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Abstract. System evaluation allows an observer to obtain infor-
mation about a system’s behavior, and as such is a crucial aspect of
any system research and design process. Evaluation in the field of
artificial intelligence (AI) is mostly done by measuring a system’s
performance on a specialized task. This is appropriate for systems
targeted at narrow tasks and domains, but not for evaluating general-
purpose AI, which must be able to accomplish a wide range of tasks,
including those not foreseen by the system’s designers. Dealing with
such novel situations requires general-purpose systems to be adap-

tive, learn and change over time, which evaluation based on quite
different principles. The unique challenges this brings remain largely
unaddressed to date, as most evaluation methods either focus on the
binary assessment of whether some level of intelligence (e.g. human)
has been reached, or performance on a test battery at a particular
point in time. In this paper we describe a wide range of questions
which we would like to see new evaluation methods for. We take look
at various purposes for evaluation from the perspectives of different
stakeholders (the why), consider the properties of adaptive systems
that are to be measured (the what), and discuss some of the chal-
lenges for obtaining the desired information in practice (the how).
While these questions largely still lack good answers, we neverthe-
less attempt to illustrate some issues that we believe are necessary
(but perhaps not sufficient) to provide a strong foundation for eval-
uating general-purpose AI, and propose some ideas for directions in
which such work could develop.

1 INTRODUCTION
Evaluation is the empirical means through which an observing
system—an evaluator—obtains information about another system-
under-test, by systematically observing its behavior. Evaluating
general-purpose artificial intelligence (AI) is a challenge due to the
combinatorial state explosion inherent in any system-environment
interaction where both system and environment are complex. Fur-
thermore, systems exhibiting some form of general intelligence must
necessarily be highly adaptive and continuously learning (i.e. chang-
ing) in order to deal with new situations that may not have been
foreseen during the system’s design or implementation. Defining
performance specifications for such systems is very different than
doing so for systems whose behavior is not expected to change
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over time. Since the inception of the field of artificial intelligence
(AI) the question of how to evaluate intelligence has puzzled re-
searchers [27, 12, 10, 13, 23]. Many evaluation proposals to date
have tried to transfer ideas from human testing [27, 7, 13], but this
approach has severe limitations for artificial intelligence [2], where
no single reference- or abstract system model can be assumed.

In this paper we discuss several important topics related to cre-
ating a solid foundation for evaluating (artificial) adaptive systems,
organized around the three main topics of why we need special meth-
ods for evaluating adaptive systems, what should be measured when
evaluating such systems, and how one might go about taking these
measurements. For each one we highlight one or more topics that
we see as critical yet unaddressed in the research literature so far.
While having answers to many of the important questions raised in
this paper would be desirable, we acknowledge that solutions remain
out of reach to us, as much as our forerunners. For some we out-
line promising ways to address them, but for others we can only start
by summarizing key issues and questions that must be answered in
coming years (and decades).

Why might we want to evaluate adaptive systems? Numerous rea-
sons could be cited, many of which will be shared by evaluation of
other non-adaptive systems. Rather than try to be comprehensive in
this respect we turn our attention here to three reasons for evaluating
adaptive artificial systems that we feel are likely to lead to methods
different from those developed for other kinds of systems: (a) test-
ing whether performance levels in a particular range of areas are ex-
pected to be sufficient, (b) finding a system’s strong and weak proper-
ties, and (c) establishing trust in a system by finding ways to predict
its behavior. Different evaluators may wish to consider these aspects
for various purposes: the system’s designer may wish to find areas to
improve, a teacher may wish to gauge training progress, a user may
wish to deploy the system in situations where it will perform well,
and potential adversaries may wish to exploit possible weaknesses.
Understanding the relationship between task, environment, system,
and evaluation methods is of critical importance as this will deter-
mine the appropriateness, efficiency, and meaningfulness with which
any such measurements can be done.

What should be measured? Given that we are focusing on eval-
uation of general-purpose—and therefore adaptive—systems, it is
somewhat surprising how research on this topic has tended to ignore
its very central issue: the adaptation process itself. What adaptive
systems have beyond other systems is that they change. Any proper
test of adaptive systems must include a way to measure such adaptiv-

ity, including learning rate, knowledge retention, knowledge transfer,
and sensitivity to interference, among other things. Yet most ideas on
how to evaluate intelligent systems, starting with the Turing test and



not changed much in character over the decades, has limited its scope
to a measurement at a single point in time (see e.g. [13]).4

For the development of general—and beneficial—artificial intel-
ligence, merely measuring current performance on a range of task-
environments does not suffice. We must ascertain ourselves of the
fact that our artificial adaptive system will be able to learn to deal
with novel situations in a safe, beneficial and expedient way. Novelty
calls for a kind of generality which to date remains to be success-
fully implemented in an artificial system. An ability that humans (and
some animals) have and which seems central to general intelligence,
and in particular important for novel environments and tasks, is un-

derstanding. Even within the field of artificial general intelligence
(AGI) this special mechanism for adaptation seems to not have gotten
the attention it deserves. It seems obvious that any proper evaluation
method for intelligent systems must address understanding. In addi-
tion to performance under a variety of conditions, we must evaluate
a system’s robustness, learning/adaptation ability, and understanding
of fundamental values. Unlike more specialized systems, where reli-
ability in the specified range of situations suffices, we need to know
that a general AI would adapt its behavior but not the core of its val-
ues in new situations.

