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Abstract. A system deployed in the real world will need to handle un-
certainty in its observations and interventions. For this, we present an
approach to introduce uncertainty of state variables in causal reason-
ing using a constructivist AI architecture. Open questions of how noisy
data can be handled and intervention uncertainty can be represented in
a causal reasoning system will be addressed. In addition, we will show
how handling uncertainty can improve a system’s planning and attention
mechanisms. We present the reasoning process of the system, including
reasoning over uncertainty, in the form of a feed-forward algorithm, high-
lighting how noisy data and beliefs of states can be included in the process
of causal reasoning.⋆
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1 Introduction

A major challenge in artificial intelligence (AI) research is the development of
systems that can be deployed in the real world and can autonomously adapt
to changing circumstances. Additionally, human designers want these systems
to be able to generate explanations about why certain interactions were chosen
and how the expected state transitions lead to the goal. While deep learning has
shown massive advances in the field of data processing and identification of corre-
lated data points, it still lacked to produce a system that is able to adapt to novel
circumstances and generate satisfactory explanations [2,1,9]. Reasoning systems,
on the other hand, show promising results in both adaptation and explanation
generation but often lack the ability to reason over noisy and erroneous data,
making deployment in the real world practically impossible, especially when it
comes to low-level sensor and actuator precision.

This handling of uncertainty is at the center of research in the field of prob-
abilistic robotics. Under the assumption of sufficiently described mathematical
models of the system under control, probabilistic approaches to uncertainty de-
scriptions are used to handle sensor noise and actuator imprecision. The causal
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reasoning architecture AERA (Autocatalytic Endogenous Reflective Architec-
ture), on the other hand, is designed to extract mathematical models of the
environment and the system under control through observation and interven-
tion. By fusing the two approaches, we present a way to overcome limitations in
both fields. Learning the transition functions overcomes the necessity to model
all dynamics in advance as is done in probabilistic robotics. On the other hand,
the limitation to deterministic data streams is lifted from the reasoning system.

Purely probabilistic approaches as used in many Bayesian adaptive methods
do not suffice for operation in ever-changing environments, as changes in the
distributions of state transitions represented by the probabilistic modeling of the
environment can lead to incorrect outcome predictions and erroneous decision
making. Instead, we overcome this covariate shift problem [6] by building on
hypothesized cause-effect patterns representing invariant world mechanisms.

To address the uncertainty of the in- and output streams, a knowledge repre-
sentation is needed to enable deductive and abductive reasoning over uncertainty
distributions without losing the inspectability of the reasoning processes. Using
causal models to describe the state transition itself, we accompany causal models
with new probabilistic models that describe the belief propagation under cause-
effect structures. Our framework enables reasoning systems to support noisy
data streams in both in- and output. Further, we show how such a probabilistic
representation can help in describing variables to which the system needs to pay
close attention and which do not need to be monitored as closely.

The paper is structured as follows: In the next section, we present related
work, focusing on reasoning systems and the transferred principles from prob-
abilistic robotics. In section 3, we present the applied methodology, including
a more in-depth analysis of the model structures used in AERA, assumptions
that were taken for this work, and the novel approach of including probabilis-
tic models in the reasoning process. Section 4 provides a (simplified) algorithm
describing how abductive and deductive reasoning is done. Lastly, in section 5,
we discuss our approach in context and how the approach can produce a robust
implementation of causal reasoning over probabilistic uncertainty.

