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ABSTRACT 
An eye tracking method is described that can estimate a user's absolute fixation point 
in three-space, and allows for free head motion within a half-sphere with a 1.5 m 
radius.  The system is based on an infrared corneal-reflection eye tracker and a 
magnetic field system that together provide data about the position and orientation of 
the head in three-dimensional space, and the orientation of the eye within the head.  
Eye movement data is reduced by isolating periods of fixations and saccades.  This 
data is combined to compute a three-dimensional vector in the direction of line-of-sight 
that can be intersected with the plane of a computer screen, to estimate the location of 
a user's fixation. 

By time-stamping eye fixations, eye movements are combined with speech and gestures 
to disambiguate multi-modal references in the interaction between a user and the 
computer.  The eye tracker described was designed as a research tool for interfaces 
that model human-to-human interaction, but has application in any situation that calls 
for free head motion. 

 
KEYWORDS: Eye tracking, eye movements, line of gaze, human-
computer interaction, multi-modal communication. 

 
 
1. INTRODUCTION 
 
Eye gaze has been found to be an important factor in human-to-human interaction 
[Argyle & Cook 1975].  In the past, eye tracking has predominantly been used as a 
research tool in psychology and physiology.  Recently, however, there has been an 
increasing interest in looking at the gaze of computer users as an indication of their 
interest and focus of attention—as a way to enhance interaction at the human-computer 
interface.  Early efforts in using eye movements at the interface include work done at 
the Architecture Machine Group at M.I.T., using eye measurements to orchestrate 
multiple dynamic windows [Bolt 1984].  This system used a person's eye gaze as an 
indication of attention and interest, and controlled the display of information, both 
visual and auditory, according to eye behavior over time.  A more recent example is 
described in Starker and Bolt [1990]; a gaze-responsive storytelling system that 
dynamically varied its monologue based on the user's interest.  In this system, interest is 
a function of where a person's eye lingers at any instance and how it changes over time.  
Jacob [1990] has investigated the use of gaze as a direct manipulation tool for selection 
of menu items and icons on a display.   



 

Prior research on "eyes as output" 
has generally spent little effort on 
integrating gaze with other 
interaction techniques, and the eyes 
have often been isolated from other 
natural modes of interaction—such 
as speech and gestures.  At best, 
eyes have been combined with 
traditional input devices such as a 
mouse or a keyboard.  We are 
exploring how gaze can be 
integrated efficiently into an 
interface that supports multiple 
modes of interaction:  speech, 
gestures and gaze [Koons et al. in 
print, Bolt & Herranz 1992, 
Thorisson et al. 1992, Bolt 1985].  
The eye tracking system described 
is currently used with an interface 
that interprets concurrent actions in 
speech, hand and eye [Thorisson et 

al. 1992].  The goal of this research is an interface that takes advantage of the natural 
conventions of traditional human-to-human communication. 
 
The two most important factors when studying gaze in multi-modal interaction are 
unrestricted head movements and the person’s line-of-gaze.  To meet the first 
requirement we use a head-mounted eye tracker.  However, using a head-mounted 
camera to estimate a person's gaze within a three-dimensional (3-D) world in a real-
time fashion presents the problem of integrating the geometry of the 3-D environment 
with the data supplied by the camera.  To allow a person to turn their head and look 
about, we have combined the traditional corneal-reflection eye tracker with a magnetic-
field system that can give the orientation and position of an object—in this case the 
person’s head—within a specified coordinate frame.  The eye tracker itself provides 
data about the eye movements within the person’s head.  Using the magnetic-field 
system a three-dimensional vector is computed for the line of sight and can 
subsequently be intersected with a graphics display or any other object of known 
location in the surroundings.   
 
2. EYE MOVEMENT ANALYSIS 
 
2.1 Eye Position 
Many technologies and methods exist to estimate a person's eye position.  Among the 
most commonly used is the corneal reflection method: an infrared light shines onto the 
cornea; the reflected image is captured by a camera and analyzed for bright and dark 
regions [Young & Sheena, 1975].  The relative two-dimensional arrangement of these 

 
 

Figure 1. Configuration of the head-mounted eye 
tracker camera and the infrared LED light source. 
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regions in the image can then be 
used to estimate the orientation 
of the eye.  The corneal 
reflection method is a simple, 
non-intrusive method that is 
relatively accurate.  
 
