about the properties of
the sphere, the goal of the sphere to be picked is given as another input to
ONA. All the given inputs are a set of NARS events, given as the following
Narsese statements to ONA in order:

< sphere→ [lightweight large] > . : | :

< sphere→ [picked] >! : | :

The sign ! signifies a task given to ONA. The task leads to the inference of
the following operation under the precondition [lightweight]:

< (SELF ∗ sphere)→ ˆgrasp > . : | : %1.0, 0.9%

resulting from the following hypothesized temporal implication:
< (< sphere→ [lightweight] > &/ < (SELF ∗ sphere)→ ˆgrasp >) =/>

< sphere→ [picked] >> .%1.0, 0.2%

As both sphere and the cube have the same lightweight property, ONA
infers the following analogy relation indicated by ↔ that means the cube
and the sphere are alike,

86 CHAPTER 7. RESULTS & EVALUATION

< sphere↔ cube > .%1.0, 0.24%

This is a derived hypothesis based on the evidence. However, it is not utilized
to infer that the grasp operation must occur. The assigned goal achieve-
ment task makes ONA infer the grasp operation given a piece of evidence
(i.e., lightweight-ness and smallness of the sphere) that matches the pre-
conditions of the temporal implication (2) it has already induced. It takes
the ⟨sphere → [lightweight large]⟩. : | : event and decomposes it to
⟨sphere→ [lightweight]⟩. : | :, which now matches ⟨$1→ [lightweight]⟩
in the general temporal relation (2). Note that the lightweight-ness property
has received two pieces of positive evidence while the small-ness has received
one; thus, smallness is not considered in the preconditions. More precisely,
in the inference process, multiple competing temporal implication hypothe-
ses exist, e.g., hypotheses (1) and (2), some of which have preconditions
that match the input events received, while others do not. The evidence
and, therefore, their truth expectation (combined confidence and frequency
values) will help them to fight the others out, depending on the positive and
negative evidence they receive. In other words, NARS identifies the hypoth-
esis that does not depend on smallness to be higher in truth expectation
than the competing options.

To have a more complete analysis, we consider two scenarios for evalu-
ating the cumulative reasoning of ONA, as follows.

• In the first scenario, the hypothesized precondition [lightweight]
and operation grasp turn out to be correct as ONA receives positive
evidence for them by getting the following observation input event
right after the grasp operation is applied

< sphere→ [picked] > . : | :

through which the ONA agent verifies the temporal implication (2),
whose frequency and confidence values will be updated with the above
input and therefore gains a higher truth expectation due to collecting
positive evidence.

• In the opposite scenario, if grasping the sphere does not lead to
the sphere being picked, ONA collects negative evidence for the tem-
poral implication (2). This occurs when ONA does not receive the
above input event. This, of course, may not immediately change the
lightweight-ness as the only precondition for the temporal implica-
tion (2). In fact, ONA needs multiple negative pieces of evidence
to revise the hypothesis and infer that both lightwieght and small
are necessary preconditions for the grasp operation. Note that ONA

7.4. NARS 87

does not add smallness to the hypothesis of having lightweightness.
ONA had already created the hypothesis of having both smallness and
lightweightness. But it had a lower priority, as it had not received
enough positive evidence. On the other hand, the hypothesis of only
having lightweightness was already created and received positive evi-
dence since a sphere is lightweight. However, as it received multiple
negative evidence, its frequency was reduced over time, and its priority
decreased until it went below the priority of the hypothesis that had
both lightweight and smallness. This shows that when multiple failures
happen, and thus enough negative evidence is collected, ONA consid-
ers both lightweight-ness and small-ness properties as preconditions,
both properties of the cube it received once.

Evaluation and discussion
This experiment shows how NARS extends its hypothesized temporal impli-
cations when it receives tasks. Here, we provide an analysis of the similarities
and differences between NARS’s representation and inference axioms and the
ACTL-based AERA’s.

• Generalization: Generalization in NARS partly happens through
its higher-order inference. For instance, it performs abstraction over
subjects of statements by replacing terms with variables, similar to
$1 variable in the temporal implications (1-3). It also uses its pro-
cedural inference to hypothesize temporal implications such as (1-3).
These two features are similar to how AERA performs abstraction
and induction. AERA replaces task entities and values with variables
when creating model patterns and generates command models with
their preconditions. Abstraction is done via the two existing learning
mechanisms in standard OpenAERA, CTPX and PTPX. However,
the integrated analogy mechanism via ACTL also involves abstraction
when creating new CST -Mreqs. Additionally, NARS may decompose
the sets of preconditions (e.g., lightweight and small) correlated with
terms to generate separate temporal implications, similar to the tem-
poral implications (2) and (3). The integrated AERA generating mul-
tiple separate CST -Mreqs based on distinct properties is the subject
of future work.

• Planning: In NARS, temporal implications are not considered causal
relations but rather the closest notion to them. In the task above,
the grasp operation in NARS may not necessarily cause an object to
be picked. This is because the object may be picked at any time af-
ter the grasp operation. The longer the time gap between the grasp
operation and the picked event, the lower the confidence the hypothe-
ses (1) and (2) will have. This would be a sensible inference when

88 CHAPTER 7. RESULTS & EVALUATION

dealing with queries about single operations but not about a sequence
of events/operations that require precise timing. However, the lack
of an explicit time representation in Narsese limits a NARS-based
agent’s ability to precisely predict when and at what time an event,
e.g., ⟨sphere → [picked]⟩. : | :, will be observed, which is required
for planning command sequences with precise timing. Furthermore,
the induced preconditions for OpenAERA’s command models are as-
sumed to be a set of patterns observed simultaneously. This design
decision was also considered when integrating the ACTL mechanism
with the OpenAERA. The ACTL-based AERA generates new CST -
Mreqs for different CoMs representing different behaviors capable of
being chained effectively, as the patterns of the induced CST s are si-
multaneous precondition facts, allowing the planner to use the related
CST -Mreqs for the right CoMs during the planning as soon as they
are induced. Yet, the preconditions in NARS can be a set of input
events received at any time before an operation occurs. This may lead
to inaccurate selective attention (see Section 4.4), as the precise tim-
ings of precondition patterns are significant for creating subgoals over
abduction, which must be achieved in the proper order and at the right
time.

• Analogy: In 7.4, it was noted that the similarity relationship be-
tween a sphere and a cube, i.e., sphere ↔ cube, is a derived relation
and not considered in the ONA’s generalization of temporal impli-
cations. Wang (2009a) highlights that NARS is capable of handling
various types of analogical reasoning, and anything that can be sub-
stituted for anything else is considered analogous. However, unlike
AERA, NARS does not necessarily involve an analogy rule in gen-
eralizing its known temporal implications. As demonstrated in the
example, generalization in NARS results from a set of competing hy-
potheses, among which the one that receives more positive pieces of
evidence is selected. NARS generates analogy relations but does not
use them to drive other hypotheses. It is a limitation in that it needs
to take advantage of the potential of analogy-making to infer new tem-
poral implications as it accumulates evidence while trying to achieve
the task’s goals. The induced temporal implications (1-3) are gen-
erated irrespective of whether they will be useful for an agent’s goal
achievement. On the other hand, ACTL-based AERA takes a more ef-
ficient approach by using goal-driven analogy to make new inferences
and induce multiple preconditions for command models when they are
needed for goal achievement. Some of these preconditions are tried
immediately to check if the new hypotheses hold. If not, it would im-

7.5. AERA 89

mediately remove the plan that relies on them and try another plan
that initially had lower priority.

