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Abstract. Giving synthetic agents human-like realtime turntaking
skills is a challenging task. Attempts have been made to manually con-
struct such skills, with systematic categorization of silences, prosody and
other candidate turn-giving signals, and to use analysis of corpora to pro-
duce static decision trees for this purpose. However, for general-purpose
turntaking skills which vary between individuals and cultures, a system
that can learn them on-the-job would be best. We are exploring ways
to use machine learning to have an agent learn proper turntaking dur-
ing interaction. We have implemented a talking agent that continuously
adjusts its turntaking behavior to its interlocutors based on realtime
analysis of the other party’s prosody. Initial results from experiments on
collaborative, content-free dialogue show that, for a given subset of turn-
taking conditions, our modular reinforcement learning techniques allow
the system to learn to take turns in an efficient, human-like manner.

Keywords: Turntaking, Machine Learning, Prosody, End-of-utterance
detection.

1 Introduction

Fluid turntaking is a dialogue skill that most people handle with ease. To signal
that they have finished speaking and are expecting a reply, for example, people
use various multimodal behaviors including intonation and gaze [1]. Most of us
pick up on such signals without problems, automatically producing information
based on data from our sensory organs to infer what the other participants
intend. In amicable, native circumstances conversations usually go smoothly
enough for people to not even realize the degree of complexity inherent in the
process responsible for dynamically deciding how each person gets to speak and
for how long.

Giving synthetic agents similar skills has not been an easy task. The chal-
lenge lies not only in the integration of perception and action in sensible plan-
ning schemes but especially in the fact that these have to be coordinated while
marching to a real-world clock. Efficient handling of time is one of a few key
components that sets current dialogue systems clearly apart from humans; for
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example, speech recognition systems that have been in development for over a
decade are still far from addressing the needs of realtime dynamic dialogue [2]. In
spite of moderate progress in speech recognition technologies most systems still
rely on silence duration as the main method for detection of end-of-utterance.
However, as is well known and discussed by e.g. Edlund et al. [3], natural speech
contains a lot of silences that do not indicate end-of-speech or end-of-turn, that
is, silences where the speaker nonetheless does not want to be interrupted.

Although syntax, semantics and pragmatics indisputably can play a large role
in the dynamics of turntaking, we have argued elsewhere that natural turntaking
is partially driven by a content-free planning1 system [4]. For this, people rely on
relatively primitive signals such as multimodal coordination, prosody and facial
expressions. In humans, recognition of prosodical patterns, based on the timing
of speech loudness, silences and intonation, is a more light-weight process than
word recognition, syntactic and semantic processing of speech [5]. This processing
speed difference is even more pronounced in artificial perception, and such cues
can aid in the process of recognizing turn signals in artificial dialogue systems.

J.Jr. was an agent that could interject back-channel feedback and take turns
in a human-like manner without understanding the content of dialogue [6]; the
subsequent Gandalf agent [7] adopted the key findings from J.Jr. in the Ymir
architecture, an expandable granular architecture for cognition. We build directly
on this work, introducing schemes for the automatic, realtime learning of a key
turntaking decisions, that had to be built by hand in these prior systems. The
system learns on-line to become better at taking turns in realtime dialogue,
specifically improving its own ability to take turns correctly and quickly, with
minimal speech overlap.

In the present work turntaking is viewed as a negotiation process between the
parties involved and the particular observed patterns produced in the process
are considered emergent [8], on many levels of detail [9], based on an interaction
between many perception, decision and social processes, and their expression in
a humanoid body. In our task two talking agents, each equipped with a dialogue
model and dynamic speech planning capabilities, speak to each other. One of
them listens to the prosody of the other (intonation and speech-on/off) and uses
machine learning to best determine - as the speaker falls silent - how long to
wait until starting to speak, that is, to take the turn. One way to think of this
task is as a bet against time: The longer the duration of the silence the more
willing we are to bet that the speaker expects us to start talking; the challenge
is to reliably bet on this in realtime, during the silence, as soon as possible after
the silence starts, with whatever information (prosody etc.) has been processed.
In the present work we leave aside issues (perception, interpretation and ac-
tions) related to switching between different conversational topics. We also limit
ourselves to detecting turn-giving indicators in deliberately-generated prosody,
leaving out the topic of turn-opportunity detection (i.e. turn transition without
prior indication from the speaker that she’s giving the turn), which would e.g. be

1 We use the term “planning” in the most general sense, referring to any system that
makes a priori decisions about what should happen before they are put in action.
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necessary for producing (human-like) interruptions. Our experiments show that
our architecture and learning methodology allow the system to learn to take
turns with human-like speed and reliability in about 5 minutes of interaction in
which turn is successfully exchanged 7 times per minute, on average.