So how can such things be measured? No consensus exists on what
features adaptive systems should or must have, or what their purpose
should be (nor can there be, since applications of such systems are
countless): Looking for a single test, or even a standard battery of
tests, for evaluating such systems is futile. Instead we argue that what
is called for are a task theory [24] and a test theory [20], that would
specify how construction of a variety of evaluation tests and methods
can be done, as called for by the nature of the system to be evaluated
and the aims of their developers.

In the remainder of this paper we will first discuss some back-
ground knowledge in section 2. Section 3, section 4 and section 5
will discuss the why, what and how of AI evaluation. Here we will
consider the various purposes for which we might want to evaluate a
system, identify various important fundamental and emergent prop-
erties of adaptive systems, and look at how we could obtain informa-
tion about them. In section 6 we conclude the paper with a call for
increased focus on the discussed areas of AI evaluation that have so
far not received sufficient attention.

2 BACKGROUND

When we talk about intelligent systems under test, we can refer to
either agents or controllers.5 An agent consists of a (physical or vir-
tual) body, containing its sensors and actuators, and a controller that
acts as the “mind” of the system. In artificial intelligence research
we are usually concerned with building ever more sophisticated con-
trollers, while in robotics or applied AI we may also design the sys-
tem’s body. When we use the words “system”, “actor” or “entity”,

4 Exceptions do of course exist, but given the importance of the subject, one
would have expected the exact inverse ratio. See our earlier work on re-
quirements for an evaluation framework for AI for a more in-depth discus-
sion [23].

5 As in control theory, we use the term “controller” to refer to control mech-
anisms in the broadest sense, irrespective of the methods they employ to
achieve the control. An intelligent system’s “controller” includes anything

that changes during adaptation, such as memories, knowledge, know-how,
reasoning processes, insight, foresight, etc., as well as the primary mecha-
nisms instigating, managing and maintaining those changes. Any part of a
system designated as belonging to its controller defines thus the boundary

between that which is being controlled (e.g. a robot’s body) and that which

does the controlling (i.e. its “mind”).

we refer to whatever thing is being tested, whether that includes a
body or not.

Intelligent systems interact with task-environments, which are tu-
ples of a task and an environment. An environment contains objects
that a system-under-test can interact with—which may form larger
complex systems such as other intelligent agents—and rules that de-
scribes their behavior, interaction and affordances. A state is a con-
figuration of these objects at some point or range in time. Tasks spec-
ify criteria for judging the desirability of states and whether or not
they signify the successful or unsuccessful end of a task. The man-
ner in which the task is communicated to the system-under-test is
left open, and depends on the system and desired results of the eval-
uation. For instance, in (classical) AI planning the task is usually
communicated to the system as a goal state at the start, while most
reinforcement learners only get sporadic hints about what the task is
through valuations of the current state.

The ultimate goal of evaluation is to obtain information about an
intelligent system and its properties. This is done by observing its
performance (behavior) as it interacts with a task-environment and/or
the state that the task-environment is left in. For instance, we could
evaluate a system just by the final score of a tennis match (of which
evidence is left in the environment), or we could carefully analyze its
behavior. Another example might be a multiple-choice exam, where
we only look at the filled-out form at the end and don’t consider the
system’s behavior over time. In a more elaborate written test, we may
try to reproduce the system’s thought process from the end result.
Looking at final results is much easier, but also potentially much less
informative as it throws out a lot of information.

Black-box evaluation methods look only at the input-output be-
havior of the system under test and its consequences, while white-
box testing can also look at a system’s internals. For fair and objec-
tive comparisons between different systems (e.g. humans and ma-
chines), black-box testing is typically desirable. Nevertheless, look-
ing at gathered and utilized knowledge, or considering the perfor-
mance of different modules separately can be quite informative—
e.g.when debugging, finding weak points, or assessing understand-
ing.

To define various properties of artificial systems to be measured,
we must first have a decent understanding of the task-environments
in which they are measured—preferably in the form of a task the-

ory [24]. Task-environments—like intelligent systems—have both
fundamental and emergent properties. For instance, the number of
dimensions of a task-environment is an explicit (fundamental) part
of its definition, whereas complexity emerges implicitly, and factors
like observability and difficulty emerge in interaction with an intelli-
gent system. We define the set of all task-environments to be TE and
the set of properties to be PTE = LTE [NTE, where NTE is for quan-
titative properties and LTE for qualitative ones6. A quantitative prop-
erty N 2 NTE is defined as a function from the set of all AI systems
A and a collection of task environments to a real number: N 2 NTE :
A⇥ TEn ! R. Collections of quantitative properties similarly map
to a vector of real values: N ⇢ NTE : A ⇥ TEn ! Rn. We define
a distance metric D : TE ⇥ TE ! [0,1), and DN⇢NTE(X,Y ) =
f(N (X),N (Y )), where f : Rn ⇥ Rn ! [0,1) can be any metric
on Rn; e.g. absolute/manhattan distance f(~x, ~y) =

P|x|
i=0 |xi

� y

i

|

6 Some examples of qualitative properties are the type of environment (e.g. is
it a grid-based environment?), the nature of another agent (e.g. is it a friend,
teacher, rival, etc.?), or the presence of particular phenomena (e.g. does
it involve arithmetic?). In this paper we focus on quantitative aspects of
evaluation however.
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or Euclidean distance
qP|x|

i=0 (xi

� y

i

)2. We similarly define the
properties of adaptive systems PA = LA [ NA.