2 Related Work

The Autocatalytic Endogenous Reflective Architecture (AERA) [5] follows the
constructivist approach to AI, meaning that the system’s knowledge base is self-
constructing through experiences [7,8]. All knowledge in AERA is non-axiomatic
and can be disproven at any point during its lifetime. The reasoning is done on
causal models, each representing simple, linearized changes in the environment
[7,8]. Coming from the cybernetics side, AERA is designed such that direct
control of low-level variables is within its capabilities. Being able to extract
linear equation systems from its environment by applying pattern matching on
observations and interventions provides valuable functionality for AERA to be
used in robotics applications.
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Other reasoning systems exist that include falsifiability of their knowledge
base, leading to probabilistic and non-axiomatic approaches. One example of
this is the Non-Axiomatic Reasoning System (NARS) [11,12]. NARS works un-
der the assumption of insufficient knowledge and resources (AIKR) and is able
to reason about non-axiomatic truth statements which can be disproven at any
time. Thus, the reasoning process includes the uncertainty of truths. Approaches
like the Open-NARS-for-Applications (ONA) [4] provide a framework that can
be used in some robotics applications. Another approach to represent uncer-
tainty in the reasoning process are Probabilistic Logic Networks (PLNs) [3]. The
first development of PLNs was influenced by NARS but has been extended and
nowadays differs from the NARS logic considerably. Based on term logic for in-
ference, PLNs can be used to apply logic operators on probabilistic descriptions
of truth values and infer rules through de-, ab-, and inductive reasoning [3].
These approaches, however, do not include probabilistic reasoning over the be-
lief of environment states. Instead, they are more similar to fuzzy logic systems
in their description of the uncertainty of the truth of statements.

A major problem is posed by the noisiness and uncertainty of sensors and
actuators. No clear, deterministic information exists for the system to reason
about. Instead, it is necessary to model the uncertainty of data used in the
reasoning process. Probabilistic robotics provides a framework for how to model
this uncertainty using Bayesian inference [10]. Uncertainty can be described,
propagated, and updated by applying Bayesian statistics and filter methods. For
this, the designers of the system define the state-transition functions in advance,
which will be applied during run-time. These functions are used to predict new
states and observations. Additionally, the uncertainty of these predictions can
be calculated as well and updated as new observations come in [10].

In probabilistic robotics, all state-transition functions must be implemented
by the designer. We, on the other hand, aim to use Bayesian inference while
applying learned causal models. Prediction of future changes to the environment
thus becomes a chaining of different transition functions learned by the system,
including the prediction of uncertainty.

3 Methodology

In the following, we provide a deeper insight into the methodology of causal
reasoning applied in the AERA architecture and OpenAERA in particular before
introducing the novel methodology of including probabilistic uncertainty into the
reasoning process.

3.1 Autocatalytic Endogenous Reflective Architecture - AERA1

Each process observed by OpenAERA is modeled by generating multiple models.
These models can be classified as (anti-) requirement models and causal models,

1 See https://openaera.org – accessed Apr. 6, 2023.
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which include command models, and reuse models. Independent of their type,
each causal model represents a left-hand-side (LHS) pattern, a right-hand-side
(RHS) pattern, a function that maps LHS to RHS, a function that maps RHS
on LHS, and a time interval for which the model holds.

Requirement models describe the constraints under which any causal
model (either command or reuse model) is applicable. It gives context to the
reasoning system by providing a way that connects observations (or predictions)
on the LHS with the instantiation of a causal model on the RHS. This way,
the size of the search problem of identifying suitable causal models can be re-
duced. Anti-requirement models, on the other hand, represent conditions
under which a causal model does not hold. They represent strong requirements
and describe hard constraints on the task-environment.

Command models are used to model the direct influence on the environ-
ment of executed commands. The LHS of command models is always a command
available to the system. The RHS is the change of the environment if the com-
mand is executed. Two functions are included in the model. One function is used
for forward chaining; it is used to calculate the RHS given the control input and
variables passed from the requirement model. The other function is used for
backward chaining, representing the inverse of the forward chaining function.
For example, a move command which changes the position of OpenAERA in the
environment consists of 1) the move command and the associated control input
on the LHS, 2) the new position after execution on the RHS, 3) a function that
calculates the new position given the old position and the control input, and 4)
the inverse of the first function, which can be used to calculate the control input
given the current position and the goal position.

Reuse models are used to model similar transitions without an intercon-
nection of state variables. As each model is supposed to model only a very small
number of variables to make a reflection on said models possible, reuse models
are used to model more complex behaviors. Reuse models have their own re-
quirement models such that complex constraints on complex environment state
transitions can be modeled by matching LHS patterns rather than creating mas-
sive models responsible for a multitude of calculations. Such a reuse model could,
for example, be used to model the changes in an object’s state that OpenAERA
is holding when a move command is executed. Instead of generating a single
model representing the full state change of the system and the object moving
simultaneously the same distance, two models are used. The move command
model, as previously shown, and a reuse model with its own requirement model.

