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Abstract. Causal knowledge and reasoning allow cognitive agents to
predict the outcome of their actions and infer the likely reasons behind
observed events, enabling them to interact with their surroundings effec-
tively. Causality has been the subject of some research in artificial intelli-
gence (AI) over the past decade due to its potential for task-independent
knowledge representation and generalization. Yet, the question of how
the agents can autonomously generalize their causal knowledge while
seeking their active goals still needs to be answered. This work intro-
duces an analogy-based learning mechanism that enables causality-based
agents to autonomously generalize their existing knowledge once the gen-
eralization aligns with the agents’ goal achievement. The methodology
is centered on constructivism, causality, and analogy-making. The intro-
duced mechanism is integrated with a general-purpose cognitive archi-
tecture, Autocatalytic Endogenous Reflective Architecture (AERA), and
evaluated in a robotic experiment in a 3D simulation environment. Both
empirical and analytical results show the effectiveness of this mechanism.
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1 Introduction

Generalization is a process wherein information from a source is transferred to a
target situation, enabling agents to extend their knowledge to circumstances they
have not encountered before [12]. Generalization calls for assessing the similar-
ities and differences between known and newly observed patterns. Comparisons
can be used to estimate the familiarity of situations and tasks, enabling an agent
to generate new hypotheses about how to solve tasks based on their overlap with
existing knowledge. These hypotheses, however, may need to be verified by test-
ing them in action, and possibly modified based on the results. In other words,
an effective generalization mechanism calls for interaction with environments,
involving taking actions, processing outcomes, and adjusting knowledge to meet
the requirements of active goals and subsequent actions. For an agent to inter-
act effectively with its surroundings, it must be able to predict the outcomes of
actions and infer their underlying reasons, commonly called causal reasoning. A
key step for realizing such a system lies in using task-independent knowledge
representations based on causal information.
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We present a goal-driven analogy-based induction mechanism that hypothe-
sizes new causal-relational models (CRMs) in novel situations. Implemented in
the causality-based AERA cognitive architecture (Autocatalytic Endogenous Re-
flective Architecture) [7], the mechanism relies on the computation of an agent’s
familiarity with situations, using a goal-driven comparison process. The result is
a system that can autonomously learn the significance of compared properties of
phenomena, using backward reasoning, and verify the hypothesized CRMs via
direct interaction with environments. We evaluate the mechanism within a motor
skills learning task, where an AERA agent controls a robot arm in a simulation
environment to learn and generalize its own object manipulation skills.

2 Related Work

Autonomous generalization of knowledge calls for explicit, goal-driven reason-
ing, allowing a cognitive agent to make analogies whenever needed. The related
studies in supervised machine learning, i.e., transfer learning [14] and analogy-
making [6] in stand-alone artificial neural networks, rely on human programmers
to choose the training and test domains, making them insufficient for interac-
tive agents that autonomously make analogies and generalize whenever required.
Even reinforcement learners (RLs) have knowledge transfer issues due to their
knowledge representations and assumptions [3]. On the one hand, model-free RLs
learn policies that are not transferable to tasks with different goal structures,
as the policies are reward-entangled inherently. On the other hand, model-based
RLs rely on learning invariant dynamics, whereas agents seeking general intel-
ligence need to learn falsifiable and, thus, non-invariant knowledge under the
assumption of insufficient knowledge and resources (AIKR) [13].

Symbolic approaches to generalization and analogy-making are tradition-
ally based on identifying mappings between propositional descriptions, such as
in the structure mapping engine (SME) ([4]). SME only takes a system of re-
lations into account in analogy-making. Another approach to behavior-based
analogies is case-based reasoning (CBR), which allows an agent to retrieve simi-
lar cases/situations to the current case, compute an action, predict the outcome,
and then store the results ([1]). Although SME and CBR are useful for interactive
agents, the standard systems based on these approaches do not learn to prune
pieces of knowledge that are no longer accurate. Working under AIKR, Non-
axiomatic logic system (NARS) can learn to modify the conditions under which
its actions are taken [13]. Yet, the analogy-making in SME, CBR, and NARS is
similarity-driven rather than goal-driven and is not necessarily involved in the
systems’ generalization process.