One defining aspect of AGI-aspiring systems is that they must
adapt or learn: their knowledge and the behavior that follows from
it change over time to better handle previously unknown situations.
Here we take a very broad definition of knowledge that includes
declarative knowledge (beliefs), procedural knowledge (skills), and
structural knowledge (priorities). While the line between the core of
a system and its (more fluid) knowledge can be blurry, it is occasion-
ally useful to consider them separately. We define K(A) to be the
knowledge of adaptive system A 2 A, and K(T E , A,K0, t0 : t

n

)
to be the knowledge that system A with starting knowledge K0 ac-
quires/acquired in task-environments T E ⇢ TE between times t0

and t

n

. An equivalent but alternative view is that K contains all of
A’s cognitive aspects that can change over time while A (also) con-
tains its constants (e.g. its identity).

3 THE WHY: PURPOSES OF EVALUATION
Evaluation at its core is about obtaining information about the intel-
ligent system-under-test. There are a number of reasons for why one
might like to evaluate such a system. Evaluation can also be done by
entities with a wide variety of relations to the system. Its developers
may wish to improve its design, users may want to know what it can
do (in which situations), teachers are interested in current knowledge
levels and supported learning methods [4], and potential rivals may
wish to size up the opposition. These parties have varying levels of
control over the system under test and the evaluation process itself,
and will need to take those limitations into account. Evaluations can
be done in the lab, where the evaluators have full control over the
task-environment and the system under test and can reset and tweak
it at will, or they can be performed in the wild: e.g. by other agents
who wish to interact with the system-under-test in some way.

3.1 Task-specific Performance
An often asked question—by consumers and creators alike—is
whether a certain device is capable of performing a particular task
that they need done, and if so, how well. Many AI systems are de-
veloped for a single, specific purpose and can often be evaluated in a
relatively straightforward fashion. Performance is defined by the task
at hand, and task-specific knowledge can be used to devise a model
of the task-environment and/or select a collection of representative
situations in which the system is to be tested.

Such evaluations are suitable in cases where the variation in the
task-environment is well-known or can be controlled to a sufficient
degree, and no real adaptation is required. This is typically not the
situation in AGI research, where intelligent systems must be able to
handle a wide range of tasks, both known and unknown at system
design (and test) time. Nevertheless, even an AGI system may on oc-
casion want to learn a particular task (in addition to the other tasks
it already knows), in which case evaluation of task-specific perfor-
mance could be appropriate for e.g. measuring training progress.

3.2 Strengths and Weaknesses
General cognitive abilities—and most generally intelligence—are
used across a wide variety of tasks. Examples include the abil-
ity to reason by analogy, learn from examples, perform induc-
tion/abduction/deduction, respond in real-time, remember recent or
long-ago events, understand causal chains, ignore distractions, etc.

Knowledge of the levels of various cognitive abilities provides infor-
mation about the system’s strengths and weaknesses. This is useful
for a variety of reasons:

• It points the system’s developers to areas that need improvement.
• It can help users determine whether the system is suitable for (a

range of) tasks or environments.
• It can help a teacher or friend find methods for educa-

tion/interaction that the system will respond well to.
• It can help a potential adversary select strategies that avoid

strengths and exploit weaknesses.

Depending on the evaluator’s role, there are various amounts of
control that they can exert over the system and the evaluation process.

In AI research we are mainly interested in cognitive capabilities,
but generally speaking evaluation can also be used to test more phys-
ical capabilities.

3.3 Trust and Predictability

AGI systems are built to be deployed in situations that are not yet
fully known when the system is designed and tested. Nevertheless,
we would like to ensure that it behaves acceptably. To know this,
we need to evaluate the range of situations in which it will behave
according to specification. We can try to limit the system’s exposure
to situations that fit these parameters. When this is not possible or
desirable, we want to know that the system degrades gracefully in
difficult and/or novel situations and ideally that it will adapt to them
and learn to perform well again over time. We also want to ensure that
the system understands what “perform well” and “good outcome”
mean, even in completely new situations.

For the development of general, beneficial artificial intelligence
merely measuring performance on a range of task-environments does
not suffice [20]. We must ascertain ourselves of the fact that it will be
able to learn to deal with novel situations in a safe and beneficial way.
To do so, we must evaluate robustness, learning/adaptation ability
and understanding of fundamental values, as well as performance
under various conditions. Unlike more specialized systems, where
reliability in the specified range of situations suffices, we need to
know that a general AI would adapt its behavior but not the core
of its values in new situations [5]. To ensure good outcomes in an
unpredictable, large, and complex (real) world, we need to look at a
system’s robustness, adaptivity and understanding.

4 THE WHAT: PROPERTIES OF INTELLIGENT
SYSTEMS

After having identified different purposes of evaluation we can now
turn to the various properties of artificial systems about which we
may desire information. Some properties—such as the nature of the
system’s learning algorithms or its motivational system—are inher-
ent in the system’s design and may be amenable to inspection of
its implementation, while other properties—such as the performance
on a certain task or the amount of knowledge necessary to learn
something—are emergent from the interaction with the world and are
more amenable to evaluation. Although tests for qualitative aspects
of a completely black-box system could in principle be designed, we
focus here on the evaluation of quantitatively measurable properties.