These models are used to create chains of possible state transitions from the
goal to the current state (backward) and from the current state to the goal (for-
ward). OpenAERA is thus able to reason about possible paths to reach the goal
by using causal models to represent predicted state changes in the environment.
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3.2 Background Assumptions

The following are assumptions underlying the present approach.

1. Linearity: One of the underlying architectural concepts of OpenAERA is
the step-wise linearization of observed transition functions. Therefore, we
assume linearity in all causal models and their uncertainty propagation.

2. Continuity of variables: All variables under investigation are assumed
continuous in the state space. Reasoning over error-prone non-continuous
variables is not part of this work. Other approaches to non-axiomatic rea-
soning exist for this matter, including other pattern matching and function
approximations within OpenAERA.

3. Normal distribution: For the sake of simplification, we assume a Gaussian
distribution of the measurement and actuator uncertainty. This assumption
can be overcome by applying other means to predict uncertainty.

4. Observation of state variables: All variables are directly measurable.

3.3 Modeling of probabilistic uncertainty

Any artificial general intelligence (AGI) aspiring system must adapt to novel
circumstances to reach a goal/ fulfill a drive under the assumption of insufficient
knowledge and resources (AIKR) [12]. This means that it needs to autonomously
adapt its resource consumption by paying attention to import variables of the
task-environment that could influence the reaching of the goal. This includes pay-
ing attention to variables/ phenomenons that inflict disturbances on the control
problem of transforming the current state to the goal state.

By applying well-known principles from probabilistic robotics, a new model
type in OpenAERA will allow it to predict errors in state transitions coming
from sensor and actuator imprecision. Its existing attention algorithms are then
extended to take into account variables prone to diverge from desired values
due to imprecise interventions on the environment. By estimating the posteriori
belief of each subsequent state that should be reached during task performance,
matching posteriori with a-priori beliefs, and calculating possible overlaps, the
system can predict plan divergences. Preemptive measures can then be taken by
constraining the control input to achieve intermediate states with a low proba-
bility of divergence from the original plan. Probabilistic models work as follows:
If, in forward chaining, any causal model represents a noiseless linear function

xk = Fxk−1 +Cuk−1 (1)

with x being the n-dimensional state vector consisting of values of the set of
variables V = {v1, v2, ..., vn}, C the control matrix and uk−1 the control input.

The accompanying probabilistic model represents the propagation of uncer-
tainty if the model is applied:

Pk = FPk−1F
T +CPcontrolC

T +Qk (2)
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with the a priori belief Pk−1 of the state x, the posteriori belief Pk, the noise
distribution of the command Pcontrol and the process noise Qk−1.

These models are attached to all causal models. The current belief Pk−1 is
dependent on the source of the input. At the beginning of the reasoning chain,
Pk−1 represents the noise of the sensor whose observation led to the instantiation
of the model. If the input data comes from a prediction, on the other hand, Pk−1

represents the uncertainty of this prediction. Thus, models instantiated further
down the chain produce a higher uncertainty in their predictions.

As all causal models in OpenAERA can be used for forward and backward
chaining, the same must hold for probabilistic models. Given the fact that the
modeled function can be used in both directions, it is implicit that an inverse of
the function exists. Each causal model includes a noiseless backward function

xk−1 = Bxk −Cuk−1 (3)

with B representing the inverse function of F (F−1 in most cases). The backward
propagation for any probabilistic model therefore becomes

Pk−1 = BPkB
T −CPcontrolC

T −Qk (4)

This means that the maximum uncertainty of a goal-leading state can be
calculated, providing information about the necessary precision of interventions.

Process noise provides another opportunity to optimize causal reasoning
systems using uncertainty. While there exists a trade-off in most robotics ap-
plications when choosing the process noise, it can be useful when applied in a
learning system. When, for example, looking at Kalman Filters, it is important
for the designers to choose an appropriate process noise. Too low process noise
can lead to the filter ignoring rapid deviations from the expected outcome, and
too high process noise makes the filter too sensitive to noisy environments.