We use the RK-426™ ISCAN® 
head-mounted eye tracker to 
estimate the position of the eye 
within the head.  (Another 
recent video-based eye tracking 
system is described in [Myers et 
al. 1991].)  The user looks 
through a half-silvered mirror, 
placed in front of the eye at a 
slant of approximately 45 
degrees (Figure 1). The mirror 
reflects strongly in the infrared 
range but does not significantly 
affect the person’s view through 
the mirror.  An infrared light-
emitting diode (LED) is 
mounted above that shines onto 
the mirror and illuminates the 

eye and causes a highlight to appear close to the iris.  A miniature, infrared-sensitive 
camera captures the resulting eye-image off the mirror, and sends the video signal to a 
286 AT computer.  The ISCAN® system includes a plug-in board for the computer that 
performs image processing on the video signal, to provide data about the size and 
position of the pupil and the position of the highlight in the video image of the eye.  It 
is the relative position of the pupil and the highlight that provide the basic data for the 
corneal reflection method [Young & Sheena, 1975].  As the user's eye moves, the 
difference between the center of the pupil and the center of the highlight gives a fairly 
good measure of the orientation of the eye within the head (Figure 2).  The relative 
location of these two features is represented as the difference in both the horizontal and 
vertical dimensions of the video image (denoted [δxvideo, δyvideo] hereafter) and is 
available at a rate of 60 Hz in this particular system. 
 
When corneal reflection systems are used with a chin rest or bite-bar, the two-
dimensional data provided by the eye tracker are mapped directly to the two dimensions 
of a computer screen (during a calibration process).  The user is asked to successively 
fixate on a given number of points on the screen.  Any intermediate values are then 
interpolated from these sampled points.  Systems based on this technique require that 
the head is kept stationary (with the help of a chin rest) both during calibration and 
subsequent use. 

 
Figure 2.  The relationship of the highlight, created by 
the LED light source (falling on the cornea), and the 
center of the pupil, as the eye moves to the maximum 
δxvideo and δyvideo values.  The nine eye positions 
shown correspond to the nine eye samples collected in 
the calibration procedure. 
 



 

 
2.2 Head and Screen Position 
Problems arise with this simple mapping when we want to free the person’s head and 
allow them to look about.  The position of the head is no longer in a constant relation to 
screen.  We must now collect data on the dynamic configuration of the head and the 
screen.  Magnetic devices exist that allow accurate estimation of an object’s position in 
three-dimensional space.  We use a 3SPACE Isotrak™ system for this purpose.  This 
system uses a magnetic field to determine the position, [x, y, z], and orientation, 
[θ, β, γ], of a sensor in relation to a source coordinate system ("Sensor" and "Source,"  
Figure 3).  The sensor is placed on the head-mounted eye tracker.  The source is placed 
on a nearby non-metal surface.  It is important that the source be kept away from the 
computer screen so that its magnetic field is not distorted by the magnetic field from the 
screen.  The system can give the location and orientation of the head within the source-
cube space (within a 1.5 m distancei of the source cube).   
 
Since the sensor cube cannot be mounted at the eye position, it is mounted near the eye.  
The difference in location is represented by a three-dimensional vector from the sensor 
cube to the eye (vector i in Figure 3).  Vector i is an estimate based on an average 
person and is not sampled for each new user.  In order to reduce the number of 
rotational transformations required, the sensor cube is mounted in an orientation that 
approximates the orientation of the head.  Given the data provided by the Isotrak 
                                                
i As specified by the manufacturer, McDonnell Douglas Electronics Company—Polhemus Navigational Sciences Division, the 
Isotrak™ system is most reliable within 75 cm of the source cube.   However, distances up to 150 cm are possible with diminishing 
accuracy. 

 
Figure 3.  Magnetic cubes and vectors for finding the head and the center of the eye. 
 