The rest of this paper is organized as follows. In section 2 we discuss re-
lated work in the field; we describe the system we have built in section 3, with
section 4 detailing the learning mechanism. In section 5 we present the evalu-
ation setup; sections 6 and 7 show results from experiments with the system
interacting with itself humans. Section 8 is conclusion and future work.

2 Related Work

The problem of utterance segmenting has been addressed to some extent in prior
work. Sato et. al [10] use a decision tree to learn when a silence signals to take
turn. They annotated various features in a large corpus of human-human conver-
sation to train and test the tree. Their results show that semantic and syntactic
categories, as well as understanding, are the most important features. Their ex-
periments have currently been limited to single domain, task oriented scenarios
with annotated data. Applying this to a casual conversation scenario would in-
evitably increase the recognition time - as the speech recognizers vocabulary is
enlarged - to the extent that content interpretation results are already obsolete
for turn taking decisions by the time they are produced [2].

Traum et al. [11] and others have also addressed the problem of utterance
segmenting, showing that prosodic features such as boundary tones do play a
role in turntaking and Schlangen [12] has successfully used machine learning to
categorize prosodic features from corpus, showing that acoustic features can be
learnt. As far as we know, neither of these attempts have been applied to a
real-time scenario.

Raux and Eskenazi [13] presented data from a corpus analysis of an online
bus scheduling/information system, showing that a number of dialogue fea-
tures, including type of speech act, can be used to improve the identification
of speech endpoint, given a silence. They reported no benefits from prosody
for this purpose, which is surprising given the many studies showing the oppo-
site (cf. [1,7,11,12,14,15]). We suspect one reason could be that the pitch and
intensity extraction methods they used did not work very well on the data se-
lected for analysis. The authors tested their findings in a realtime system: Using
information about dialogue structure - speech act classes, a measure of seman-
tic completeness, and probability distribution of how long utterances go (but
not prosody) - the system improved turntaking latency by as much as 50% in
some cases, but significantly less in others. The Gandalf system [7] also used
a measures of semantic, syntactic (and even pragmatic) completeness to deter-
mine turntaking behaviors, but data about its benefit for the turntaking per se
is not available. The major lessons that can be learned from Raux and Eske-
nazi [raux08], echoing the work on Gandalf, is that turntaking can be improved
through an integrated, coordinated use of various features in context.
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Prosodic information has successfully been used to determine back-channel
feedback. The Rapport Agent [14] uses gaze, posture and prosodic perception
to among other things detect backchannel opportunities. The J.Jr. system, a
communicative agent that could take turns in realtime dialogue with a human
without understanding the content of the speech, used only prosodical informa-
tion to make decisions about when to ask questions and when to interject back-
channel feedback. The system was based on a finite state-machine formalism
that was difficult to expand into a larger intelligent architecture [7]. Subsequent
work on Gandalf [7] incorporated mechanisms from J.Jr. into the Ymir archi-
tecture, which was built as a highly expandable, modular system of preceptors,
deciders and action modules; this architecture has recently been used in building
an advanced vision and planning system for the Honda ASIMO robot [16].

3 System Architecture

We have built a multi-module dialogue system using the methodology described
in [9,17]. The gross architecture of the system will be detailed elsewhere; here we
focus on parts of the turntaking - the preceptors, deciders and action modules -
needed to support learning for efficient turntaking. Following the Ymir archi-
tecture [7], our systems modules are categorized based on their functionality;
perception modules, decider modules and action modules (see Figure 1). We will
now describe these.