3



4.1 Performance
For virtually all quantitative evaluations, some kind of performance

measure is used as the main dependent variable. Too often however,
all focus is placed on precision, accuracy or correctness, while mea-
sures of efficiency are relegated to secondary importance or ignored
altogether. This can include the speed with which a task is performed
(i.e. time efficiency), but also the reliance on other resources such
as energy and knowledge (amount, diversity and content). The (in-
dependent) variable is often (training) time, if it is measured at all.
These are important factors, and there are many others that can—and
probably should—be considered as well.

We define performance level P 2 NA : A ! [�1, 1] to be the
main dependent variable for our evaluation purposes, where P can be
some combination of accuracy/correctness A, speed/time-efficiency
T , energy-efficiency E , etc. The performance level of system A

with knowledge K on task X can be written as P(X,A,K).7 Ef-
ficiency/resource properties can also be defined with respect to a cer-
tain level of performance. For instance, T P=0.9 could be the amount
of training time required to reach a score of 0.9 on performance mea-
sure P .

4.2 Adaptivity
To measure the adaptivity of a system, it is not only important to
look at the rate at which a new task is learned, but also how much
new knowledge is required.8 The capacity for lifelong [26, 19] and
transfer learning [22, 16, 11] depends not just on time, but on the
content of old and new knowledge, as existing knowledge determines
in part the speed of acquisition of new knowledge—both with respect
to prerequisite knowledge already acquired (e.g. recognizing letters
helps with learning to read) and to how related knowledge may apply
to a new task, also called transfer learning (e.g. knowledge of driving
one kind of motorized vehicle can help speed up learning how to
drive others).

The most important measures of learning are probably the
ones that relate the needed time, knowledge and other resources
to a desired level of performance. Performance can for instance
be measured as a function of training time, by varying t

n

in
P(X,A,K(X,A,K0, t0 : t

n

)), which is the performance on task
X after the system has trained on it between times t0 and t

n

(K
is the knowledge system A with starting knowledge K0 obtained in
task-environment X between times t0 and t

n

). This can show how
efficiently a certain task is learned. A more general measure of learn-
ing efficiency within a class of task-environments can be obtained by
taking a weighted average of the performance on those other task-
environments. However, this will only work if 1) the performance
measures for various tasks are normalized (e.g. between -1 and 1),
and 2) if corrections are made for the complexity and size of in-
dividual tasks. The goal here would be that if we encounter a new
task with broadly the same properties as the measured class of task-
environments, we can use the learner’s general learn rate property to
predict with some accuracy what would be needed to learn the new
task (depending on known details such as its size and complexity).

7 As before, we can think of K as the cognitive aspects of the actor A which
can change over time, while A (also) contains constant aspects such as the
system’s identity.

8 Knowledge acquisition takes time, so there is a correlation, but it is not per-
fect. Many algorithms spend much time processing the same data over and
over, and the intelligence with which a space is explored can greatly influ-
ence how much new knowledge is gathered in a given time span (cf. active
learning [18]).

Transfer learning ability T L : A ⇥ TE ⇥ TE ! R of a system
from one task (collection) X to another Y can be defined in a number
of complementary ways. For instance, we can look at how training
for some time on X affects performance on Y in several ways. In
each case we compare performance from training just on the target
task(s) Y to performance of training on X first and then on Y .

• Raw performance transfer is the performance on Y after having
trained on X for a given amount of time (dependent variable)
or until a given level of performance: P(Y,A,K(X,A,K0, t0 :
t

n

)). This can also be considered as generalization to a different
set of tasks. A special case would be if Y ⇢ X , in which case the
test corresponds to a spot check of a larger amount of knowledge.

• The performance “loss” of training on the wrong task-
environments can be calculated as the difference between
P(X,A,K(X,A,K0, t0 : t

n

)) and P(Y,A,K(X,A,K0, t0 :
t

n

)).
• A performance “gain” can be calculated by comparing how much

“extra” training in another task-environment helps (or hinders):
P(Y,A,K(Y,A,K(X,A,K0, tk : t0), t0 : t

n

)). Note that in
this case more total time is used for training.

• Alternatively, we could look at whether it might help to spend
part of a fixed time budget on task X before moving on to Y :
P(Y,A,K(Y,A,K(X,A,K0, t0 : t

m

), t
m

: t
n

)).

Probably the most straightforward way to apply these measures is
to take performance transfer as a function of training time t

n

(and
t

k

/t
m

). However, we can also take an extra step and analyze perfor-
mance transfer as a function of attained performance level on X or
the amount of knowledge that was acquired. Additionally, we can
look at other things than performance, such as:

• Raw knowledge transfer is defined as the minimum amount of
knowledge for reaching performance level y on Y that needs to
be added to the system’s knowledge after having trained on X:
|KP=y(Y,A,K(X,A,K0, t0 : t

n

))|.
• Training time transfer is defined as the difference between the

amount of time to reach performance level y on Y from the current
situation, and the amount of time needed to reach that level after
having trained in X first: T P=y(Y,A,K(X,A,K0, t0 : t

n

)).
• Composite time transfer is training time transfer plus the amount

of time spent to train on X: T P=y(Y,A,K(X,A,K0, t0 : t
n

))+
t

n

� t0.