In the case of OpenAERA, we can assume low process noise and see deviations
from the expected outcome as faulty causal models. Expected and observed
outcomes should only diverge rapidly if the instantiated model does not reflect
the dynamics of the observed system. This information can be used to generate
new hypotheses about the true dynamics, leading to new models that describe
the system better. We, therefore, neglect the estimation of process noise in this
work and will extend it to include the identification of described changes to
causal models in the future.

4 Reasoning algorithm

In the following section, we give a deeper insight into the reasoning algorithm
used in OpenAERA and show how uncertainty propagation can be included. We
focus on the forward and backward chaining processes used in the planning of
control sequences leading to the goal. Backward chaining (abductive reasoning) is
used to constrain the search space to relevant models. Forward chaining (deduc-
tive reasoning) produces an executable series of commands, representing a plan
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of interventions to reach the goal state g. Both backward and forward chaining
- excluding the uncertainty propagation - is already implemented in OpenAERA.

Input:

– Current set of observed variables Vobservable at time t0 and their values de-
scribing the state x0 and their uncertainty P0.

– A goal described as a sub-state of all observable variables such that Vgoal ⊆
Vobservable with a certain value assigned to them at a certain time tg such
that xtg = g with a maximum uncertainty Ptg = Pg

– The set of requirement and anti-requirement models Mreq, as well as the set
of causal command and reuse models Mcausal known by the system.

– The set of probabilistic models Mprob which accompany the causal models.

Backward chaining is the depth-first search of possible paths from the goal to
the current state using causal models and their requirements. Backward chaining
goes back through time, starting at the time at which the goal is supposed to be
reached tg and stepping backward until the current time t0 is reached.

1. Create a new, empty set of goal requirements Greq to be filled.
2. Create a new, empty set of currently instantiable causal models Mcausal,t0

3. For each requirement model mreq ∈ Mreq:
– If mreq can be instantiated with the current set of observations - i.e.,

all left-hand-side (LHS) variables can be bound to currently observable
variables and fulfill all conditions of mreq:
Add the instantiation of the causal model on the right-hand-side (RHS)
of mreq to the set of currently instantiable causal models Mcausal,t0

4. Identify all causal models whose set of right-hand-side variables VRHS over-
laps that of the set of goal variables Vgoal such that VRHS ∩ Vgoal ̸= ∅ and
create a set from the identified model M ′

causal with M ′
causal ⊆ Mcausal.

5. For each model mcausal ∈ M ′
causal:

(a) If mcausal ∈ Mcausal,t0 :
Continue loop.

(b) Bind all variables of mcausal and its accompanying probabilistic model
mprob ∈ Mprob that are part of g to the value of that variable in g. Leave
other variables unbound to be filled during forward chaining.

(c) Make the instantiation of mcausal under mprob with the bound variables
a goal requirement greq and add it to Greq.

(d) Identify all requirement models which have the instantiation of mcausal

on their RHS, creating a subset M ′
req ⊆ Mreq.

(e) For each requirement model mreq ∈ M ′
req:

i. Make instantiating the LHS of mreq a sub-goal gsub with the uncer-
tainty of the accompanying probabilistic model mprob as Pgsub

.
ii. Set G to gsub and start recursion from 4.

6. Return the set of bounded goal requirements Greq.
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Forward chaining provides the deductive reasoning process in which a series
of commands is identified that leads to the fulfillment of the goal requirements
generated during backward chaining. Forward chaining starts at time t0 (”now”)
and moves forward through time, generating predictions of outcomes of causal
models.

1. Create a new, empty set of control vectors U to be executed during the task
performance, which will be filled during forward chaining.

2. Set the current set of observations as the input I to the system.
3. Create a new set of models M ′

req of all requirement models that can be
instantiated with I by identifying all models whose LHS variable values’
likelihood given the observations’ uncertainty in I is higher than a threshold.