3.1 Perception

There are two main perceptors (perception modules) in the system, the Prosody-
Tracker and the Prosody-Analyzer. The Prosody-Tracker is a low-level perceptor
whose input is raw audio signal [18]. It computes speech signal levels and com-
pares this to a set of thresholds to determine information about speech activity,
producing timestamped Speech-On and Speech-Off messages. It also analyzes
the speech pitch incrementally (in steps of 16 msec) and produces pitch values,
in the form of a continuous stream of pitch message updates.

Prosody
Tracker

TurnTaking
Deciders

Learner
Dialogue
Planner

Content
Generator

TTS
Wrapper

Prosody
Analyzer

Audio Messages

Perception Decision Action

Fig. 1. System components, each component consists of one or more modules

Similar to [19], pitch is analyzed further by a Prosody-Analyzer perceptor to
compute a more compact representation of the pitch pattern in a discrete state
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space, to support the learning: The most recent tail of speech right before a
silence, currently the last 300 msec, are searched for minimum and maximum
values to calculate a tail-slope value of the pitch. Slope is then split into seman-
tic categories, currently we are using 3 categories for slope: Up, Straight and
Down and 3 for relative value of pitch right before silence: Above, At, Below, as
compared to the average pitch. Among the output of the Prosody-Analyzer is a
symbolic representation of the particular prosody pattern identified in this tail
period (see Figure 2). More features could be added into the symbolic represen-
tation, with the obvious side effect of increasing the state space. Figure 2 shows
a 9 second long frame with speech periods, silences and categories. As soon as a
silence is encountered (indicated by gray area) the slope of the most significant
continuous pitch direction of the tail is computed.

Fig. 2. A window of 9 seconds of speech, containing 6 consecutive utterances, catego-
rized into descriptive groups. Slope is only categorized before silences.

3.2 Deciders

The dialogue state (I-have-turn, Other-has-turn etc.) is modeled with a dis-
tributed context system, implementing what can approximately be described as
a distributed finite state machine. Context transition control in this system is
managed by a set of deciders [9]. There is no limit on how many deciders can
be active in a single system-wide context. Likewise, there is no limit to how
many deciders can manage identical or non-identical transitions. Reactive de-
ciders (IGTD,OWTD,...) are the simplest, with one decider per transition. Each
contains at least one rule about when to transition, based on both temporal
and other information. Transitions are made in pull manner; the Other-Accepts-
Turn-Decider transits to context Others-Accepts-Turn (see Figure 3).

The Dialogue Planner and Learning modules can influence the dialogue state
directly by sending context messages I-Want-Turn, I-Accept-Turn and I-Give-
Turn. These decisions are under the supervisory control of the Dialogue Planner:
If the Content Planner has some content ready to be communicated, the agent
might want to signal that it wants turn and it may want to signal I-Give-Turn
when content queue is empty (i.e. have-nothing-to-say). Decisions made by these
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I
Have
Turn

Other
Wants
Turn

I
Give
Turn

Other
Has
Turn

Other
Accepts

Turn

Other
Gives
Turn

I Want
Turn

I
Accept
Turn

Dialog
Planner

OGTD-2

OWTD

IHTD OHTD

OGTD-1

IGTD

OATDIGTD

IATD IWTD

OGTD-1

Timeout
Decider

Fig. 3. The turntaking system can be viewed as a set of 8 context-states and 11 de-
ciders. Each context-state has at least one associated decider for determining transition
to it but each decider is only active in a limited set of contexts. In context-state I-Have-
Turn, both I-Give-Turn-Decider (IGTD) and Other-Wants-Turn-Decider (OWTD) are
active. Unlike other modules, the Dialog Planner can transition independent of the
system’s current context-state and override the decisions from the reactive deciders. A
Timeout-Decider handles transitions if one of the negotiating context-states is being
held unacceptably long but it’s transitions are not included in the diagram.

modules override decisions made by other turntaking modules. The DP also man-
ages the content delivery, that is, when to start speaking, withdraw or raise one’s
voice. The Content-Generator is responsible for creating utterances incremen-
tally, in ”thought chunks”, typically of shorter duration than 1 second. While we
are developing a dynamic content generation system based on these principles
the CG simulates this activity by selecting thought units to speak from a pre-
defined list; it signals when content is available to be communicated and when
content has been delivered.