 

system, we can locate and orient the user’s eye socket.  The socket serves as a frame of 
reference for computing the azimuth and elevation angles of the eye, because the origin 
of the line-of-sight vector is at the center of the eye ball/eye socket system. 

In addition to locating the head, the Isotrak™ system is used to locate the computer 
display.  However, since the screen can easily be kept stationary in relation to the 
source cube, this data is not collected at each calibration session.  Instead, the sensor 
cube is removed from the eye-tracker and used to collect position data for three corners 
of the screen.  This gives three vectors from the origin to these corners of the screen 
(vectors a, b, and c, Figure 4), and the plane of the screen can be defined by two 
vectors, d and e :  
 
     d = a - b 
     e = b - c. 
 

Because of magnetic interference between the screen and the sensor cube, it is 
necessary to place it at a constant offset in front of the screen (we use a 12 inch long 
ruler for this purpose).  This constant offset can then be subtracted from each point, 
along a normal to the screen plane (as defined by the two vectors d and e).   
 
2.3 Calibration 
The exact configuration of the eye tracker is different each time it is put on a person's 
head: it may be tilted back or slightly turned; the pupil and highlight may appear in a 
different location on the video image;  etc.  To account for such variations, each session 
begins by calibrating the system.  The goal of the calibration process is to determine the 
mapping between the angles of the eye derived from the geometrical configuration of 
the system and the data extracted from the eye-tracking video camera.  More 
specifically, we want to be able to find a mapping from [δxvideo, δyvideo] into angles 
around zsocket (azimuth) and ysocket (elevation).   
 

 
 
Figure 5.  Cartoon showing the user provide one of the nine calibration points: the upper right 
corner (imagine looking at the user from behind a transparent screen).  The motion of the 
crosshair is shown by the dotted line (2 & 3).  When the crosshairs have been lined up, a dot 
appears in the center of the crosshair (4) to indicate to the user that data collection is taking 
place. 
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As mentioned earlier, 
in allowing the user’s 
head to move relative 
to the computer screen, 
the calibration process 
is no longer a simple 
mapping from one 
two-dimensional space 
to another.  In order to 
calibrate with a head-
mounted eye-tracker, 
we must now take into 
account the orientation 
and three-dimensional 
position of the eye 
socket and the three-
dimensional position 
of a target point 
(displayed on the plane 

of the computer screen).  By knowing the geometrical relationships between the socket, 
eye and target the azimuth and elevation angles of the eye can be computed (assuming 
the eye is directed at the target point) and associated with the data arriving from the eye 
tracker. 
 
One approach to the calibration process is to present target points that are at some 
known angle relative to the current position and orientation of the head.  In other words, 
if we wish to collect data when the user’s eyes are looking 15 degrees up and 20 
degrees to the right, we must present the target at these angles relative to the current 
position and orientation of the head.  However, because people tend to turn toward the 
object they are looking at, the user could end up chasing the target off the screen (since 
the target maintains the same relationship to the head regardless of head movements). 
 
A second possible approach involves moving the head instead of the target.  In this case 
the target point is fixed to some known three-dimensional position and the user is asked 
to orient his head while looking at the target.  We have implemented this second 
approach in the following way: A white target crosshair is presented at a fixed location 
on the computer display.  A second red crosshair is displayed that moves as the user 
moves his head.  The user's task is now to align the two crosshairs.  When they are 
aligned, the head is in the goal position and data about the eye position is collected 
from the eye-tracker (Figure 5).  It is important to note that this, and any other eye 
tracking method, is based on the assumption that the user is looking at some known 
target point.  We assume that at the moment the cross-hairs come together the user's 
eyes are directed at the center of the aligned crosses.  (The user is informed about this 
beforehand.)  A series of these alignment tasks are completed for different 
combinations of eye angles.  The product is a calibration table; an array of data points 

 

 
Figure 4.  Vectors defining the plane of the computer screen. 



 

covering the range of pre-determined eye orientations.  These points are later used to 
interpolate from a given [δxvideo, δyvideo] into angles (see next section). 
 