Composite transfer measures can be used in teaching scenarios to
judge whether it is worthwhile to decompose a task into component
parts that are learned separately before a full task is presented [4].

In each case the transfer can be positive or negative. It is possible
that knowledge is acquired in X that contradicts knowledge neces-
sary to succeed in Y , possibly through no real fault of the system
(e.g. it could have a bad teacher). Nevertheless, in many cases an
intelligent adaptive system should be able to make use of its previ-
ously acquired knowledge when learning something new. It is there-
fore important that these systems retain some plasticity, even when
they acquire more and more knowledge.

While it is most intuitive to consider transfer from previous tasks
to newly learned ones, there can also be transfer (or interference) the
other way around. Ideally, learning new tasks (e.g. a new language)
should make one better at older tasks as well (e.g. other languages),
but often the reverse is true. Catastrophic interference or forgetting
plagues many machine learning systems: the ability to perform old

4



tasks is lost when new tasks are learned [9, 3]. Interference and for-
getting can be measured in similar methods as above.

So far we have assumed that one task (collection) is learned af-
ter another, but often tasks are learned and performed in parallel
(cf. multitask learning [8, 17]). Again, similar measures can be de-
fined for this scenario. In this case we also delve into the realm of
distractions and robustness.

4.3 Robustness
Robustness is another important aspect of AI systems. The two main
things to consider are when (or if ) the system “breaks down” and
how it does so. Furthermore, even in adverse or novel conditions we
would like the system to eventually adapt so that it can properly func-
tion even in the new situation. Ideally we want a system that never
breaks down, but this is likely not a realistic goal if we can not antic-
ipate all the situations the system will find itself in. A more realistic
goal may be to require that the system degrades gracefully, notices
when things go awry and takes appropriate action—such as asking
for help, moving back to a safer situation or gathering more informa-
tion to start the adaptation process.

A general AI system may encounter various kinds of (internal
and external) noise, distractions from extraneous input/output (di-
mensions) or parallel tasks, situations that differ on various dimen-
sions from what it is used to, strain on its subsystems, or outright
breakage of components. It is important to know that as these factors
move further away from the ideal situation, the system will continue
to function appropriately, detect the problem and/or degrade grace-
fully. Robustness can be measured with performance as the depen-
dent variable and one or more kinds of interference as the indepen-
dent variables. However, it can also be combined with other depen-
dent variables such as training time or the ability to transfer knowl-
edge between tasks. The standard form of measuring robustness is
similar to knowledge transfer: P(Y,A,K(X,A,K0, t0 : t

n

)). How-
ever, in this case we are more interested in the relation between task-
environments X and Y than the training time and efficiency, and
the difference between training on X first vs. training on Y directly.
A good task-theory can help tremendously in the measurement of ro-
bustness. Most notably, we would want a task-environment generator
or modifier that can create variants of the training environments X

that differ in various desired ways.
One of the simplest notions of robustness is sensitivity to noise.

Even a relatively primitive task-theory should make it possible to
add noise, distortions or latency to the system’s sensors and/or actu-
ators. We could then draw a graph of how performance deteriorates
as noise increases, which provides a nice quantitative picture of ro-
bustness in the face of a particular kind of interference. Other rela-
tively easy-to-generate variations are to add irrelevant distractions to
the environment (e.g. extra sensors, actuators or objects) or parallel
tasks, to create a scarcity of resources (e.g. time, energy, knowledge).

If we look at P(Y,A,K(X,A,K0, t0 : t

n

)) as a function of
the distance between Y and X (measured along desired dimensions
through some yet-to-be-invented task theory), we get a measure of
generalization. Generalization ability of an adaptive system is among
its most important properties, but we can additionally use these meth-
ods to judge the representativeness of certain training environments
(X), which could then be used to more efficiently teach the system
to perform well in a wide range of situations.

Aside from external sources of interference, we can also look at
internal sources: what happens if faults occur inside of the system
itself? If a (physical or “cognitive”) component breaks down, will

the system “die” or go “crazy”, or will it just deteriorate perfor-
mance slightly and perhaps even prompt the system to adjust and
fix the problem? Some types of adversity that need not be catas-
trophic include memory deterioration or corruption, system/CPU
strain/overload, synchronization errors, dropped messages, latency,
noise, and failure of individual components (in a modular or dis-
tributed system).

In addition to looking at quantitative measures of dips in perfor-
mance, it is also important to consider qualitative factors: if perfor-
mance suddenly drops to zero we must ask what it means. Did the
system just go crazy, or did it sensibly decide that the situation has
deteriorated to the point where shutting down, warning a human or
pursuing more fruitful endeavors is more appropriate? Answering
such questions may require analyzing the system’s behavior, moti-
vations and/or reasoning in more detail.