In the present system the module Other-Gives-Turn-Decider-2 (OGTD-2) uses
the data produced by the Learner module to change the behavior of the system.
At the point where the speaker stops speaking the challenge for the listening
agent is to decide how long to wait before starting to speak. If the agent waits
too long, and the speaker does not continue, there will be an unwanted silence;
if he starts too soon and the speaker continues speaking, overlapping speech will
result. We solve this by having OGTD-2 use information about prosody before
prior silences to select an optimal wait-and-see time. This will be described in
the next section.

4 The Learner

The learning mechanism is implemented as a highly isolated component in the
modular architecture described above. It is based on the Actor-Critic distribu-
tion of functionality [20], where one or more actors make decisions about which
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actions to perform and a critic evaluates the effect of these actions on the en-
vironment; the separation between decision and action is important because in
our system a decision can be made to act in the future. In the highly general
and distributed mechanism we have implemented, any module in the system can
take the role of an actor by sending out decisions and receiving, in return, an
updated decision policy from an associated Learner module. A decision consists
of a state-action pair: the action being selected and the evidence used in making
that action represents the state. Each actor follows its own action selection pol-
icy, which controls how he explores his actions; various methods such as e-greedy
exploration, guided exploration, or confidence value thresholds, can be used [20].
The Learner module takes the role of a critic. It consists of the learning method,
reward functions, and the decision policy being learnt. A Learner monitors de-
cisions being made in the system and calculates rewards based on the reward
function, a list of decision/event pairs, and signals from the environment - in our
case overlapping speech and too long silences - and publishes updated decision
policy (the environment consists of the relevant modules in the system).

We use a delayed one-step Q-Learning method according to the formula:

Q(s, a) = Q(s, a) + α[reward − Q(s, a)] (1)

Where Q(s,a) is the learnt estimated return for picking action a in state s,
and alpha is the learning rate. The reward functions - what events following
what actions lead to what reward - need to be pre-determined in the Learner’s
configuration in the form of rules: A reward of x if event y succeeds at action
z. Each decision has a lifetime in which system events can determine a reward,
but reward can also be calculated in the case of an absence of an event, after
the given lifetime has passed (e.g. no overlapping speech). Each time an action
gets reward the return value is recalculated according to the formula above and
the Learner broadcasts the new value.

In the current setup, Other-Gives-Turn-Decider-2 (OGTD-2) is an actor, in
Sutton’s [20] sense, that decides essentially what its name implies. This decider
is only active in state I-Want-Turn. It learns an “optimal” pause duration so as
not to speak on top of the other, while minimizing the lag in starting to speak.
Each time a Speech-Off signal is detected, OGTD-2 receives analysis of the
pitch in the last part of the utterance preceding the silence, from the Prosody-
Analyzer. The prosody information is used to represent the state for the decision,
a predicted safe pause duration is selected as the action and the Decision is
posted. This pause duration determines when, in the future, the listener will start
speaking/take the turn. In the case where the interlocutor starts speaking again
before this pause duration has passed, two things can happen: (1) If he starts
speaking before the predicted pause duration passes, the decider doesn’t signal
Other-Giving-Turn, essentially canceling the plan to start speaking. This leads
to a better reward, since no overlapping speech occurred. (2) If he starts talking
just after the pause duration has passed, after the decider signals Other-Gives-
Turn, overlapping speech will likely occur, leading to negative reinforcement for
this pause duration, based on the prosodic information. This learning strategy



Learning Smooth, Human-Like Turntaking in Realtime Dialogue 169

is based on the assumption that both agents want to take turns politely and
efficiently. We have already begun expanding the system to be able to interrupt
dynamically and deliberately - i.e. be “rude” - and the ability to switch back to
being polite at any time, without destroying the learned data.