3 Theoretical & Methodological Framework

This section describes the theoretical framework of this work, emphasizing the
constructivist AI principles [11] in shaping the design and development of cog-
nitive agents. Here, we briefly describe some of the constructivist AI principles.
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– Learning controllers and feedback loops: Constructivist AI calls for a
cognitive agent, an embodied learning controller, that interacts with its en-
vironment and learns from performing experiments, allowing the generation
of new pieces of knowledge or refining the existing ones.

– Causality: According to Pearl’s causal hierarchy [8], intelligence has three
levels: association, intervention, and counterfactuals. Agents with higher lev-
els of causal understanding can not only predict interventions’ outcomes but
use counterfactuals to hypothesize relations about imaginative scenarios.

– Assumption of insufficient knowledge and resources (AIKR): Rea-
soning in complex environments must be non-axiomatic because there is no
ultimate guarantee that anything is as it seems, and thus, knowledge must
be formed and used by taking AIKR into account [13]. According to this
assumption, knowledge has degrees of truth that can change by experience.

– Ampliative Reasoning: For cognitive agents with causal models working
under AIKR, information processing mechanisms must allow for learning to
make predictions and plans using a unified reasoning mechanism occurring
via deduction, abduction, and induction [13].

– Temporal compositional representations: A time-dependent knowledge
representation allows for the temporal relationship between situations to be
established [11]. The knowledge must also be able to represent complex tasks
at different levels of detail, facilitating task-independent reasoning.

Constructivist AI [11, 2] lays a proper foundation for studying how agents can
achieve cognitive growth, learn from their environments, and perform reasoning,
ultimately moving toward the realization of artificial general intelligence. The
next section formulates the generalization problems our work aims to address.

4 Causal Generalization

Causal-relational models (CRM) [7] are a representation of causal knowledge
based on the principles of constructivist AI [11]. A CRM holds left-hand-side
(LHS) and right-hand-side (RHS) patterns - knowledge constructs that incorpo-
rate data patterns, timing, transition functions, operations, and conditions. A
CRM , denoted as M : [A B], represents a transition from A to B, meaning
that, if A (the LHS) takes place at time t1, then B (the RHS) will occur later at
t2. A specific case of A is (P, cmd) where P is the precondition set representing
observed and internal facts, and cmd is an internal command the agent applies.
Therefore, a CRM can be represented as follows

M : [(P (t1), cmd(t1)) B(t2)] cfd : [0, 1] (1)

The precondition set P is the aggregation of a set of simultaneous, related facts
representing properties, relations, and conditions contextualizing the transition
from cmd to B. The CRMs are different from Drescher’s schemas [2] in that
CRMs are falsifiable hypotheses and have degrees of truth, called confidence
cfd, representing the ratio of positive evidence pe to the total evidence available
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te, cfd = pe
te , where 0  cfd  1. The CRMs support ampliative reasoning. If

some input facts match their LHS patterns, they deduce predictions based on
their RHS, whereas abduction occurs if a goal fact matches the CRM’s RHS.

Generalization of CRMs can occur at different levels of detail, from simple
abstraction to complex knowledge pruning.

– 1. Abstraction: The data the agent observes or infers can be represented
by information patterns whose generalization covers a range of similar situa-
tions. Abstraction occurs by replacing values and task entities with variables.

– 2. Selective attention: Selective attention is the process of aggregating a
set of simultaneous, abstracted, relevant patterns involved in a transition.
More precisely, let S be a situation representing all observed/predicted pat-
terns, and T be a state transition. Then selective attention A chooses a subset
of S deemed relevant to T . In other words, A(S, T ) ! P where P ✓ S.

– 3. Induction: Induction refers to the process of creating CRMs from an
instance of a state change or a set of observed states. The induction process
uses selective attention to choose a subset of relevant patterns and performs
abstraction to generalize the selected patterns.

– 4. Knowledge pruning: A learning controller under AIKR must be able to
revise its known CRMs whenever needed, one aspect of which is to generalize
CRMs by pruning constraints, allowing them to match even more situations.
If the original preconditions set of a CRM is P , then the pruned preconditions
set is G(P ) = P

0 ✓ P , where G selectively removes the conditions in P .