The experiments we did with ONA show how NARS can generate hypothe-
ses and refine its understanding based on evidence received during the task.
Our comparative analysis between AERA and NARS shows the different ap-
proaches to causality, planning, and analogy, while it also shows similarities
in abstraction processes. As we will see in the next section, the ACTL-
based AERA does not need to gather multiple negative evidence to refute
a hypothesis, as NARS does. Instead, it uses analogy-based hypotheses to
immediately use a plan and learn from failure to falsify a hypothesis. When
these plans/hypotheses fail, they can be quickly restricted or removed from
the solution/plan sets, and other hypotheses are then tested, which results
in faster and more efficient planning.

7.5 AERA

In this section, we test and analyze OpenAERA’s4 capability to generalize
its model preconditions using the introduced ACTL mechanism. The eval-
uations are done through two robotic experiments in the context of motor
skills learning, both of which have been tested in a realistic robot simulation
environment called Webots5 (Michel, 2004), as illustrated in Figure 7.3. In
the first experiment, called SizeMattersGrab, the OpenAERA agent, after
generalizing its models, learns that an important property that should be
considered when choosing the proper strategy to grasp the items is their size.
This learning occurs through pruning irrelevant patterns from the precon-
dition sets of the related models via the implemented analogy mechanism.
In the second experiment, called AlignGrab experiment, during the object
grasping, the robot arm fails to successfully pick up a long rectangular item,
after which it learns from this experience that the right strategy to grasp
rectangular items is first to adjust the hand’s orientation and align it with
the items before attempting to grasp them. The links to demos of both ex-
periments can be found in 6 and 7. The figures in this section are snapshots
of models, facts, commands, and inferences in OpenAERA’s Visualizer8, a
software designed to demonstrate the details of knowledge components and
reasoning processes of OpenAERA in an experiment. The snapshots show
the results of the performed experiments (SizeMattersGrab and AlignGrab)
with OpenAERA. For better reproducibility of the results, the links to the

4See http://www.openaera.org — accessed Apr. 2, 2024.
5https://cyberbotics.com/ available on date 3/29/2024.
6https://youtu.be/JXgdSjU-7OI available on date 3/29/2024.
7https://youtu.be/ceYjyiyBBsU available on date 3/29/2024.
8https://github.com/IIIM-IS/AERA_Visualizer – available on date 3/29/2024.

http://www.openaera.org

90 CHAPTER 7. RESULTS & EVALUATION

Replicode codes of these two experiments 9, along with the C++ codes of
the Webots controller design 10 are provided in the footnotes. This section
is partly adapted from our paper (Sheikhlar and Thórisson, 2024).

Figure 7.3: Left shows the SizeMatterGrab experiment where the OpenAERA
agent uses the goal-driven analogy to come up with the right plans for grab-
bing items with the correct grab types it learns through initial training. The
autonomous hypothesis generation enables the AERA agent to learn to open the
arm’s gripper’s finger proportionate to the size of items when grabbing them.
Right shows the AlignGrab experiment where the OpenAERA agent, after failing
in a grasping experience, learns that the correct way to grasp long rectangular
items is to adjust the hand’s orientation first and then align the hand with the
item before grasping it.

7.5.1 SizeMatterGrab experiment

The details of the"SizeMatterGrasp" experiment are illustrated in figure
(7.4) (Sheikhlar and Thórisson, 2024). First, we teach a robot hand (h)
to move towards a small cube (c1) and a large cube (c2) by a move com-
mand and issue grab_type_1 and grab_type_2 commands to pick up the
items. This training happens in the guided experimentation phase. The
grab_type_1 command opens the robot arm gripper slightly and grasps
c1, whereas grab_type_2 opens the gripper widely and grasps c2. The ob-
servable properties are as the following facts (c1 shape cube T), (c1
size small T), (c2 shape cube T), and (c2 size large T).
During the Task Solving phase, the goal is to grasp and then release new
items, sphere s1, sphere s2, and cylinder cyl, one after the other. We will
see that the only known property of these items, their size, will guide the

9https://rb.gy/csn554 and https://rb.gy/pite58 available on date 3/29/2024.
10https://rb.gy/h6c0rw and https://rb.gy/fpnm5x available on date 3/29/2024.

7.5. AERA 91

Figure 7.4: In SizeMatterGrab experiment, the significance of the property value
of size is learned by pruning the shape-related property from the preconditions
for grabbing while keeping the size within the preconditions, as the size’s values
(small and large) match the properties of the items in the Task Solving phase. -
figure from (Sheikhlar and Thórisson, 2024)

OpenAERA agent in selecting the appropriate grabbing type. The section
is adapted from the Results & Evaluation section of our paper (Sheikhlar
and Thórisson, 2024).

Guided experimentation11

During the first phase of the experiment, called Guided Experimentation, we
teach h to perform specific motor actions, including moving the hand using
the move command, releasing cubes c1 and c2 via a release command, and
grasping the cubes using the ”grab_type_1” and grab_type_2 commands
when the h is in the same position as the cubes. This leads to the induction
of the two sets of CoMs, CST s, and Mreqs by the CTPX mechanism of
OpenAERA due to the change of the value of the hand h’s boolean property
holding from the fact (h holding [] T1) to the hand holding something,
e.g., (h holding [c1] T2) by the grab commands. For illustration sim-
plicity, Figure 7.5 only shows one of the triads that belong to grab_type_2
command, learned after h applying the grab_type_2 command.
Note. The ACTL mechanism is not involved in the guided experimentation
phase. However, it must use the triads created in the Guided Experimenta-
tion phase to learn additional CST s and Mreqs for the same CoMs in the
Task-Solving phase.

The command model mdl_514 (shown in Figure 7.5) is a CoM that
can be used for reasoning under the preconditions represented by the shown

11This part provides a detailed description of the Results and Evaluation section of our
paper (Sheikhlar and Thórisson, 2024).

92 CHAPTER 7. RESULTS & EVALUATION

Figure 7.5: The CST (cst_513) and Mreq (mdl_514) determine the circumstance
of using the CoM (mdl_514). The models’ strength increases when the positive
evidence count surpasses a threshold.

CST in the same figure, cst_513, once both mdl_514 and cst_513 are
instantiated through mdl_515, which is an Mreq. The cst_513 is a nested
CST involving other CST s, S0 and S4. S0 represents some variable v0
with the essence of hand and position v3. The variables v1 and v2 in S0 are
timing variables representing a time interval. S4 represents the state of some
variable v0 having the size v1, position v4 and NOT having the essence of
hand. Therefore, S0 and S4 together in cst_513 mean that there is a hand
(indicated by v0) at the same position (indicated by v3) as something large
with cubic shape that is not a hand (indicated by v4). The variables v1
and v2 represent the time interval, which, as can be seen, is the same for all
facts in a composite state. An instance of the abstraction process here is the
entity c2, which is replaced with v4.

Also, cst_513 is a result of an initial selective attention process in Ope-
nAERA that aggregates all the properties of entities involved in the tran-

7.5. AERA 93

sition represented by the command model mdl_514. The model mdl_514
shows a transition, stating that issuing grab_type_2 command at a time
interval [v4, v5] leads to the new value of a property of h (abstracted with
v3) holding something v6 at a later time interval [v7, v8]. The numerical
operations in mdl_514, such as v7:(add v1 100ms), represent the forward
and backward timing equations from one time interval to another, where the
sampling time is 100msec. The observation facts based on which the men-
tioned CST s and Mreqs are created are demonstrated in Figure 7.6, which
shows that the grab_type_2 command alters the value of property holding,
enabling the induction process by the CTPX mechanism.

Figure 7.6: The facts in the right column are the observations that come after those
in the left column. The positions of h and c2 are vec3 properties that represent
the 3D positions of all objects in the Webots simulation environment. The size,
shape, and essence are the other defined properties for the entities, h and c2 that
have ontological symbolic values.

Task solving phase12

In the Task-Solving phase, the OpenAERA agent must grab and then re-
lease three novel items one after another based on the goal facts it receives.