5 Evaluation Setup

We are aiming at an agent that can adapt its turntaking behavior to dialogue in a
short amount of time. In this initial evaluation we focus exclusively on detecting
turn-giving indicators in deliberately-generated prosody, leaving out the topic of
turn-opportunity detection (i.e. turn transition without prior indication from the
speaker that she’s giving the turn), which would e.g. be necessary for producing
(human-like) interruptions. The goal of the learning system is to learn to take
turns with (ideally) no speech overlap, yet achieving the shortest possible silence
duration between speaker turns. In this setup both agents always have something
to say, leaving out issues such as turntaking perception and actions related to
goal-directed switching between different conversational topics (think stream-of-
consciousness conversations). First we describe an experiment where the system
learns to take turns while interacting with itself. We then compare this to a
pilot study of turntaking in human-human dialogue, using the same analysis
mechanisms as in the autonomus system.

Computer 1

Dialogue
Planner

Content
Generator

TTS
Wrapper

Pitch
Tracker

TurnTaking
Deciders

Learner

Dialogue
Planner

Content
Generator

TTS
Wrapper

Pitch
Tracker

TurnTaking
Deciders

Pitch
Analyser

Computer 1 Computer 2 Computer 3

Audio Messages

Fig. 4. Two agents distributed over a set of 3 computers. Time syncing and time drift
pose a problem when measuring small time units, so all modules that we are specifically
measuring time for are located on the same computer.

We have set up two instances of the system (agents) talking to each other (see
Figure 4). One agent, Simon, is learning, the other, Kate, is not learning. Kate
will only start speaking when she detects a 2-second pause; pause duration =
2 sec (controlled by her Other-Gives-Turn-Decider-1). Simon has the same 2 sec
default behavior, but in addition he learns a variable pause duration (controlled
by OGTD-2); its goal is to make this duration as small as possible, as described
above. Content is produced in groups of between 1 and 5 randomly-selected sen-
tence fragments, using the Loquendo speech synthesizer, which has been enabled
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Fig. 5. The Learner’s view of what is the best action (predicted “safe” pause duration)
for each state, over a period of 13 minutes of learning, starting with no knowledge. Ex-
amining the actions, from smallest to largest pause duration, the system finds the opti-
mal pause duration in as little as 3 minutes for the quickest learnt state (Down Below),
which is also the state with the shortest pause duration, indicating that this prosody
pattern is a good sign of turn giving.

to start and stop synthesis at a moment’s notice (around 100 msec). Loquendo
uses markup to control the prosody; by adding a comma (,) to each fragment
except the last one we can suppress a final fall [15] and keep the intonation up;
by appending a period (.) we get a typical finall fall, e.g. “I went to my sum-
mer house,” - “this weekend,” - “the weather was nice,” - “the whole time.”.
This way the intonation approximates typical spontaneous speech patterns. We
selected sentences and fragment combinations to sound as natural as possible.
(However, the fragments are selected randomly and assigned a role as either an
intermediate fragment or last fragment.) Speech is thus produced incrementally
by the combined speech synthesizer/speech planner system (speech synthesizer
wrapper) as it receives each fragment, and the planner never commits to more
than two fragments to the speech synthesizer at a time. As Loquendo introduces
a short pause whenever there is a comma, and because of fluctuations in the
transmission and execution time, pauses between fragments range from 31 to
4296 msecs, with 355 msecs being the average (see Figure 8).

5.1 Parameter Settings

Formulating the task as a reinforcement learning problem, the latest pitch tail
represents the state and the pause duration is the action being selected. We have
split the continuous action space into discrete logarithmic values starting with
10 msec and doubling the value up to 2 sec (the maximum pause duration where
the system takes the turn by default). The action selection policy for OGTD-2
is e-greedy with 10% exploration and always selecting the shortest wait time if
two or more actions share the top spot.

The reward given for decisions that do not lead to overlapping speech is the
milliseconds in the selected pause; a decision to wait 100 msec from a Speech-Off
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signal until the I-Take-Turn decision is taken, receives a reward of -100 and -10
for deciding on a pause threshold of 10 msec. If, however, overlapping speech
results from the decision, a reward of -2000 (same as waiting the maximum
amount of time) is given. All rewards in the system are thus negative, resulting
in unexplored actions being the best option at each time since return starts at 0.0
and once a reward has been giving the return goes down (exploration is guided
towards getting faster time than the currently best action, so a pause duration
larger than optimal is not explored). This can be seen in Figure 5 where each
action is tried at least once before the system settles down at a tighter time range.