An ampliative reasoning-based controller working under AIKR calls for a mech-
anism that autonomously generalizes its CRMs considering the above aspects.

5 Goal-Driven Analogy: A Mechanism

In this work, a top-down analogy process is introduced that provides both induc-
tion and knowledge pruning by removing novel patterns from model precondi-
tions and keeping the familiarities. It identifies the overlaps between the patterns
of its known models and the patterns of situations via a familiarity computation.

Familiarity and comparison
We base our introduced mechanism on the theory of autonomous cumulative
transfer learning [9], stating that a cognitive agent can make a prediction about
a phenomenon if and only if the phenomenon is familiar to the agent. This theory
implies that the degree of familiarity determines the confidence of the prediction
and, more precisely, the confidence of the model utilized for prediction-making.

Familiarity computation is based on a similarity function,  , that identi-
fies the overlaps within observed and learned patterns and uses the overlaps to
solve new tasks. More precisely, to compute a situation’s familiarity �fam,  
takes in a set of perceived or imaginatively created patterns ', and the rele-
vant patterns k retrieved from knowledge base KB, where k ⇢ KB, meaning
that �fam =  (k,'). The similarity between k and ' is found by the ratio of
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patterns’ intersection (k \') to all patterns involved in the comparison (k [').

�fam =  (k,') =
|k \ '|
|k [ '| (2)

Equation (2) ensures that �fam has a value between 0 and 1, where 1 means com-
pletely familiar (k\' = k[') and 0 represents maximal difference (k\' = ?).
The agent must know how important the comparisons are, as the patterns being
compared must be relevant to the agent’s goal achievement. The top-down rea-
soning via backward chaining initially yields important patterns PI , where PI is
a subset of patterns in the current or predicted situations.

Analogy, induction, and knowledge pruning
Analogy process estimates the familiarity with situations and induces new CRMs
accordingly [10]. It also performs knowledge pruning by gradually focusing on
smaller subsets of patterns in known CRMs, leading to improved selective at-
tention. It is an inductive process that relies on abduction for goal-driven com-
parison and deduction for model verification. The induction follows the common
sense rule that under similar conditions, similar actions/events lead to similar
outcomes. Assuming an agent knows M (equation (1)) upfront, it hypothesizes
that command cmd

⇤ under similar conditions (P ⇤) leads to a similar outcome
(B⇤).

M
⇤ : [(P ⇤(t1), cmd

⇤(t1)) B
⇤(t2)] cfd

⇤
< cfd (3)

where M
⇤ is hypothesized only if it is required for goal achievement. For hy-

pothesizing M
⇤, the analogy process compares the LHS and RHS patterns of

M with the patterns of the current/predicted situations and goals/subgoals, re-
spectively, as shown in Fig.1. Left. The process starts with comparing the goal
state with B(t1) (the RHS of M). If the goal pattern matches pattern B, the
second comparison occurs by finding the matches between P (the LHS of M)
and the current or predicted situation S. If and only if P partially matches S,
a new model M⇤ with similar patterns, P ⇤, cmd

⇤, and B
⇤, is created. Creating

M
⇤ leads to adjusting the known model M patterns so they match the situa-

tions, a hypothesis worth testing through direct intervention. As illustrated in
Fig. 1.Left, M⇤’s prediction is verified via forward chaining before issuing cmd*.

Confidence Computation
The familiarity equation (2) determines the induced M

⇤’s confidence, as M⇤ will
be utilized for predictions about future states. The function takes in important
known patterns PI and patterns of the situation S, leading to the computation
of �fam and subsequently cfd

⇤. In other words, the more similar the patterns
of P to S are, the higher the M

⇤’s confidence, cfd⇤, will be. The cfd
⇤’s value

also depends on the original model’s confidence (cfd), as M⇤ is derived from M .
Therefore, the confidence cfd

⇤ is calculated as follows:

cfd
⇤ =  (S, PI) · cfd (4)

meaning that cfd
⇤  cfd holds. Issuing the command cmd

⇤ collects positive or
negative evidence for M

⇤, which can increase or decrease cfd
⇤.
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Fig. 1. Left: The analogy starts by comparing the RHS of M with the goal state. If
they match, it triggers the second comparison: comparing LHS and situation patterns.
As a result, M⇤ will be created and tested via deduction, verifying if LHS

⇤ matches
the situation and RHS

⇤ matches the goal. Right: M1 and M1⇤ are chained to M2
and M2⇤ respectively. The requirement for chaining is that LHS2 and LHS2⇤ match
RHS1 and RHS1⇤, respectively. The process first generates M2⇤ as it moves backward
and then generates M1⇤. The same comparisons occur when generating M1⇤ and M2⇤.