12This part is adapted from our paper (Sheikhlar and Thórisson, 2024).

94 CHAPTER 7. RESULTS & EVALUATION

The items of this phase, s1, s2, and cyl, are novel to the agent, as the
learned CoMs in the guided experimentation phase have cube shape val-
ues in their CST s (see cst_513 in Figure 7.5). However, s1, s2, and cyl
have sphere and cylinder shapes, which are non-matching property values.
In other words, their related observation facts (s1 shape sphere T),
(s2 shape sphere T), and (cyl shape cylinder T) do not match
cst_513 and the CST related to grab_type_1. However, the analogy mecha-
nism integrated with OpenAERA allows it to prune the non-matching shape-
related fact from the cst_513 and induce a new CST -Mreq that matches the
property values of the novel items in the Task Solving phase. Also, the Ope-
nAERA agent will be able to infer the correct grabbing type for each item
based on its familiarity, which is the size-related matching value, e.g., being
large. This inference happens when the top-level goal facts are injected. The
first goal fact is (h holding s1 T), which, when injected into the sys-
tem, triggers the planning process through backward and forward chaining
processes, as shown in Figure 7.7 (the yellow objects).

Improved selective attention13

As discussed above, cst_513 does not allow mdl_514 and the grab_type_2
command to be utilized for grabbing items with non-cubic shapes, because
a non-cubic shape, e.g., sphere or cylinder, does not match the shape value
considered in the composite state cst_513 (the shape must be cube according
to cst_513). Our integrated analogy process releases the standard planning
system of OpenAERA from this strict pattern-matching requirement via in-
ducing new CST -Mreqs with pruned patterns during the planning process.

As shown in Figure 7.7 at the bottom, the current observation facts (re-
ferred to as autofocus facts) at 800ms show that s1, which is targeted to be
held by the hand, is a sphere. The sphere, however, does not match the shape
value considered in cst_513. On the other hand, s1’s large size matches the
size value in cst_513. Due to the analogy process, the ACTL mechanism
prunes the fact of cst_513 that does not match the goal-situation properties,
i.e., the shape in this case. Yet, it keeps the matched fact, which is related
to the size property. Then, after the matching facts are identified and kept
while the non-matching facts are pruned, the analogy process induces a new
CST -Mreq, which are cst_581 and mdl_582, shown at the top of Figure
(5.4) with pruned patterns, where the shape-related fact is eliminated. This
happens during the planning process shown by the yellow objects in Figure
7.7 at the bottom. Now, all facts of cst_581 and mdl_582 match the current
observation facts. To put it simply, the newly created CST -Mreq, which are
cst_581 and mdl_582, mean that to grab an object using grab_type_2, the
item must be large, regardless of any other properties it may have. Then,

13This part is also adapted from our paper (Sheikhlar and Thórisson, 2024).

7.5. AERA 95

cst_581 andmdl_582 are tested in practice over the planning process. Their
related confidence (called success rate in AERA) increases as they succeed.
This means that the ACTL mechanism, via analogy-based knowledge prun-
ing and direct experience, helps the agent learn to disregard the properties
that are insignificant for goal achievement by generalizing the preconditions
of known CoMs and pruning the patterns of their CST s to only include the
familiar properties. In this case, the size is a familiar property that cst_581
selectively keeps out of other non-matching properties like shape. Note that
the value of size (i.e., large) in the original CST , cst_513, is kept in the
derived CST, cst_581.

Flexible planning in task solving14

Themdl_582, which is generated through the ACTL mechanism after knowl-
edge pruning, allows the old command model mdl_514 to be used (i.e.,
instantiated) under the generalized conditions specified by cst_581. The
OpenAERA agent utilizes the new preconditions right away during plan-
ning and issues the proper sequence of commands, first moving towards s1
and then applying grab_type_2. This sequence of commands is shown in
Figure 7.7 at the bottom.

The goal state/fact is where planning (backward chaining) begins, match-
ing the mdl_514. This instantiates the components of cst_513 through
mdl_515, which generates subgoals, such as (mk.val h position (vec3 -1.2
-0.1 0))15, meaning the goal position of the hand (h) must be (vec3 -1.2 -0.1
0) to achieve the top-level goal of (h holding [s1]), as h and s are not at the
same position (see fact_554 and fact_550). The top 5 yellow objects in
the figure pointing backward represent backward chaining processes, while
the remaining objects pointing forward represent forward chaining processes.
OpenAERA performs forward chaining to validate the commands inferred
during backward chaining. As shown, it verifies two commands: (cmd move
[h (vec3 -0.7 -1.1 0)]) and (cmd grab_type2 [h]), indicating that the hand
(h) must first move toward the sphere (s1) and then grab it to achieve the
goal of the h holding s1.

Note that the analogy process uses similarity in the cardinality of patterns
(SSPC) criteria, detailed in Section 5.4, for familiarity computation before
inducing cst_581 and mdl_582. The familiarity computation is based on
calculating the ratio of matching components of cst_513 to all components
of cst_513. In this case, as 3 out of 4 components match, it equals 0.75. This
number, which in fact shows the familiarity of the model with the situation-
goal, will become the confidence value (referred to as success rate here) of
mdl_582 (instantiating cst_581 on its LHS) induced via analogy, indicating

14This part is adapted from our paper (Sheikhlar and Thórisson, 2024).
15mk.val is marker class, in OpenAERA, representing the class of relationships of the

entities, e.g., h in this example.

96 CHAPTER 7. RESULTS & EVALUATION

how successful it can be for prediction-making and goal achievement as an
initial guess. Once the grasping action based on the grab_type_2 command
leads to (h holding [s]), mdl_582’s success rate goes up. If grab_type_2
had failed in grasping s, then the learning-from-failure mechanism would
have created a composite state-anti-requirement model that would explain
the failure.

The agent uses the same line of reasoning to grasp the second item in
the Task Solving phase, which is the sphere s2. It infers that it should em-
ploy grab_type_1, as the preconditions of the relevant command model it
learned during the experimentation phase better match the properties of s2.
In other words, when applying grab_type_1 in the guided experimentation
phase, it learned that the c2’s size was small and added that to its related
CST . Therefore, as the sphere s2 is also small, a more confident solution to
choose is grab_type_1. After successfully picking up the second sphere, it
learns that the only important factor in choosing a grabbing type is the ob-
ject’s size, not its shape. This learning is in the form of increasing the success
rates of newly generated CST s and Mreqs, such as the ones shown in Figure
5.4 at the top. Therefore, there is no need to create new composite state-
requirement models when attempting to pick up an object with a new shape,
i.e., the cylinder cyl. Since cyl is large, the agent chooses grab_type_2 as
cyl’s has large size, which matches composite state cst_581 that had already
been induced when grabbing s1. This way, the OpenAERA agent cumula-
tively learns the significance of properties through both analogy-making and
performing experiments.

7.5.2 AlignGrab experiment

Our second motor skills learning experiment, called AlignGrab, has to do
with the robot arm learning the importance of the orientation of long, thin
objects like rectangles when grasping. The details of the AlignGrab experi-
ment are shown in Figure 7.8. During the guided experimentation phase, we
teach the robot hand h to grab two items, rec1 and s, each with multiple
properties shown in the figure. For grasping rec1, first h applies the rotate
command to adjust its orientation of h and then issues the grab command.
However, grabbing s does not require any orientation adjustment due to the
sphere’s symmetrical shape, so the hand is taught to apply only the grab
command directly. In the task-solving phase, the goal is to grab and release
three novel but partly familiar items rec2, rec3, and cyl, one after the other.
As rec2 shares more similarities with s than rec1 (due to their size and
color), the analogy process makes the hand h try the shorter and more con-
fident solution, which is to grab rec2 directly without any rotation. This
results in failure, as the h’s orientation does not match that of rec2. After
the first plan/solution fails, the second plan is chosen and applied, which

7.5. AERA 97

is to first rotate h to align its orientation with rec2 and then apply a grab
command, leading to successful grasping. From this, the hand learns the im-
portance of orientation adjustment when grabbing an item with rectangle
shape. Therefore, to grab rec3, the hand adjusts its orientation first and
then grabs the rectangle. However, cyl does not have a rectangle shape,
so it is grabbed directly without hand rotation. The AlignGrab experiment
shows how the preconditions of grasping are generalized incorrectly first and
then constrained through the learning-from-failure mechanism.