4.4 Understanding
We typically want to see a certain continuity in our systems’ be-
havior, even as they encounter new situations. For learning systems
however, we also want them to adapt so that they may improve their
performance even in these unforeseen situations. There is a delicate
balance between change to a system’s parameters that is desirable,
and change that isn’t. Importantly, we want performance to improve
(or not degrade) from our perspective. Subjective improvement from
the system’s perspective might be achieved by changing the way suc-
cess is measured internally, but this is typically not something that we
want. Most contemporary AI systems lack this capability, but more
powerful and general systems of the future may possess the ability
to recursively self-improve. While there are reasons to believe that a
sufficiently intelligent system would attempt to protect the integrity
of its goals [15, 6], we still need to ensure that these attempts are
indeed successfully made.

Predictability results not just from vigorous quantitative tests, but
also from more qualitative tests of a system’s understanding. Some
recent examples show that high performance on a task does not
guarantee that the system performing it understands that task [21].
Deep neural networks have been trained to recognize images rather
adequately—in some cases rivaling human-level performance—but
are easily fooled with complete nonsense images or some slight de-
viations from the training data. When the stakes are higher, it is im-
portant to know that such weaknesses don’t exist when situations
differ slightly from the training scenario. By testing a system’s un-
derstanding and examining its argumentation (cf. argument-based
ML [14]), we can assure ourselves of the kind of reasoning that will
be used even when novel situations are encountered. Perhaps even
more importantly a system’s ability to grow its understanding should
be assessed to strengthen the foundation on which a system’s level of
adaptivity and intelligence is estimated, and the level of trust that we
place in it.

Assessing a system’s understanding of one or more phenomena9

seems critical for generalizing a system’s performance with respect
to unfamiliar and novel tasks and environments. In prior work we
have proposed a definition of understanding, based on the idea of
models M of phenomena [25]. The closer the models describe im-
portant aspects of a phenomenon’s properties and relations to other
9 We define a phenomenon � (a process, state of affairs, thing, or occur-

rence) as � ⇢ W where W is the world in which the phenomenon ex-
ists and � is made up of a set of elements (discernible “sub-parts” of �
{'1 . . .'n

2 �}) of various kinds including relations <� (causal, mere-
ological, etc.) that couple elements of � with each other, and with those of
other phenomena. See Thórisson et al. [25] for further details.
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things the more general their utility, and the more deeply the sys-
tem can be said to understand the phenomenon. Among other things,
good models allow for making good predictions. Importantly, the
theory goes further than this, however, requiring in addition that for
proper assessment of a system’s understanding its ability to explain,
achieve goals with respect to, and (re-)create10 a phenomenon must
also be assessed.

In short, the theory states that, given any phenomenon �, model
M� contains information structures that together can be used to ex-

plain �, predict �, produce effective plans for achieving goals with
respect to �, and (re)create �. For any set of models M , the closer
the information structures m

i

2 M represent elements (sub-parts)
' 2 �, at any level of detail, including their internal and external
relations/couplings <�, the greater the accuracy of M with respect
to �. An adaptive system A’s understanding of phenomenon � de-
pends on the quality, that is accuracy and completeness of A’s mod-

els M of �, which enable prediction, action upon, explanation, and
(re)creation of �. The better such models describe �, the better any
of these will be. Understanding thus has a (multidimensional) gradi-

ent from low to high levels [25].
Prediction is one form of evidence for understanding. Some pre-

diction can be done based on correlations, as prediction does not
require representation of the direction of causation yet captures co-
occurrence of events. Prediction of a particular turn of events requires
(a) setting up initial variables correctly, and (b) simulating the impli-
cations of (computing deductions from) this initial setup.

A number of different questions can be asked regarding the pre-
diction of a phenomenon, for instance:

• From a particular (partial) start state, what is the time (range) in
which the phenomenon is expected to occur (if at all)?

• What will be the state of the phenomenon at a future time, given
some starting conditions?

• For some phenomenon � = {�1 . . .�n

}, given values for some
subset  ⇢ �, predict the values for the remaining �

i

2 �.
• Predict the state or occurrence of related phenomena ⌦ ⇢ <�

given the state of �.

Picking an appropriate set of such questions is at the heart of prop-
erly evaluating a system’s ability to predict a phenomenon.

Goal Achievement. Correlation is not sufficient, however, to in-
form how one achieves goals with respect to some phenomenon �.
For this one needs causal relations. Achieving goals means that some
variables in � can be manipulated directly or indirectly (via interme-
diate variables). Achieving goals with respect to a phenomenon �
does not just require understanding the individual components of �
itself, but also how these relate to variables that are under the sys-

tem’s control. In short: the system needs models for interaction with
the environment as well as the phenomenon. For a robotic agent driv-
ing a regular automobile, to take one example, the system must pos-
sess models of its own sensors and manipulators and how these re-
late to the automobile’s controls (steering wheel, brakes, accelerator,
etc.). Such interfaces tend to be rather task-specific, however, and are
thus undesirable as a required part of an evaluation scheme for un-
derstanding. Instead, we call for an ability to produce effective plans

for achieving goals with respect to �. An effective plan is one that
can be proven useful, efficient, effective, and correct, through imple-
mentation.11

10 We mean this in the same sense as when we say that a chef’s recipe demon-
strates her understanding of baking, or a physicists’ simulation of the uni-
verse demonstrates their understanding of how the universe works.