The first step in the calibration process is to compute the position of the white target 
crosshair on the computer display.  The user is asked to sit comfortably while facing the 
screen.  The head position is sampled and a vector is created that approximates a 
straight and level line of sight.  The white crosshair is placed at the intersection of this 
vector and the plane of the computer screen.  This configuration of eye socket and 
target is used later as a reference for computing the eye angles.  In other words, when 
the user’s head is in this position and orientation relative to the target cross, the eyes are 
assumed to be directed straight ahead (azimuth and elevation are set to 0.0).  
 
For each data point in the array collected during calibration, the user moves to align the 
second red crosshair with the white target cross.  As an example, suppose we wish to 
collect the eye-tracker data when the eye is looking 15 degrees up and 20 degrees to the 
right (+15˚ elevation, +20˚ azimuth).  To calculate a position for the red cross on the 
screen, the current head position and orientation data are collected from the sensor 
cube.  A vector is defined from the center of the eye socket to the center of the white 
target cross.  The azimuth and elevation of this vector in the socket coordinate system 
can now be computed.  Within the eye socket coordinate system, the eye has two 
degrees of freedom; around the zeye (azimuth) and the yeye (elevation).  Rotation 
around the xeye axis, the line of sight, can be ignored.  These computed angles are 
compared to the goal angles (+20˚ azimuth, +15˚ elevation) and the difference is used 
to position the red cross relative to the white target cross on the screen.   
 

 
Figure 6.  Nine calibration points are obtained in the 
calibration.  Here, the eye is shown looking at a point of 0° 
azimuth and -15° elevation. 



 

Continuing with the example, if the current angles are found to be +5˚ elevation and 
+14˚ azimuth, the red cross would be displayed above and to the right of the white 
target cross.  The user can align the crosses in this situation by tilting the head down 
(rotating the socket vector around ysocket) and turning to the left (rotating the socket 
vector around zsocket; refer to Figure 5).  Keeping the eyes fixed at the crosshairs, they 
will now rotate in the opposite direction, moving closer to their goal angles.  Once the 
crosses are aligned, several samples of [δxvideo, δyvideo] data are taken from the eye 
tracker, averaged and stored with the associated goal angles.  These stored values 
represent known points in the mapping between the data from the video image and the 
corresponding angles of the eye within its socket.   
 
2.4 Interpolating from Calibration Points to Angles 
As mentioned before, the data provided by the eye tracker represents the difference 
between the center of the pupil and the center of the highlight ([δxvideo, δyvideo]), 
calculated in the x, y coordinate system of the camera's video signal.  A calibration 
table (the product of the calibration process) consists of nine [δxvideo, δyvideo] sample 

 
Figure 7. Calibration points collected with the eye tracker.  Azimuth values range from -
20° to +20°, elevation from -15° to +15°, resulting in the general tilt observed for each axis.  The 
corresponding δxvideo and δyvideo datapoints collected define four quadrants in a [δxvideo and 
δyvideo] plane.  The points are used to split the plane into eight triangles, defining the "tiles" 
used to calculate intermediate values of azimuth and elevation. 
 



 

points, one for each of the elevation and azimuth angle pairs in a 3x3 grid (Figures 2 
and 6).  By interpolating between the sampled points, the angle values for azimuth and 
elevation of the eye can be estimated.  These angles, in turn, allow the construction of 
the line-of-sight vector in the three-dimensional environment. 
 
What is needed at this point is a function (applied to both azimuth and elevation) that 
accepts the data from the eye-tracking hardware and returns the estimated eye angle.  
The nine sample points collected during the calibration process define points on a three-
dimensional surface (Figure 7).   Given a [δxvideo, δyvideo] point, the associated eye 
angle is represented as the distance from that point to the surface, i.e. the vertical height 
at that coordinate. 
 