Guided Experimentation
During the guided experimentation phase, we teach the robot hand h to learn
sequences of motor actions to grasp and release a rectangle rec1 and then a
sphere s. The used commands for applying the actions are the move, rotate,
release, and grab_type_1 and grab_type_2 commands. For grasping rec1
by the hand (h), their position and orientation must be identical. Under the
conditions shown in Figure 7.8, applying the grab commands leads to learn-
ing the CoMs, CST s, Mreqs for grab_type_1 and grab_type_2 commands.
For illustration simplicity, Figure 7.9 only shows the two triads for grasping
rec1 and s, which the CTPX mechanism induces during this phase.

The CoMs mdl_500 and mdl_709 hold under the conditions represented
in the composite state cst_499 and cst_708. The composite states aggre-
gate all correlated properties of entities at the times the grab commands
(grab_type_1 and grab_type_2) are issued. However, some of these proper-
ties referred to in cst_499, e.g., color, are not indeed relevant in the grasping
behavior. The next section demonstrates how the ACTL mechanism learns
to prune cst_499 by removing such irrelevant properties and generating a
new composite state-requirement model. We will see that some important
correlations must be learned to keep, such as the hand’s orientation and the
rectangle’s orientation in cst_499, which are identical. In cst_499, the vari-
able that represents this correlation is v4 which is significant for determining
how a rectangular cuboid should be grasped (the hand must be aligned with
it before grasping). Therefore, a rotate command must first set the orien-
tation of h equal to that of a rectangle. On the other hand, the composite
state cst_708 represents the conditions for grasping a sphere and does not
require the same correlation between the orientations. In cst_708, the ori-
entations of the hand and the sphere are represented by different variables
(v4 and v6), meaning they do not have to be the same. Again, note that the
ACTL mechanism is not involved during the guided experimentation phase,
as learning is done through teaching the OpenAERA agent the necessary ac-
tions to take. In the task-solving phase, the ACTL mechanism enables the
OpenAERA agent to create new generalized composite states and require-
ment models for the command models mdl_500 and mdl_709 and verify
them in practice by taking relevant actions.

98 CHAPTER 7. RESULTS & EVALUATION

Task Solving
During the task-solving phase, the OpenAERA agent must generalize its
existing models by pruning them and then using them to grasp new but
partly familiar items. In this phase, the new items are rec2, rec3, and cyl,
which have multiple properties that are similar to and different from the
properties of the items in the guided experimentation phase, rec1, and s.
The OpenAERA agent analogizes the items in relation to their properties
before grasping them. Then, it identifies the most familiar item (s due to its
color and size) and its related object-grasping strategy. Then, it creates new
pruned CST −Mreqs for applying the same CoM to solving the new task
of grabbing rec2, leading to the failure of grasping. Then, it chose another
plan it had created, which initially had a lower confidence. The second plan,
which was to rotate and then grab, succeeds, enabling the OpenAERA agent
to learn to infer the correct sequence of commands for grabbing the other
items rec3 and cyl later. This planning process starts once the goal facts are
injected into the OpenAERA agent. The first goal state is (h holding rec2),
which triggers the planning process through backward chaining.

Generalization in task solving phase
Figure 7.10 shows the CST -Mreq pair generated by the ACTL mechanism
during the task-solving phase, where cst_798 and mdl_799 on the left col-
umn are the generalized version of cst_499 and mdl_501, shown in Figure
7.9, as two components (out of eight) are pruned in cst_798. The size and
color of objects are pruned as those of rec2, which is supposed to be grasped,
do not match the size and shape in the original composite state cst_499. In
cst_499, the size and color must be small and grey whereas rec2 is large and
blue. Therefore, in the newly created cst_798, facts related to the size and
color are pruned via the analogy process. Therefore, the ACTL mechanism
assigns a success rate of 0.75 (derived from 6/8) to mdl_799. On the other
hand, cst_791 and mdl_792 on the right column are the generalized ver-
sion of cst_708 and mdl_710 shown in Figure 7.9, where one (out of eight)
property, the shape, is pruned, as the shape of rec2 does not match cst_708.
The analogy process, therefore, assigns the success rate of 0.875 (derived by
7/8) to mdl_710.
Planning in task solving
The success rates of Mreqs resulting from the familiarity computation, shown
in Figure 7.10, specify the priority of plans built based on the related CST -
Mreqs, as the agent is inclined to choose plans with higher confidence, as
detailed in 5.5.2. As the goal state (h holding rec2) matches the RHS
of both command models mdl_500 and mdl_709, both newly generated

7.5. AERA 99

requirement models, mdl_799 and mdl_792, can be involved in the creation
of two different plans for achieving the goal fact. The requirement model
mdl_792 has a higher success rate; thus, the plan that uses it has higher
confidence and, since it also provides a shorter solution (no need to rotate
the hand before grabbing), has a higher priority to be selected.

When the goal fact (h holding rec2) is injected, the state of the
hand is empty (i.e., h holding []), and its orientation has a different value
from rec2’s orientation. Thus, it will create two different plans for acheiving
the goal. The plans are based on the two Mreqs of mdl_799 and mdl_792:

• 1. AlignGrab plan makes the agent first rotate h and then grab rec2
using mdl_799 and cst_798 (as the h’s and rec2’s orientation must be
the same, as can be seen, the variable v4 in cst_798 is identical in the
two). This plan, however, has a lower priority, as it takes longer than
the DirectGrab solution to reach the goal state. Note that mdl_799
also has a lower success rate than mdl_792, making the AlignGrab
plan have a much lower priority than that of DirectGrab plan.

• 2. DirectGrab plan is to grab rec2 directly without rotating h.
The plan allows mdl_792 and cst_791 to be utilized, where no prior
rotation is required before grabbing. This is because v4 and v6, which
represent the orientations, are different in cst_791. So, this plan has
a higher initial priority than the AlignGrab plan as it is shorter and
has a higher initial confidence.

Due to mdl_792 having a higher success rate, the planner commits to the
DirectGrab solution offered by mdl_792, grabbing rec2 directly.

Learning from failure in task solving
Commitment to the DirectGrab solution is faster and more confident. How-
ever, it leads to grasping failure due to improper alignment of the hand with
the rectangle rec2. The grasping failure triggers the learning-from-failure
mechanism, creating cst_1430 and its anti-requirement which is mdl_1431,
depicted in Figure 7.11. The cst_1430 and mdl_1431 together means that
if the shape is rectangle, and the hand’s and the rectangle’s orientations
v5 and v6 are different, then the action of grabbing does not lead to the
hand holding that object. The anti-fact indicated by |fact in red on the
RHS of mdl_1431 means negation. In other words, the learning from failure
mechanism specializes (adds more constraints to) the incorrectly generalized
hypotheses cst_791 and mdl_792, which prevents them from being used in
future encounters with rectangle shapes.