Generalizing chains of models
Generalizing chains of CRMs is based on the theory that a network of relations
between processes must be kept in analogy [4]. In our work, a network of relations
is CRM chains generated through planning, i.e., backward and forward chaining.
The analogy process, other than pattern matching with the current situation,
must also identify the matches with predicted situations (a.k.a., subgoals). Situ-
ations can be predicted by known CRMs whose RHS patterns match the impor-
tant patterns of the current situation. For example, as shown in Fig. 1. Right,
model M1 : [LHS1 RHS1] can only be chained to M2 : [LHS2 RHS2)], if
and only if, RHS1 matches LHS2. If LHS2 represents patterns holding in the
current situation, then M1 as well as M2 can be pruned and accordingly M1

⇤ and
M2

⇤ be induced. Due to such a generalization process, new hypothesized CRMs
are combined to create more solutions, providing higher flexibility in planning.

6 AERA & Analogy

The analogy mechanism is integrated into the current implementation of auto-
catalytic endogenous reflective architecture (AERA) [7], called OpenAERA,3.

Knowledge Representation & Reasoning
OpenAERA’s knowledge representation relies on the introduced notion of CRMs
and has the following components [7, 10]:

3 See http://www.openaera.org — accessed Apr. 2nd, 2024.
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– Entities & ontologies are symbols showing task elements and properties.
– Predicates are I/O facts, goals, and predictions.

E.g. ((h essence hand) 1 t0) represents a fact with entity h having ontology
property essence of hand and confidence 1 at time interval t0.

– Causal models (CMs) are transformations from current to future states.
E.g. M:[cmd grab(h, t0) h holding X(t1)] represents the causal influence
from the grab command at t0 on the state of h at t1 (h will be holding X).

– Composite states (CSTs) a set of abstracted, simultaneous, related facts
determining the conditions under which a CM holds true. CSTs are instan-
tiated in forward chaining when inputs match CST patterns or during back-
ward chaining from goals. E.g. CST1:[((h position P) 1 t0), ((c position P)
1 t0)], representing the entities h and c both being at identical position P .

– Requirement models (Mreqs) connects CSTs and CMs via their instan-
tiation. E.g. Mreq:[icst CST1(c,h,p0) imdl M(c)], where icst and imdl

instantiate CST1 on its LHS and M on its RHS, respectively.

In OpenAERA, forward chaining (deduction) occurs when input facts in-
stantiate a CST on the LHS of a Mreq, leading to the instantiation of the CM on
its RHS and making a prediction. Backward chaining (abduction) happens
if a goal matches the RHS of a Mreq, causing the CST on the Mreq’s LHS being
instantiated, creating subgoals. If a command causes a state change, a triad of
CST, Mreq, and CM is learned, called induction in OpenAERA.

Extension via analogy
In OpenAERA, reasoning only occurs when situations align perfectly with known
model preconditions, allowing the system to create plans for goal achievement.
However, expecting a complete match between situations and known model pre-
conditions is not always a practical assumption. OpenAERA uses the introduced
analogy process to generalize the restrictive preconditions (CST s and Mreqs) of
its causal models (CMs) and apply them to a broader range of situations. It uses
the existing backward chaining mechanism from the top-level goal to the sub-
goals and then from subgoals to other subgoals, generalizing chains of involved
CMs by generating new CST s and Mreqs for them. The newly generated CST -
Mreqs are immediately injected into the OpenAERA’s model base and utilized
in planning based on confidence values determined via familiarity computations.