We approximate the surface by using the nine sample points to define a set of eight 
triangular planes or “tiles”.  Given a new data point from the eye tracker, [δxvideo, 
δyvideo], we first find the triangle whose center is closest to this coordinate.  This 
triangular plane is then used as a local approximation of the surface.  The vector ωt, the 
vertical height at this coordinate, serves as the estimation of the corresponding eye 
angle.  The scalar ω is found by:  
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Figure 8. Given a δxvideo and δyvideo pair, it must first be determined which trianlge 
plane to use for estimating azimuth and elevation.  Here the point fell close to the center of one 
of the triangles (as defined by vector s).  Vector t is scaled according to Equation 2.  The 
resulting vector determines the angle in azimuth.  This is done for elevation as well, using the 
same δxvideo and δyvideo values, producing a pair of angles, [γ, β], corresponding to rotation 
around zsocket and ysocket, respectively. 
 



 

 
(× = cross product, • = dot product; see Figure 8).  The result of the interpolation 
process is a pair of angles [γ, β] representing the rotation of the eye around the zsocket 
and ysocket axes.   
 
2.5 Line-of-Gaze, Screen Intersection 
Given the estimated angles for the azimuth and elevation of the eye [γ, β], a line-of-
sight  vector can be computed using the geometric information provided by the space-
sensing hardware.  To do this, a vector is defined along the x-axis of the source 
coordinate system.  The vector is first rotated by the estimated azimuth and elevation 
angles and then again by the current head orientation angles (given by the sensor cube 
mounted to the eye tracker).  The rotated vector is finally translated to the current eye 
position.  The resulting three-dimensional vector (vector k in Figure 9) can now be 
treated as the user’s line-of-sight.  The line-of-sight vector is intersected with the plane 
of the computer screen, resulting in a two-dimensional screen coordinate.  The 
intersection point is computed using: 
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Figure 9. The intersection of line-of-gaze vector k with the plane of the computer screen.  
The scalars ω and υ can be used to scale the number of pixels of the screen to find the 
estimated coordinates where the user was looking. 

 



 

 
(see Figure 9).  The scalars υ  and ω  can be used directly to scale the number of screen 
pixels in xscreen and yscreen, respectively, since these are ratios of the lengths of vectors 
d and e.  However, because the user’s line of sight is represented as a three-dimensional 
vector, it can be intersected with any object, plane or surface in three-space as long as 
the object's position is known, relative to the origin defined by the magnetic source 
cube. 
 
2.6 Fixations, Saccades and Blinks 
The physiology and psychology of looking helps reduce the continuous stream of data 
from the eye: the two most important features in the eye motion are fixations and 
saccades.ii During fixations, the times when the eye is at rest, a person gathers 
information about the environment; during saccades, when the eye is in motion, the 
visual threshold is elevated and much less information can be gathered [Skavenski & 
Hansen 1978].  The advantages of this for us are twofold.  First, as a method for 
infering a person's interest, only fixations would be of any significance.  Second, the 
data from the hardware is available at rates up to 60 Hz.  Calculating a line of sight at 
this rate could be fairly expensive.  To diminish computational intensity, an efficient 
method is to ignore anything but the user's fixations. 
 
By simplification, this can be achieved by looking only at the image coming from the 
eye tracker camera.  Alternatively, one could include head position in the calculations 
to account for biases caused by head-movement during fixations.  However, this has not 
proven absolutely necessary for our purposes.  A running estimation of the eye's 
velocity is computed by taking an average of the last n eye-position samples ([δxvideo, 
δyvideo]) and comparing it to a threshold.  For increased noise resistance, two thresholds 
are used.  One threshold determines whether the velocity is slow or fast,  the other 
counts how many slow or fast velocity estimations have occured in a row.  The fixation 
filter looks at the number of slow velocity computations that have happened in 
succession: 
 

if velocity < Fix_vel_thrsh            
  then Fix_count ← Fix_count + 1   

  else Fix_count ← 0   
 

If Fix_count goes over the pre-determined Fix_count_thrsh, the state is assumed to 
be a fixation: a boolean variable is set to be the current state:  
 

if velocity < Fix_vel_thrsh  
 and Fix_count > Fix_count_thrsh 
  then Fix_on ← true  

  else Fix_on ← false 
 

While the boolean variable is true, the samples for eye-position are cumulated: 

                                                
ii Smooth pursuit eye movements, which happen when the eyes follow a moving target, are not analyzed in the current 
implementation.  However, this should be possible to implement by comparing the velocity of the eye to a typical velocity range. 