Exploration in task solving
Exploration in the ACTL tests hypothesized solutions based on their priority

100 CHAPTER 7. RESULTS & EVALUATION

order. The exploration continues as long as the goal is not achieved. In the
task-solving phase, after the DirectGrab solution fails, the planner commits
to the AlignGrab solution, which is to rotate the hand and then grab. Once
the AlignGrab solution succeeds (leads to the goal state (h holding rec2)),
the success rate of mdl_799 increases, making AlignGrab a confident so-
lution for the next grasping experience. In other words, an increase in a
success rate solidifies the hypothesized preconditions that state for grabbing
a rectangle, the hand must rotate first and then grab. Therefore, before
grasping the third rectangle rec3, it has already learned from its mistake and
its success in grasping. So it does not make the same mistake of grasping
rec3 directly again. This time, it performs the process of rotating h before
grabbing the rec3.

The same reasoning process happens for grasping the cylinder cyl. The
analogy mechanism creates two pairs of CST -Mreqs, shown in Figure 7.12,
each providing a plan for grabbing cyl. The first plan in the first column has
faster goal achievement (no need for initial rotation). Therefore, the planner
commits to that one first, leading to success, and thus, the agent does not
have to explore the other solution.

7.5.3 Discussion of results

The two experiments practically prove our second research hypothesis, which
states that utilizing analogical reasoning enables causality-based agents to
generate new hypotheses, integrate those hypotheses with their knowledge
base through testing, and explore the plans generated based on those hy-
potheses.

In the SizeMatterGrab experiment, the ACTL-based OpenAERA agent
generalizes the models learned from grabbing cubes (in the guided experi-
mentation phase) to the new tasks of grabbing the spheres and a cylinder
(task-solving phase). Generalization occurs by generating new preconditions
(composite states and requirement models) for the learned command models
(one for grab_type_1 and the other for grab_type_2) in the guided exper-
imentation phase. The agent becomes familiar with the properties size and
shape and their values (being small, large, and/or cube) by incorporating
them into its models’ preconditions.

Once new tasks are assigned, the ACTL allows the OpenAERA agent to
use analogy to prune the irrelevant properties (e.g., the shape in the Size-
MatterGrab example) from the old model precondition, keep the assumed
significant properties (e.g., the size), and induce new preconditions accord-
ingly. When the preconditions do not fully match the goal entities’ properties
(the sphere and cylinder are non-matching properties, as they do not match
the old preconditions that have cube in them), the analogy-based models will
only keep the matching property (e.g., size, which is either small or large,

7.6. SUMMARY 101

both of which match the new objects in the task-solving phase), which leads
to issuing the right commands for grabbing those new objects.

In other words, it learns to apply the right actions based on the familiar
properties by using its familiarity regarding how objects must be manipu-
lated based on their properties. So, the agent hypothesizes that the right
grasping strategy could be grabbing large objects with grab_type_2 and
small objects with grab_type_1, regardless of their shape. Once the grab
commands are issued and the grasping experience succeeds, the hypotheses
with relatively low success rates/confidences are solidified, increasing their
confidence.

Additionally, as we saw in the AlignGrab experiment, the OpenAERA
agent hypothesizes multiple preconditions based on the similarity of the rect-
angles in the guided experimentation phase to the ones in the task-solving
phase. The first analogy-making, which was based on color and size, had
a higher familiarity level and, thus, higher success rate/confidence. Yet, it
was a misleading analogy-making, as it led to the failure of grasping ex-
perience due to the wrong inferred plan of grasping directly. Once failure
occurs, the agent explores the second plan it had created, which was only
based on the shape (being a rectangle), which, although it had a low initial
confidence/success rate, led to the right plan and grasping experience suc-
cess. The success of this plan (move-rotate-grab) led the agent to learn to
apply the right plan for the second encounter with a rectangle, meaning that
the agent cumulatively learned the significance of the size properties after
failures during the exploration process.

Learning from misleading analogies in the AlignGrab experiments also
proves our third research hypothesis that a cumulative learning mechanism
that learns from wrong analogies and improves itself calls for a unified rea-
soning framework involving analogy, induction, abduction, and deduction.
These four reasoning components are involved in the ACTL process, i.e.:

• Backward abductive reasoning allows for both making top-down analo-
gies while inferring the right commands and plans to commit.

• Analogies lead to inducing new generalized preconditions that match
new situations.

• And deductive inference for validating the analogy-based model pre-
conditions once backward chaining ends.

7.6 Summary

In this chapter, we evaluated the causal generalization capabilities of general-
purpose AI agents, concentrating on tasks that require motor skills learning

102 CHAPTER 7. RESULTS & EVALUATION

and extending the understanding of cause-and-effect relationships through
object manipulation. The tasks involved the OpenAERA and ONA agents
and evaluated their ability to generalize basic motor movements and object
manipulation skills in novel situations. NARS-based ONA generated gen-
eral falsifiable hypotheses and refined its knowledge and reasoning based on
accumulated evidence. Additionally, we compared the generalization fea-
tures of AERA and NARS and analyzed how each system generates new
hypotheses for how to deal with novel tasks. We compared their similarities
and differences in their abstraction, planning, and analogy approaches. We
also evaluated the OpenAERA agent in robotic experiments conducted in
a simulation environment, illustrating and analyzing the system’s general-
ization processes. We designed two different experiences for evaluating the
extended OpenAER system: SizeMattersGrab and AlignGrab. The exper-
iments showcase the OpenAERA agent’s learning to adjust its plans and
identify the significance of environment properties, showing the effectiveness
of the introduced autonomous cumulative learning (ACTL) mechanism.

7.6. SUMMARY 103

Figure 7.7: Top: During the backward chaining, the analogy process induces
cst_581 and mdl_582 after pruning the shape property from cst_513, which is
the original CST cst_581 is derived from. They are induced during the planning
process, shown at the bottom via yellow objects when there is no CST matching
the sphere property. Bottom: The planning is based on backward chaining from
(h holding [s1]) towards the commands, and forward chaining, which happens
afterward and moves in the opposite direction to validate the inferred process
by backward chaining. The column of Auto Focus facts represents the current
situation. In the situation at 800ms, the hand h is empty and not at the same
position as sphere s. Therefore, the system first infers that it must issue the move
command and then grab_type_2. The model mdl_514 is instantiated via the
newly created preconditions shown at the top.

104 CHAPTER 7. RESULTS & EVALUATION

Figure 7.8: In the AlignGrab experiment, the agent learns the significance of the
rectangle’s orientation after pruning the irrelevant patterns, allowing it to consider
it when choosing the correct sequence of actions needed to grasp them, i.e., the
hand must align the rectangle before grabbing. The items of this experiment have
different properties, e.g., shape, size, orientation, color, and position (represented
in vec3 format). For simplicity, the items’ positions are not shown here. Also, note
that the orientation is measured as the Euler angle around the z-axis.

7.6. SUMMARY 105

Figure 7.9: cst_499 and cst_708 show the circumstances of using mdl_500 and
mdl_709 based on mdl_501, and mdl_710, respectively.

106 CHAPTER 7. RESULTS & EVALUATION

Figure 7.10: cst_798 and cst_791, as well as mdl_799 and mdl_792, are the
new preconditions for the known model shown in Figure 7.9 created as a result
of the analogy process. The CST s are pruned versions of cst_499 and cst_708.
The above CST -Mreqs can be immediately used in the planning and exploration
process.

Figure 7.11: cst_1430 and mdl_1431 are created after the grasping failure by
mdl_709, an incorrectly generalized hypothesis. The cst_1430 and mdl_1431
specialize mdl_709 by adding constraints to its use, preventing it from being uti-
lized for objects with rectangle shapes and non-aligned orientations.

7.6. SUMMARY 107

Figure 7.12: Composite states cst_2905 and cst_2928 are pruned versions of
cst_499 and cst_708 shown in Figure 7.9. The properties of size, color, and
shape are pruned, as none of these properties in the cylinder cyl match cst_499
and cst_708. Note that the subtle difference between cst_2905 and cst_2928 is
that in cst_2905 the hand’s and the object’s orientations are different (v4 and v6),
while in cst_2928 they are the same (v4).