4. For each requirement model mreq ∈ M ′
req:

1. Check if the instantiation of the RHS causal model mcausal of mreq

matches one of the goal requirements identified in backward chaining.
2. If mcausal ∈ Greq:

1. Use the backward function of mcausal to calculate the control input
necessary to transition the state from the LHS to the desired RHS
by binding all variables of the LHS (xk−1) to the values in I and the
variables of the RHS (xk) to the values of the goal requirement:
Cuk−1 = Bxk − xk−1

2. If mcausal can be instantiated given I and the control input:
1. Apply the forward function of mcausal to generate a prediction

of the state change:
xk = Fxk−1 +Cuk−1

2. Apply the forward function of the accompanying probabilistic
model to calculate an expected uncertainty after the state change:
Pk = FPk−1F

T +CPcontrolC
T +Qk

3. Check whether the uncertainty of goal-related variables in the
calculated Pk is smaller than the maximum uncertainty defined
in the goal requirement Pg,req.

4. If the expected uncertainty is larger:
Plan intermediate observations by reducing the magnitude and
duration of uk−1 thus reducing the actuator noise described by
CPcontrolC

T and allowing for more observations during com-
mand execution.

5. Set the RHS of mcausal as a new predicted observation in I.
6. Add the control uk−1 to U .

5. Return U .

The generated plan thus consists of a set of commands U , each assigned to a
certain time period and given a set of input variables that must match observa-
tions at this time to perform the control with the expected outcome.

Anti-requirement models: A special focus must be put on anti-requirement
models during the reasoning process. Anti-requirement models constrain the so-
lution space of the task by describing states under which a causal model may



Causal reasoning over probabilistic uncertainty 9

not be applied. (The evaluation of anti-requirement models was left out in the
previous description of the algorithm for readability.) Anti-requirement mod-
els play a role in both backward and forward chaining: In backward chaining,
when identifying relevant requirement models (step 5d), anti-requirement mod-
els are identified as well, and a goal requirement to not instantiate the LHS of
the anti-requirement model is generated. In forward chaining, these anti-goal-
requirements are in turn evaluated. If instantiating a causal model produces
variables that are part of an anti-requirement, the likelihood of the instantiation
of the anti-requirement model, given the produced uncertainty of the predic-
tion, is calculated. If this likelihood is over a given threshold, there are three
options: (1) The system can choose an alternative path, if available; (2) The
magnitude and duration of control inputs can be reduced to minimize the prob-
ability of instantiating the anti-requirement model; or (3) abort the current plan
and redo the abductive backward chaining process with the assumption that the
model chain in question will not lead to the goal.

Fig. 1. Task of moving along a constraint space. Left: Visualization of the task with
initial state at time t0, goal state at time t3. Red areas: forbidden areas where the
system may not move; white circles: initial position at time t0 and after applying the
models Mx at time t0 and My at time t1; red circles: examples of failures of the task if
the action of Mx is executed imprecisely. Right: Causal models Mx and My and their
accompanying probabilistic models Mprob,x and Mprob,y, respectively.

Figure 1 shows a very simplistic task of moving along a constrained space
(e.g., a robot moving in a constraint work area). As can be seen, the imprecision
of executing model Mx can lead to task failure. The system can identify this
during forward chaining, decrease the time during which the command of Mx

is executed and thus reduce the impact of actuator imprecision. Executing the
command repeatedly with intermediate observations to adjust the duration of
the next command can overcome possible failure states.

5 Discussion and future work

We have presented a new approach that extends causal reasoning to address
erroneous noisy data in the input and output stream of a controller, and shown
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how this is to be implemented in OpenAERA. The resulting reasoning process
can better predict possible outcomes of planned interventions to adjust its plans.

The limitation to normal-distributed data can be lifted by changing the
uncertainty estimation and propagation process. For example, by using neu-
ral networks to estimate the probability distributions given observations and
interventions. However, it remains future work how the full reflectability and
explainability of AERA in such approaches.

Aside from the application to noisy data, this approach can further be ex-
tended to use divergences between predictions and actual observations to en-
hance the causal discovery process. Detected outliers imply erroneous causal
models, which can be corrected through self-reflection mechanisms in AERA.
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