11 Producing plans, while not being as specific as requiring intimate familiar-

Goal achievement with respect to some phenomenon � can be de-
fined by looking at the system’s performance (cf. section 4.1) in task-
environments and/or interactions that feature �. The phenomenon
can play a number of different roles, depending on its type (e.g. event,
process, tool, obstacle, etc.). Events can be caused, prevented or
changed (usually within a certain time range). Objects can have their
state configured in a desired manner. When an object is a tool or ob-
stacle, we can compare the performance in environments with and
without �. Processes can have several effects on the environment
(possibly depending on the manner of their execution), and we can
set a task-environment’s goal to be accomplished by some of these
effects and negated by others to see if the system can flexibly exe-
cute the process. If the system’s performance in task-environments
and/or interactions that include � are consistently better than when
� is absent, this can indicate a higher level of understanding of �.

Explanation is an even stronger requirement for demonstrating un-
derstanding, testing a system’s ability to use its models for abduc-
tive reasoning. Correlation does not suffice for producing a (true)
explanation for an event or a phenomenon’s behavior, as correlation
does not imply causation. One may even have a predictive model of
a phenomenon that nevertheless represent incorrectly its parts and
their relations (to each other and parts of other phenomena). This
is why scientific models and theories must be both predictive and

explanatory—together constituting a litmus test for complete and ac-
curate capturing of causal relations.

(Re)creating a phenomenon is perhaps the strongest kind of evi-
dence for understanding. It is also a prerequisite for correctly build-
ing new knowledge that relies on it, which in turn is the key to grow-
ing one’s understanding of the world. By “creating” we mean, as
in the case of noted physicist Richard Feynman, the ability to pro-
duce a model of the phenomenon in sufficient detail to replicate
its necessary and sufficient features. Note that this is not limited to
(re)creation by the system using its own I/O capabilities, but involves
an understanding of how the phenomenon can be created in general

by the system, by others, by the environment itself, or even by some
hypothetical entity with (partially) imagined capabilities. Requiring
understanders to produce such models exposes the completeness of
their understanding.

It is important to emphasize here that understanding, in this for-
mulation, is not reductionist: Neither does it equate the ability to
understand with the ability to behave in certain ways toward a phe-
nomenon (e.g. achieve goals), nor the ability to predict it, nor the
ability to explain it, nor the ability to (re)create it. While any of these
may provides hints of a system’s understanding of a phenomenon,
it cannot guarantee it. In our theory all are really required (to some
minimum extent) to (properly) assess a system’s understanding; any
assessment method that does not include these four in some form
runs a significantly higher risk of failure.

5 THE HOW: CONDUCTING TESTS AND
ANALYZING RESPONSES

All evaluations are contextual: i.e. they are done with respect to
a task-environment, or collection of task-environments. We should
examine how the measurements depend on the chosen collection
of task-environments, and strive towards using as large a range as
possible. We will need to say something about the range of task-
environments that we think our results generalize to as well. Se-

ity with some I/O devices to every �, requires nevertheless knowledge of
some language for producing said plans, but it is somewhat more general
and thus probably a better choice.
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lection and/or creation of task-environments for the optimal mea-
surement of desired system properties that generalize to other task-
environments requires a task theory [24].

5.1 Construction and Selection of
Task-Environments

We need a way to relate the things we want to test for to the in-
formation that can be obtained from (aspects of) task-environments.
Due to the differences in AI systems, the purposes for which they
are built and the properties we want to test for, it is impossible to
construct a single test, or test battery, that measures everything for
all systems. Rather, we need a task theory that allows us to analyze
and construct tasks to specification, in combination with knowledge
about the properties and behavior of intelligent, adaptive systems.

Given an intelligent system and a question about one or more of
its properties, we should be able to a) construct a task-environment,
b) adapt a given task-environment, or c) select a task-environment
from some choices, in order to optimally answer that question about
the system. Given a task-environment we would like to be able to
predict reasonable behaviors for a certain system or class of systems
with certain properties. An informative task-environment would af-
ford multiple behaviors that are distinctive with respect to the prop-
erty that we want to measure. It is likely most informative to test
around the edges/limits of the system’s capabilities. A task theory
that allows for scaling the scope or difficulty of environments would
therefore be tremendously useful [23].

In some cases it may be possible to construct batteries of tasks
for answering a certain question about a set of systems—e.g. a stan-
dardized exam. In other cases the evaluation may be more interactive
and explorative. Another important consideration is how much con-
trol we have over the system (e.g. can we look at its source code or
memory?) and its task-environment (e.g. is it virtual and owned by
us?).

Motivation and Incentive Somehow we need to get the system to
actually perform the envisioned task, which may be difficult without
full control. Simply placing a system in a task-environment doesn’t
guarantee that it will perform (or even understand) the task that we
want. If you place a child in a room with a multiple-choice IQ test,
will it fill it out as you want? Or will it check the boxes in an aes-
thetically pleasing manner? Or just ignore the test? In general we
can never be sure, but we can try to incentivize good performance on
the test. Alternatively, we can look at the behavior and try to derive
the task the system was trying to perform (cf. inverse reinforcement
learning [1]; although this tends to assume a certain level of compe-
tency on the part of the system).

5.2 Judging Behavior

Rather than just looking at end results (e.g. score on an exam or
tennis match), we can also look at performance/behavior during the
test (i.e. the sequence of actions in response to stimuli). This should
hopefully shed some light on inner workings and allow us to con-
struct a model that is predictive in more situations.