108

Chapter 8

Conclusions and Future Work

This thesis presented a new approach to autonomous causal generalization
within the framework of constructivist AI, causality, and General Machine
Intelligence (GMI). The focus was on introducing and integrating a novel
mechanism for extending causal knowledge to new situations in line with
the agents’ goal achievement and direct experimentation.

This work’s contributions are related to the presented mechanism’s abil-
ity to utilize the known causal knowledge to hypothesize new pieces of knowl-
edge while performing the task. This allows an agent to immediately verify
the generated hypotheses in action, enabling effective and efficient general-
ization. Our mechanism is designed and integrated within the Autocatalytic
Endogenous Reflective Architecture (AERA) (Nivel, Thórisson, Dindo, et
al., 2013) and validated by a few robotic experiments as proof of concept.
The comparative and analytical evaluation highlights the effectiveness and
efficiency of the proposed approach in autonomously extending causal knowl-
edge and reasoning.

We proved our research hypotheses that 1) causal models are more proper
foundations for task-independent generalization of knowledge compared to
correlational representations (Sheikhlar et al., 2021), 2) analogical reasoning
enables causality-based agents to generate new hypotheses in line with their
goal-achievement, integrate them into their knowledge base through testing,
and explore plans based on these hypotheses (Sheikhlar and Thórisson, 2024;
Sheikhlar et al., 2022), and 3) agents with unified reasoning can learn from
incorrect analogies and improve their learning/planning strategies, which
calls for a cumulative learning mechanism that learns to improves itself as
experience accumulates.

This work is a practical contribution to the fields of causality-based and
agent-based AI systems by enabling the relevant systems to use ampliative
reasoning for improved knowledge pruning and induction of knowledge when

110 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

devising solutions for goal achievement, similar to how human children de-
velop cognitive abilities. Our research also investigates the importance of
having causal representations for effective generation, involving both inter-
vention and observation-based learning, and validating their knowledge in
practice. The work and the extensions to this work will lead to the design
and creation of more adaptive and autonomous AI agents that have the po-
tential to handle unforeseen scenarios and tasks where no prior training can
be provided.

This thesis is a significant step towards autonomous causal generalization,
but several areas still call for further exploration.

• Expanding the analogy process’s implementation: We will ex-
pand the OpenAERA implementation of the ACTL mechanism by in-
corporating Similarity in value proximity (SPV) computation in our
introduced analogy process in Section 5.4. This idea is already pre-
sented in our paper (Sheikhlar et al., 2020), which can be defined
for two patterns representing the same task properties having non-
identical values, where similarity is about the closeness of their values.
Incorporating SPV leads to having more comprehensive relational sim-
ilarity calculations in the context of causal relational models (CRMs).

These calculations, once implemented, will allow the ACTL mechanism
to compare the values of properties/variables and generalize causal
models in relation to their values.

• Expanding the ACTL’s theoretical foundation: A future focus
will be expanding the theoretical foundation of the proposed ACTL
and analogy-making mechanism by incorporating argumentation the-
ory. This work will be in line with the extension of the AERA (Nivel,
Thórisson, Dindo, et al., 2013) framework’s planning architecture us-
ing the assumption-based argumentation theory, which has already
been started via the AERA team (Eberding et al., 2024), enabling
AERA to explain its plans more systematically. This enhancement will
also enable planning with multiple simultaneous commands, address-
ing known unknowns, and integrating meta-knowledge for interactive
agents. This addition is intended as an expansion of the theoretical
foundation of both AERA and the integrated ACTL mechanism.

• Precise formalization: The future work will also involve a more
precise formalization of the components of the introduced analogy
mechanism and its integration with the ACTL. The formalization will
clearly connect the described components of the ACTL in Chapters
4 and 5 of this thesis with the aim of developing a more precise, rig-
orous mathematical framework, ensuring that the reasoning processes

111

are well-defined. Such formalization will need exact definitions of the
conditions under which the analogy processes in chains of causal net-
works could prune the existing knowledge and induce new pieces of ca-
sual models, as well as the logical structures governing the cumulative
learning process where the learning from failure is included. Building
a clear, formal foundation will improve our approach’s transparency
and robustness, which will subsequently facilitate its use and further
development by the AI research community.

• Scalability and practial applications. Future work will also focus
on improving the scalability of the introduced mechanism, which, of
course, depends on further formalization and more extensive empiri-
cal evaluation. We will design additional experiments to test whether
the mechanism can be applied in more complex and dynamic envi-
ronments with higher-dimensional sets of properties with complex and
longer chains of causal relationships. Additionally, extending the mech-
anism’s scope to real-world scenarios, e.g., using them for physical
robots’ task learning/planning, will expand our awareness of the prac-
tical challenges and benefits of implementing our approach.

112

Bibliography

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI communica-
tions, 7 (1), 39–59.

Agrawal, R., Squires, C., Prasad, N., & Uhler, C. (2023). The decamfounder:
Nonlinear causal discovery in the presence of hidden variables. Jour-
nal of the Royal Statistical Society Series B: Statistical Methodology,
85 (5), 1639–1658.

Bareinboim, E., Correa, J. D., Ibeling, D., & Icard, T. (2022). On pearl’s
hierarchy and the foundations of causal inference. In Probabilistic
and causal inference: The works of judea pearl (pp. 507–556).

Baumann, D., Solowjow, F., Johansson, K. H., & Trimpe, S. (2020). Identify-
ing causal structure in dynamical systems. arXiv preprint arXiv:2006.03906.

Belenchia, M., et al. (n.d.). Towards a theory of causally grounded tasks
[Doctoral dissertation].

Belenchia, M., Thórisson, K. R., Eberding, L. M., & Sheikhlar, A. (2022). El-
ements of task theory. Artificial General Intelligence: 14th Interna-
tional Conference, AGI 2021, Palo Alto, CA, USA, October 15–18,
2021, Proceedings 14, 19–29.

Bengio, Y., Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O.,
Goyal, A., & Pal, C. (2019). A meta-transfer objective for learning
to disentangle causal mechanisms. arXiv preprint arXiv:1901.10912.

Cherry, K. (2020). How we use selective attention to filter information and
focus.

Conant, R. C., & Ross Ashby, W. (1970). Every good regulator of a system
must be a model of that system. International journal of systems
science, 1 (2), 89–97.

Dennett, D. C. (1990). Cognitive wheels: The frame problem of ai. The
philosophy of artificial intelligence, 147, 170.

Drescher, G. L. (1991). Made-up minds: A constructivist approach to artifi-
cial intelligence. MIT press.

114 BIBLIOGRAPHY

Eberding, L. M. (2022). Comparison of machine learners on an aba experi-
ment format of the cart-pole task. International Workshop on Self-
Supervised Learning, 49–63.

Eberding, L. M., Sheikhlar, A., & Thórisson, K. R. (2020). Sage: Task-
environment platform for autonomy and generality evaluation. In-
ternational Conference on Artificial General Intelligence. Springer,
submitted in.

Eberding, L. M., Thompson, J., & Thórisson, K. R. (2024). Argument-
driven planning and autonomous explanation generation. Interna-
tional Conference on Artificial General Intelligence, 73–83.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-mapping
engine: Algorithm and examples. Artificial intelligence, 41 (1), 1–63.

Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the appli-
cation of theorem proving to problem solving. Artificial intelligence,
2 (3-4), 189–208.

Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and
similarity. American psychologist, 52 (1), 45.

Granger, C. W. (1969). Investigating causal relations by econometric models
and cross-spectral methods. Econometrica: journal of the Economet-
ric Society, 424–438.

Hammer, P. (2021). Autonomy through real-time learning and opennars for
applications. Temple University.