 

 
if Fix_on 
 then Cumulated_Dx_fix_samples[count] ← Dx 

   Cumulated_Dy_fix_samples[count] ← Dy 

By using this filtering method for saccades and blinks as well, any data that doesn’t fit 
the parameters chosen for each type of movement will automatically be discarded.   

When the Fix_on variable becomes true, a fixation beginning token is sent to the host 
computer and eye-position samples are collected.  When the velocity of the eye goes 
over the fixation threshold again (velocity > Fix_vel_thrsh), a fixation is assumed 
to have ended, and a fixation ending token is sent to the host computer, along with the 
(filtered) mean of the accumulated eye-position samples and a reading of the user's 
head position (see Figure 10).  When the velocity goes below the threshold again, a new 
fixation is assumed to have started, a fixation beginning token is sent to the host 
computer, and the cumulation of eye data is restarted.   
 
Duration of saccades can be estimated by looking at the time between the end of one 
fixation and the beginning of the next; spatial distribution of successive fixations shows 
their path.  By putting a ceiling on how long a fixation can last—around 700 ms [Card 
et al. 1984]—any smooth-pursuit movement along a path will register as a sequence of 
fixations along the path that the eye moved.  This ceiling also helps reduce errors in 
detecting fixation/saccade boundaries.  Blinks, a potential source of noise in eye 
tracking systems, have a higher velocity or threshold characteristic than the saccades in 
this eye tracker and can thus be detected by comparing eye-velocity to a specific range.  
Detecting blinks can increase the reliability of fixation estimation, but it also opens up 
the possibility of using blink rate as a further indication of a user's state. 
 
2.7 Summary of Steps 
In summary, our approach to head-mounted eye tracking includes the following general 
steps: 
 

 

 
 
Figure 10. Schematic of system configuration and signal and information flow. 
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(1) The fixed geometric relations are sampled using the space sensing cubes.  First, the 
relative positions of the head-mounted cube and the tracked eye are sampled for an 
“average” user and used to compute a translation vector (i in Figure 3).  This 
vector is defined in the sensor cube coordinate system and thus allows us to 
determine the approximate position and orientation of the eye socket for any head 
orientation and position.  Second, the positon of three corners of the computer 
display are sampled and represented as a three-dimensional plane in the source 
cube space (Figure 4). 

 
(2) A calibration process collects and associates data from the eye tracker with 

computed eye orientations.  A target point, whose three-dimensional location is 
known, is presented on the computer display in front of the user.  Assuming the 
user is looking at the target, the azimuth and elevation angles of the eye within its 
socket can be computed. These angles are stored together with the data derived 
from the video image of eye (Figure 3).  A grid of eye orientations is sampled 
during the complete calibration process and is stored in a calibration table (Figure 
6). 

 
(3) The user’s line-of-sight can now be found by using the data in the calibration table.  

Incoming data from the eye-tracker is mapped to an interpolated set of eye angles.  
With the current position and orientation of the head (eye socket), these angles are 
then used to construct a three-dimensional vector representing the user’s line of 
sight.  The line of sight vector can be intersected with the computer screen (Figure 
9) or any other previously defined object in the surrounding environment.   

 
(4) In order to reduce the computational load, the data from the eye-tracker is pre-

processed for fixations, reducing the data rate from 60 hz down to 1.5-10 hz 
(section 2.6). 

 
3. EYES IN MULTI-MODAL INTERACTION 
 
3.1 Time Stamping 
When people interact with each other they have a general sense about the time at which 
disjoint actions happen: she says "That one!," and at the same time gazes over to the 
left.  The obvious response of a spectator is to link the eye motion with what she said, 
and look in the general direction her eyes are now pointed.  In multi-modal interaction 
with a computer many things can happen in concert, and here the same need for a 
common time base arises.  For this we use a general time stamping method: when the 
host computer receives a fixation beginning token from the AT computer, the token is 
time-stamped and stored.  When the corresponding fixation ending token is received, 
with eye- and head-position data (Figure 10), the time difference between the begin and 
fixation tokens gives duration of the fixation.  The time information is crucial for 
synchronizing the incoming data from speech, eye and hand.  It makes it possible to 
associate an utterance ("That one!") with the speaker’s direction of glance at that 
moment. 