In situations where we know a good solution to a task, we can
compare that solution (or those solutions) to the observed behavior
of the system. Assuming the system has the appropriate goals, we
can then see where it deviates and consider what gap in knowledge

or leap in reasoning led it to do so. Alternatively, under the assump-
tion that the system is reasonably competent, we can try to find its
motivations and goals through inverse reinforcement learning [1].

Deconstruction/decomposition of tasks into multiple smaller parts
can be extremely useful for this purpose. In that case, we can use
easier-to-perform performance evaluations on a much more granular
scale.

5.3 Evaluating Understanding

To test for evidence of understanding a phenomenon � (a process,
state of affairs, thing, or occurrence) in a particular task environment,
we may probe (at least) four capabilities of the system (a) to predict

�, (b) to achieve goals with respect to �, (c) to explain �, and (d) to
(re)create � [25]. All can have a value in [0, 1] where 0 is no under-
standing and 1 is perfect understanding.12 For a thorough evaluation
of understanding all four should be applied.

The major challenge that remains is how to perform this assess-
ment. Goal achievement can be measured in a reasonably straight-
forward fashion, although we do require a way to construct goals
and tasks that incorporate the phenomenon for which understanding
is to be tested. Similarly, it should be possible to define a task that
involves the desired phenomena’s recreation. Testing for high-level
predictions seems more challenging if the system doesn’t automat-
ically communicate the predictions that it makes. Somewhat imper-
fect tests for predictions can be constructed by presenting the system
with situations where correct predictions would likely prompt it to
show different behavior than incorrect predictions. Alternatively, it
may be possible to access the system’s internals, in which case a
trace of its operation may show which events and observations were
expected.

Measuring explanations may be the most important and difficult
challenge in AI evaluation though. Most systems are not explicitly
built to provide human-understandable explanations for their actions,
but from this we cannot conclude that they are not adequately model-
ing the causal chains of the environment and justifying their behavior
to themselves in some way. If a system doesn’t explicitly try to ex-
plain itself, then it seems that we can only access explanations by in-
specting the system’s inner workings. Subsymbolic systems are noto-
riously difficult to understand for humans, but even symbolic systems
could present difficulties; either because their symbols are unlabeled
and grounded in a different ways than ours, or because the amount of
involved models and considerations in each decision are overwhelm-
ing. Overcoming these issues is an open problem, but given the im-
portance of modeling the world’s causal chains and making justifi-
able decisions, we suggest that AGI systems ought to be built with
a faculty for explanation and summarization in mind, which should
help us evaluate their understanding.

6 CONCLUSION & FUTURE WORK

Evaluation of intelligent adaptive systems is important for a wide va-
riety of reasons. Progress in AI depends on our ability to evaluate it:
to find the strengths and weaknesses of our programs and improve
them where necessary. Looking at performance alone is not enough,
since we need our more general systems to operate beneficially even

12 More complex measurements could of course be used for a more thorough
or faithful representation of understanding; projecting it down to a single
dimension may lose some (important) information. This simplification is
however immaterial to the present purposes.
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in situations that we did not fully foresee. We must therefore con-
sider these systems’ robustness to changing and possibly deteriorat-
ing conditions and acquire confidence that they will adapt in ways
that allow them to continue to be beneficial to their human owners.

Focus in AI evaluation has been mostly on testing for
performance—often in specialized (and limited) domains—by mea-
suring some final result that was attained on a task at a single point
in time. Not only do we need to consider other factors like adaptiv-
ity and robustness: we must also look beyond the final impact that
is made on the system’s environment. Moment-to-moment behavior
can be a rich source of information that sheds much light on how
or why a certain level of performance was attained. Even more im-
portantly, we must attempt to measure levels of understanding. An
explanation is more than a single data point: it is a model that can be
applied in many situations. If we know that a system understands cer-
tain concepts—most notably our values—we can be relatively con-
fident that it will make the right considerations, even in unforeseen
situations.

Measuring system properties beyond performance as well as the
analysis of behavior and understanding are very challenging, and it
is not obvious how to do it. It is however clear that better theories
for testing, understanding and task-environments are a part of the
solution. Future work must investigate these avenues of research that
are necessary if we are to move forward in our quest for general-
purpose adaptive AI.
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ments on an earlier version of this paper. This work was sponsored
by the School of Computer Science at Reykjavik University, and a
Centers of Excellence Grant (IIIM) from the Science & Technology
Policy Council of Iceland.

REFERENCES
[1] Pieter Abbeel and Andrew Y. Ng, ‘Apprenticeship learning via inverse

reinforcement learning’, in Proceedings of the twenty-first international

conference on Machine learning, p. 1. ACM, (2004).
[2] Tarek Besold, José Hernández-Orallo, and Ute Schmid, ‘Can Machine

Intelligence be Measured in the Same Way as Human intelligence?’, KI

- K¨unstliche Intelligenz, 1–7, (April 2015).
[3] J. Bieger, I. G. Sprinkhuizen-Kuyper, and I. J. E. I. van Rooij, ‘Mean-

ingful Representations Prevent Catastrophic Interference’, in Proceed-

ings of the 21st Benelux Conference on Artificial Intelligence, pp. 19–
26, Eindhoven, The Netherlands, (2009).
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