Hammer, P., & Lofthouse, T. (2020). ‘opennars for applications’: Architec-
ture and control. Artificial General Intelligence: 13th International
Conference, AGI 2020, St. Petersburg, Russia, September 16–19,
2020, Proceedings 13, 193–204.

Hu, S., Ma, Y., Liu, X., Wei, Y., & Bai, S. (2021). Stratified rule-aware net-
work for abstract visual reasoning. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 35 (2), 1567–1574.

Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social,
and biomedical sciences. Cambridge University Press.

Jiménez, S., Fernández, F., & Borrajo, D. (2013). Integrating planning, exe-
cution, and learning to improve plan execution. Computational In-
telligence, 29 (1), 1–36.

Johnson, J. J., Li, L., Qureshi, A., & Yip, M. C. (2021). Motion planning
transformers: One model to plan them all.

McCarthy, J., & Hayes, P. J. (1981). Some philosophical problems from the
standpoint of artificial intelligence. In Readings in artificial intelli-
gence (pp. 431–450). Elsevier.

McCarthy, J. C. (1986). Mental situation calculus. Theoretical Aspects of
Reasoning About Knowledge, 307.

BIBLIOGRAPHY 115

Michel, O. (2004). Cyberbotics ltd. webots™: Professional mobile robot sim-
ulation. International Journal of Advanced Robotic Systems, 1 (1),
5.

Mikolov, T., Yih, W.-t., & Zweig, G. (2013). Linguistic regularities in contin-
uous space word representations. Proceedings of the 2013 conference
of the north american chapter of the association for computational
linguistics: Human language technologies, 746–751.

Mitchell, M. (2021). Abstraction and analogy-making in artificial intelli-
gence. Annals of the New York Academy of Sciences, 1505 (1), 79–
101.

Mitchell, T. M. (1997). Machine learning.
Nivel, E., & Thórisson, K. R. (2013a). Replicode: A constructivist program-

ming paradigm and language. Technical RUTR-SCS13001, Reyk-
javik University School of Computer Science.

Nivel, E., & Thórisson, K. R. (2013b). Towards a programming paradigm
for control systems with high levels of existential autonomy. Inter-
national Conference on Artificial General Intelligence, 78–87.

Nivel, E., Thórisson, K. R., Dindo, H., Pezzulo, G., Rodriguez, M., Cor-
bato, C., Steunebrink, B., Ognibene, D., Chella, A., et al. (2013).
Autocatalytic endogenous reflective architecture.

Nivel, E., Thórisson, K. R., Steunebrink, B. R., Dindo, H., Pezzulo, G.,
Rodriguez, M., Hernández, C., Ognibene, D., Schmidhuber, J., Sanz,
R., et al. (2013). Bounded recursive self-improvement. arXiv preprint
arXiv:1312.6764.

Pearl, J. (2009a). Causal inference in statistics: An overview. Statistics sur-
veys, 3, 96–146.

Pearl, J. (2009b). Causality. Cambridge University Press.
Pearl, J. (2018). Theoretical impediments to machine learning with seven

sparks from the causal revolution. arXiv preprint arXiv:1801.04016.
Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause

and effect. Basic books.
Peters, J., Janzing, D., & Schölkopf, B. (2017a). Elements of causal inference:

Foundations and learning algorithms. The MIT Press.
Peters, J., Janzing, D., & Schölkopf, B. (2017b). Elements of causal inference:

Foundations and learning algorithms. The MIT Press.
Piaget, J., Piercy, M., & Berlyne, D. (1951). The psychology of intelligence.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach.

Pearson.
Sabbadin, R., Teichteil-Königsbuch, F., & Vidal, V. (2020). Planning in arti-

ficial intelligence. A Guided Tour of Artificial Intelligence Research:
Volume II: AI Algorithms, 285–312.

116 BIBLIOGRAPHY

Sheikhlar, A., Eberding, L. M., & Thórisson, K. R. (2021). Causal general-
ization in autonomous learning controllers. International Conference
on Artificial General Intelligence, 228–238.

Sheikhlar, A., & Fakharian, A. (2018). Online policy iteration-based tracking
control of four wheeled omni-directional robots. Journal of Dynamic
Systems, Measurement, and Control, 140 (8), 081017.

Sheikhlar, A., & Thórisson, K. R. (2024). Causal generalization via goal-
driven analogy. International Conference on Artificial General In-
telligence, 163–172.

Sheikhlar, A., Thórisson, K. R., & Eberding, L. M. (2020). Autonomous
cumulative transfer learning. International Conference on Artificial
General Intelligence, 306–316.

Sheikhlar, A., Thórisson, K. R., & Thompson, J. (2022). Explicit general
analogy for autonomous transversal learning. International Work-
shop on Self-Supervised Learning, 48–62.

Shuang, S., & Mohd Pozi, M. S. B. (2024). Using causal inference to solve
uncertainty issues in dataset shift. Proceedings of the 17th ACM
International Conference on Web Search and Data Mining, 1155–
1157.

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causa-
tion, prediction, and search. MIT press.

Sung, I., Choi, B., & Nielsen, P. (2021). On the training of a neural network
for online path planning with offline path planning algorithms. In-
ternational Journal of Information Management, 57, 102142.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduc-
tion. MIT press.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A sur-
vey on deep transfer learning. International conference on artificial
neural networks, 270–279.

Taylor, M. E., & Stone, P. (2009). Transfer learning for reinforcement learn-
ing domains: A survey. Journal of Machine Learning Research, 10 (Jul),
1633–1685.

Thórisson, K. R. (2009). From constructionist to constructivist AI. 2009
AAAI Fall Symposium Series Tech Report FS-09-01, 175–183.

Thórisson, K. R. (2012). A new constructivist AI: from manual methods
to self-constructive systems. In Theoretical foundations of artificial
general intelligence (pp. 145–171). Springer.

Thórisson, K. R. (2021a). The explanation hypothesis in autonomous general
learning. Proceedings of Machine Learning Research, 159, 5–27.

Thórisson, K. R. (2021b). Seed-programmed autonomous general learning.
Proceedings of Machine Learning Research, 131, 32–70.

BIBLIOGRAPHY 117

Thórisson, K. R., Bieger, J., Li, X., & Wang, P. (2019a). Cumulative learn-
ing. Proceedings of the 12th International Conference on Artificial
General Intelligence, 198–208.

Thórisson, K. R., Bieger, J., Li, X., & Wang, P. (2019b). Cumulative learn-
ing. International Conference on Artificial General Intelligence, 198–
208.

Thórisson, K. R., Kremelberg, D., Steunebrink, B. R., & Nivel, E. (2016).
About understanding. International Conference on Artificial Gen-
eral Intelligence, 106–117.

Thórisson, K. R., & Talbot, A. (2018). Cumulative learning with causal-
relational models. International Conference on Artificial General
Intelligence, 227–237.

Thórisson, K. R., & Talevi, G. (2024). A theory of foundational meaning gen-
eration in autonomous systems, natural and artificial. International
Conference on Artificial General Intelligence, 188–198.

Turing, A. M. (1950). Computing machinery and intelligence. Springer.
Van Harmelen, F., Lifschitz, V., & Porter, B. (2008). Handbook of knowledge

representation. Elsevier.
Velagic, J., Osmic, N., & Lacevic, B. (2010). Design of neural network mobile

robot motion controller. In New trends in technologies. IntechOpen.
Wang, J., Liu, J., Chen, W., Chi, W., & Meng, M. Q.-H. (2021). Robot path

planning via neural-network-driven prediction. IEEE transactions
on artificial intelligence, 3 (3), 451–460.

Wang, P. (1995). Non-axiomatic reasoning system: Exploring the essence of
intelligence. Citeseer.

Wang, P. (2004). The limitation of bayesianism. Artificial Intelligence, 158 (1),
97–106.

Wang, P. (2006). Rigid flexibility: The logic of intelligence (Vol. 34). Springer
Science & Business Media.