6 Results from System Interacting with Self

Looking at Figure 6, we clearly see that the learning agent starts by selecting
pause durations that are too short and numerous overlaps are detected. The
agent quickly learns the “safe” amount of time to wait before deciding turn was
given, based on the prosody pattern. After 5 minutes of interaction interruptions
have dropped below one per minute and occurrences after the 11th minute are
solely caused by continued exploration. Each agent gets turn on average 4 times
per minute (i.e. 8 successful turn exchanges). Average silence between turns is
always larger than pause duration since it also includes delays resulting from
processing the pitch and the time from deciding to speak until speech is deliv-
ered. These will be improved as we continue to tune the architecture’s runtime
performance. Interestingly, although pause duration is increased considerably for
some prosody patterns, the influence on silence is minimal.

Fig. 6. When the system learns correct relations between prosody and pause duration,
overlaps cease to occur (except as a function of exploring). Initial exploring of the
action space is responsible for the average silence observed between turns increasing in
the 2nd and the 3rd minute.

Based on our model of turntaking as a loosely-coupled system, it makes sense
to compare the synchronization of “beliefs” in the agents about what turntaking
context they are in (see Figure 7). At the beginning of the run there is not much
consensus on who has the turn - the learning agent is constantly erroneously
interrupting the other. After a few minutes of conversation the learning agent
has adjusted his policy and turntaking goes smoothly.
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7 Comparison to Human-Human Interaction Study

We conducted a human-subject study to compare this system to. A priori we
had reason to believe that people have more variable prosody generation patterns
than the Loquendo speech synthesizer, with more variable silences within turn.
In our human-subject study 8 telephone conversations were recorded in dual
channel mode, and analyzed using the same mechanisms that the agents in
our system use for deciding their turn behavior; each phone conversation was
fed through our system just as if the sound was coming from two agents. The
results show that silences within turn are considerably longer than expected (see
Figure 8). Participants are also on average longer to take the turn than our
agents, but minimum successful lag between turns is considerably shorter for
humans (31 msec vs. 60 msec).

Fig. 8. Comparison of silence duration in human dialogue and between our agents.
Within-turn silences: silences where the person is not giving turn; between-turn silences:
successful turntaking opportunities.

For a more accurate comparison of human-human and computer-computer
data, certain types of turntakings may need to be eliminated from the corpus,
namely those that clearly involve a switch in topic (as these were casual conver-
sations they include some long silences where neither party has anything to say).
Another source of bias may be the fact that these dialogues were collected over
Skype, which typically contains somewhat larger lag times in audio transmission
than landline telephone, and certainly more lag than face-to-face conversation.

8 Conclusions and Future Work

We have built a system that uses prosody to learn optimal pause durations for
taking turns, minimizing speech overlaps. The system learns this on the fly, in a
full-duplex “open-mic” (dynamic interaction) scenario, and can take turns very
efficiently in dialogues with itself, in human-like ways. The system uses prosodic
information for finding categories of pitch that can serve a predictor of turn-
giving behavior of interlocutors. As the system learns on-line it will be able to
adjust to the particulars of individual speaking styles; while this remains to be
tested our preliminary results indicate that this is indeed possible. At present the
system is limited to a small set of turntaking circumstances where content does
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not play a role, assuming “friendly” conversation where both parties want to
minimize overlaps in speech. Silences caused by outside interruptions - extended
durations caused by searching for “the right words”, and deliberate interruption
techniques - are all topics for future study. The system is highly expandable,
however, as it was built as part of a much larger system architecture that ad-
dresses multiple topic- and task-oriented dialogue, as well as multiple modes. In
the near future we expect to expand the system to more advanced interaction
types and situations, and to start using it in dynamic human-agent interactions.
The learning mechanism described here will be expanded to learn not just the
shortest durations but also the most efficient turntaking techniques in multi-
modal interaction under many different conditions. The turntaking system is
architected in such a way as to allow a mixed-control relationship with outside
processes. This means that we can expand it to handle situations where the goals
of the dialogue may be very different from “being polite”, even adversarial, as
for example in on-air open-mic political debates. How easy this is remains to be
seen; the main question revolves around the learning systems - how to manage
learning in multiple circumstances without negatively affecting prior training.
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