7 Results & Evaluation

To evaluate the analogy mechanism, we design a pick-and-place task for a robot
arm that uses the extended OpenAERA as its controller. The task’s purpose is
to analyze how the OpenAERA agent autonomously extends its learned cause-
effect models to grasp and pick partially familiar objects. The task is performed
within Webots simulation environment [5], as illustrated in Fig. 2. In this task,
the OpenAERA agent, after inducing new preconditions (CST -Mreqs) of known
CMs via analogy and testing them by action-taking, learns the size of objects
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is significant in determining the correct way of grasping them. The link to the
demo can be found in 4. The details of the experiment are shown in Fig. 2.

Fig. 2. The objects have shape, size, and position properties. The OpenAERA agent
learns that the size of objects is significant in determining the correct way to grasp
them. Positions are not shown as they are not involved in the analogy process.

The task has two phases: guided experimentation and task solving. In its guided
experimentation phase, two cubes of different sizes, c1 and c2, are grasped and
released by a robot hand h taught to apply two distinct grasping commands
suited to the objects’ sizes. For the small cube (c1), it applies the command
grab_type_1, which involves a slight opening of the gripper’s fingers. For the
larger cube (c2), it uses the command grab_type_2, which requires a wider
opening of the gripper fingers. Issuing the commands and successful grasping
events makes OpenAERA learn triads of causal models (CMs), composite states
(CST s), and requirement models (Mreqs) for each of the mentioned commands,
one of which is shown in Fig. 3. Left. During the task-solving phase, h must learn
to grasp new objects it has never grasped before, namely s1, s2, and cyl, which
are novel in shape but familiar in size, allowing the analogy process to induce new
grasping models based on the objects’ familiarity. More precisely, the analogy
process induces new preconditions CST s and Mreqs shown in Fig. 3. Right for
the CMs learned in the guided experimentation phase e.g., mdl_514.

The analogy process provides multiple improvements for OpenAERA’s in-
duction, abduction, and selective attention by systematic knowledge pruning.
Knowledge pruning via analogy. In analogy-induced cst_581 and mdl_582,
the shape (i.e., being cube) is pruned, but the sizes (e.g., being large) are kept;
as in the task-solving phase, shapes are novel, but sizes are familiar.
4 https://youtu.be/JXgdSjU-7OI — accessed on Mar. 29th, 2024.
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Fig. 3. Left: The composite state cst_513 shows the conditions under which the causal
model mdl_514 holds. The requirement model mdl_515 instantiates cst_513 on its
LHS (highlighted by red), which leads to the instantiation of the mdl_514 on its RHS
(highlighted by green). This triad is learned by teaching the arm in the guided ex-
perimentation phase. Right: The composite state cst_581 and the requirement model
mdl_582 are created via the analogy process in the task-solving phase. The figure pro-
vides snapshots of OpenAERA’s Visualizer software, showing pieces of the results.

Abduction flexibility. Model mdl_514 and its initial preconditions, cst_513
and mdl_515, can be used by the OpenAERA’s standard planner only if the
target object for grabbing by grab_type_2 has a cube shape, as constrained
by cst_513. The analogy process, however, prunes the initial preconditions, in-
duces new preconditions, and injects them into OpenAERA’s model-base such
that they can be immediately used within the same planning process. In the task-
solving phase, the target object s1 has a sphere shape, which does not match
cst_513. Yet, s1 has another property that matches cst_513 - it has large size.
The analogy process prunes the non-matching fact of cst_513, generates a new
composite state cst_581 and a new requirement model mdl_582, shown in Fig.
3. Right, and immediately uses them for grasping the new objects, e.g., s1.
Familiarity and selective attention. When inducing cst_581, the ratio of
matching facts of the original composite state cst_513 to all components is 3/4
or 0.75, which specifies the success rate (a.k.a. confidence) of the newly created
requirement model mdl_582 that instantiates cst_581 and mdl_514. Note that
the new requirement model mdl_582’s success rate increases when grabbing ex-
perience succeeds, as the model collects more positive evidence, helping the agent
selectively pay attention to similarities that are helpful in goal achievement.
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8 Conclusions

We have presented an implemented goal-driven analogy mechanism for gener-
alizing causal knowledge in autonomous cognitive agents. The mechanism has
been subjected to empirical validation in robotic experiments in the AERA sys-
tem operating in a 3D robot simulation environment. The results demonstrate
the effectiveness of the proposed approach. Future work calls for exploring the
mechanism’s scalability and efficacy in real-world applications.
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