Wang, P. (2009a). Analogy in a general-purpose reasoning system. Cognitive
Systems Research, 10 (3), 286–296.

Wang, P. (2009b). Insufficient knowledge and resources—a biological con-
straint and its functional implications. 2009 AAAI Fall Symposium
Series.

Wang, P. (2013). Non-axiomatic logic: A model of intelligent reasoning.
World Scientific.

Wang, P. (2019). On defining artificial intelligence. Journal of Artificial Gen-
eral Intelligence, 10 (2), 1–37.

Wang, P. (2020). On defining artificial intelligence. Journal of Artificial Gen-
eral Intelligence, 11 (2), 73–86.

Wang, R., Yi, M., Chen, Z., & Zhu, S. (2022). Out-of-distribution gener-
alization with causal invariant transformations. Proceedings of the

118 BIBLIOGRAPHY

IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 375–385.

Xu, Z., Zhou, X., & Li, S. (2019). Deep recurrent neural networks based
obstacle avoidance control for redundant manipulators. Frontiers in
neurorobotics, 13, 47.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are
features in deep neural networks? Advances in neural information
processing systems, 3320–3328.

Appendix A

Definitions

Definitions in Section 4.2

Dynamic process: A dynamic process is a set of sequential (state) transi-
tions that change the state of environments.

Transition: A (state) transition refers to the changes in the values of ob-
servable properties due to commands/actions/events.

Transition function: a function that represents a transition taking in the
values of commands/events/causes and observable properties at a time and
returns the changed values of the observables at a later time.

Input interventions: Input interventions have two different types: 1. set-
ting the initial values (a.k.a. initial conditions) of observable properties in a
dynamic process and 2. setting the values of commands.

Casual discovery: Casual discovery is identifying causal relations between
the values of properties and commands through input interventions.

Definitions in Section 4.3

Causal relational model (CRM): A CRM is a knowledge construct rep-
resenting a transition that relates a set of cause patterns or preconditions
on its left-hand side (LHS) to the effect patterns or postconditions on its
right-hand side (RHS). The cause patterns involve commands or events. In
this work, we focus on the case where LHS includes a command leading to
a transition. CRMs are falsifiable pieces of knowledge and have degrees of
truth specified by their confidence values.

120 APPENDIX A. DEFINITIONS

Patterns: Patterns are distinct information structures having two types,
facts and constraints, which may contain variables.

Facts: Facts are statements with specific time intervals, having two types:
observable facts and commands. In this study, we focus on these two, as
facts may also incorporate other statements, such as instantiated composite
states and models, supporting higher-order logic.

Command: A command is a fact representing an internal operation within
the controller leading to taking a physical action and may change the state
of the agent’s environment.

Observation fact: An observation fact represents an observed pattern at
a time with the structure (entity property value time). Entity and
property are symbols, with the difference that entities can be replaced with
variables while properties cannot.

Constraint: A constraint represents a logical or numerical constraint such
as an equation (a.k.a., transition function) or inequality. They specify the
transition functions, ranges of admissible values, logical conditions or timing
equations relating the variables in commands and facts.

Situation: A situation is all existing observable facts at a time, repre-
senting the complete observable state of a process.

Goal: A goal is a fact representing the desired state the agent tends to
achieve. A goal can either be given or derived by the agent. The derived
goals are called subgoals. In Replicode programming language, goals are
objects referring to related goal facts. Here, for simplicity of explanation,
we consider them facts.

Definitions in Section 4.4

Asbtraction: Abstraction occurs when the values of the known proper-
ties and/or the known entities having those properties can be replaced with
variables in patterns and facts.

Selective attention: Selective attention is the ability to choose a sub-
set of the observation facts from a situation and exclude the rest of them to
form initial preconditions for CRMs.

121

Induction: The creation of CRMs is referred to as induction in this work,
which may result from various learning mechanisms. Induction may also
involve the above-mentioned abstraction and selective attention processes
to include relevant, generalized sets of patterns in CRMs. In this work,
induction generates CRMs due to 1) observed transitions via guided ex-
perimentation, 2) pattern matching between observations and known CRMs
(i.e., via analogy-making), and 3) failure in observing expected patterns (i.e.,
learning from failure).

Knowledge pruning: Eliminating patterns from CRMs’ preconditions to
match a wider range of situations, leading to having fewer precondition pat-
terns, making the CRMs more general. Knowledge pruning has two types:
constraints pruning and fact pruning. Constraint pruning is about identi-
fying a more accurate set of transition functions and conditions where the
spurious correlations are pruned. The spurious correlations are constraints
that do not affect the transitions, do not hold true, or are inaccurate. Fact
pruning is selectively eliminating facts from patterns of existing CRMs that
are deemed irrelevant for transitions.

Definitions in Section 5.2

Phenomenon: The phenomenon Φ is made up of a finite set of parts
{φ1 . . . φn} that can be observed. The parts are referred to as aspects, be-
tween which various types of relationships can be defined (Thórisson, 2021b).

Knowledge base (KB): Knowledge base is the existing set of pieces of
knowledge. Knowledge is also referred to as model-base in the text.

Definitions in Section 5.4

State: State is an arbitrary subset of a situation.

Definitions in Section 6.2

Command models (CoMs): In OpenAERA (Nivel and Thórisson, 2013a),
CoMs represents an abstracted command pattern at a time causing a value
change of a property at a later time.

Composite states (CST s): In OpenAERA (Nivel and Thórisson, 2013a),
CST s are precondition patterns that need to be instantiated all at the same
time so that CoMs can be used for prediction-making or planning.

Requirement models (Mreq):In OpenAERA (Nivel and Thórisson, 2013a),

122 APPENDIX A. DEFINITIONS

Mreqs are models that enable the use of CoMs under specific CST s via in-
stantiating CoMs on their RHS and CST s on their LHS.

	Acknowledgements
	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Introduction
	Research questions
	Research hypotheses
	Contribution and impact
	Organization of thesis

	Theoretical & Methodological Framework
	Introduction
	Child machine and constructivism
	Learning controllers and feedback loops
	Causality
	Assumption of insufficient knowledge and resources
	Ampliative reasoning
	Real-time processing and temporal grounding
	Scalable knowledge representation
	Summary

	Related Work
	Introduction
	Transfer learning
	Reinforcement learning

	Logic frameworks
	Situation calculus
	Non-Axiomatic Reasoning System (NARS)

	Automated planning
	Classic planning
	Probabilistic planning
	Artificial Neural Networks

	Causality
	Observation-based causal inference
	Intervention-based causation
	Causality in NARS

	Analogy
	Analogy by artificial neural networks
	Analogy in symbolic AI
	Analogy in NARS

	Summary

	Problem Description
	Introduction
	Causal relations: designer's perspective
	Causal knowledge: a new formulation
	Causal Generalization
	Abstraction
	Selective attention
	Induction
	Knowledge pruning

	Summary

	Autonomous Cumulative Transfer Learning
	Introduction
	A theory for autonomous cumulative transfer learning
	Reformulation of ACTL theory: Dynamic processes as phenomena
	Similarity dimensions
	Autonomous causal generalization
	Goal-Driven Analogy
	Planning/exploration
	Learning from failure
	ACTL mechanism

	Summary

	Design & Implementation
	Introduction
	Knowledge representation and reasoning in AERA
	Frame problem and AERA
	ACTL in AERA
	Integrated mechanism for goal-driven learning and planning
	Analogy in AERA
	Learning from failure
	Planning/exploration in AERA

	Summary

	Results & Evaluation
	Introduction
	Invariant causal learning
	Motor skills learning
	NARS
	AERA
	SizeMatterGrab experiment
	AlignGrab experiment
	Discussion of results

	Summary

	Conclusions and Future Work
	Bibliography
	Definitions