 

 
3.2 Accuracy 
People can judge the gaze of others fairly accurately [Gibson & Pick 1963].  The 
accuracy of our eye tracker is similar to a human estimator in a typical one-on-one 
scenario.  With a good calibration, it can estimate the user's point of gaze (at a distance 
of about  70-100 cm) on a computer screen to about ±2 cm.  That is approximately the 
area covered by the 2° angle of the fovea (2.4 - 3.5 cm at this distance).   
 
In a multi-modal context we need to deal with the input from the eyes in a more 
interpretive way than if it were literally a pointer with accuracies down to a pixel.  In 
interactions between people, the eye is more an indication for focus of attention than a 
point that should be interpreted in absolute terms.  This is approximately the level of 
accuracy needed in such a system.  The power of eye tracking comes from integrating it 
with everything else in the multi-modal environment: gestures, speech, past events, 
common task, current focus of interest, etc. 
 
3.3 Integration into the Multi-Modal Context 
We use eye gaze as a "deictic gesture" in our interface system to infer missing 
information in single- and multiple-reference acts.  In this system, which is described in 
detail elsewhere [Koons et al. in print, Thorisson et al. 1992], speech, gestures and 
fixations all have common time stamps, and data in these three modes can thus be 
compared in time to find concurrent actions of the user.  A collection of modules, 
termed the agent, receive this information and parse it in context.  When information is 
missing from speech—if the user said for example "remove that helicopter"—the agent 
looks at the fixations around the time the utterance "that helicopter" was spoken and 
compares them to the spatial layout of all helicopters on the screen.  The objects 
referenced by speech (a collection of helicopters) are given a score based on their 
proximity to those fixations, and if any single object receives a high enough score, that 
object is judged to be the referent.  Coupled with pointing gestures (done by a user 
wearing data gloves), reliability can increase considerably.  Usually several fixations 
occur over the period of a sentence, which further increases the reliability.  If the data 
from speech, gestures and eye are not enough to resolve a reference, the agent will ask 
the user for the information needed to resolve it. 
 
4. FUTURE DIRECTIONS 
 
The eyes are an important information channel for gathering information; there is no 
doubt that they are also important in giving feedback—as an "output" channel of 
information.  Yarbus' work [1967] clearly shows that the eyes' movements are highly 
dependent on the context and the task that the user is performing.  Evidence from 
studies of human interaction indicates that the eyes play a large role in controlling the 
flow of the conversation [Argyle & Cook 1975].  Among the essential issues in the 
design of a multi-modal interface is giving the computer agent more expressive ways to 
communicate its state and actions to the user, such as a face that can establish eye-
contact [Thórisson 1993, Britton 1991].  We will also be looking more at how patterns 



 

of looking can indicate what we are thinking and what state the conversation is in—
with the goal of increasing the computer's sense about the role the eyes play in 
interaction, thus making interaction with computers more natural.   
 
5. SUMMARY 
 
The eye tracking system we have described combines currently available technology 
with geometric methods for calculating a user's line of sight in a three-dimensional 
environment.  The calculated vector can be intersected with objects of interest in the 
environment; we use a computer screen for this purpose.  This system allows a user to 
move his head freely within a sphere of 1.5 m radius while wearing a head-mounted 
miniature camera.  This approach makes it easy to intersect the line of gaze with 
multiple screens, screens of varying sizes, or any other three-dimensional objects with 
fixed locations. 
 
Eye movements can be considered to be one of the most ignored indicators of human 
intent and behavior at the computer interface.  Although the current state of eye 
tracking is somewhat cumbersome, we hope that future eye tracking systems will solve 
these problems.  In the mean time, the eye tracking method described has enabled us to 
evaluate interaction scenarios that we could not have done by using the traditional chin-
rest eye tracking methods.   
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