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Abstract 
 

One of the original goals of artificial intelligence (AI) research was to create machines with very 
general cognitive capabilities and a relatively high level of autonomy. It has taken the field longer 
than many had expected to achieve even a fraction of this goal; the community has focused on 
building specific, targeted cognitive processes in isolation, and as of yet no system exists that 
integrates a broad range of capabilities or presents a general solution to autonomous acquisition of 
a large set of skills. Among the reasons for this are the highly limited machine learning and 
adaptation techniques available, and the inherent complexity of integrating numerous cognitive 
and learning capabilities in a coherent architecture. In this paper we review selected systems and 
architectures built expressly to address integrated skills. We highlight principles and features of 
these systems that seem promising for creating generally intelligent systems with some level of 
autonomy, and discuss them in the context of the development of future cognitive architectures. 
Autonomy is a key property for any system to be considered generally intelligent, in our view; we 
use this concept as an organizing principle for comparing the reviewed systems. Features that 
remain largely unaddressed in present research, but seem nevertheless necessary for such efforts to 
succeed, are also discussed. 
 
Keywords: cognitive architectures, autonomy, constructivist AI, realtime, meta-learning 

1. Introduction 

Progress towards creating generally intelligent machines has been slow since the early days of AI. 
The initial goal of the field, creating general human-like intelligence, has not been pursued 
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vigorously, as the immediacy of other more practical problems have sidetracked several 
researchers (cf. Wang, 2006), leading many to find contentment with domain-specific targeted 
solutions. While some may hope otherwise, we see little reason to believe that the collective work 
of the field as a whole, offering isolated cognitive abilities targeting tasks with greatly limited 
scope, can somehow be fused to give rise to systems possessing general intelligence (cf. 
Thórisson, 2009). 

The most promising work for creating machines with general intelligence belongs to the area 
of cognitive architectures. Although admittedly a category of loose definition, cognitive 
architectures typically deal with relatively large software systems that have many heterogeneous 
parts and subcomponents, which operate together to solve general problems and tasks in more than 
one domain. Many of these architectures are built to control artificial agents, both agents operating 
in virtual worlds and physical robots acting in the real world. Work within this area displays broad 
diversity at all levels: underlying theoretical assumptions, inspiration, motivation, requirements, 
methodology, structure, and technology. Architectures also target a diverse set of cognitive 
functions, although learning, reasoning, planning, and memory seem to be more common than 
others. 

In our view, a core issue in cognitive architectures is the integration of cognitive processes, 
not simply in the sense of having a number of cognitive processes "up and running" within the 
same system, but rather how a large number of heterogeneous processes influence each other, 
collaborate, and coordinate to create an effect that is “greater than the sum of the parts”. Since 
adaptation is a critical feature of intelligence, the conglomeration needs to be plastic. Many 
architectures have ignored one or more such key aspects of cognition, including attention and 
realtime operation. This is a severe limitation which may prevent these systems from graduating to 
the real-world, because retrofitting an existing architecture with additional cognitive processes for 
tight coordination and control is extremely difficult, and for very large systems most likely 
impossible. We feel that the importance of this particular issue, ignoring cognitive mechanisms or 
features that are integral to human and higher-level animal intelligence, has been greatly 
underestimated in much of the research on cognitive architectures to date. 

The lack of progress towards human-level intelligence notwithstanding, some notable 
exceptions from the literature offer ideas and approaches that might lead us towards this goal more 
quickly. Here we review architectures that have been developed with the explicit view to go 
beyond state-of-the-art integration and coordination of cognitive skills, making breadth of 
integration itself a target. Rather than attempting an exhaustive review of all directly and remotely 
relevant architectures, the systems reviewed have been selected based on their achieved breadth 
and ability to highlight a spectrum of approaches. The selection has also been made partly with the 
aim of highlighting issues that we consider key for the development of artificial general 
intelligence (AGI), but that have been largely ignored in the AI literature. 

To illustrate what we consider to be a system that fulfills the main goals of AGI, we use a 
hypothetical example featuring an autonomous exploration robot. The challenges presented to an 
artificial system, which is expected to survive without human designer intervention when plunged 
into settings as diverse as the Amazon forest and the craters of Mars, illustrates the kind of system 
we are targeting. Add to that the requirement that the system's designer was only roughly aware of 
which environments the system's intelligence would have to deal with beforehand. The cognitive 
architectures selected are reviewed and evaluated against this hypothetical example, giving us a 
forward-thinking focus by highlighting features and capabilities that are missing from all the 
reviewed architectures. The review starts with Ymir, a prime example of the constructionist 
approach to AI that was chosen for its focus on realtime and perception-action coordination, 
followed by the well-known systems ACT-R, and Soar. The latter is one of the most mature 
cognitive architectures currently under development, but one that has mostly ignored perception 
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and action throughout its long history, something which it shares with the majority of AI 
architectures in existence. We then review two logic-based architectures, NARS and OSCAR, 
followed by AKIRA, a biologically inspired connectionist architecture, and then CLARION, 
which, like AKIRA, mixes symbolic and sub-symbolic processing. LIDA is next, a system with 
many types of learning mechanisms and learnable attention. Finally we review Ikon Flux, an 
architecture that departs rather radically from all the other approaches, specifically targeting 
autonomy and self-growth. However, since autonomy is a key concept driving our analysis, we 
begin with an overview of this concept in the context of AGI.  

2. Autonomy and AGI 

A number of definitions exist for the concept of autonomy. One of the oldest of these comes from 
ancient Greece and refers to “one who gives oneself their own law”1 . In modern language the line 
between autonomy and automation has a tendency to get blurred, with the former often used to 
refer to a system’s ability to operate without external (human) control. A washing machine, after 
started by a human operator, is clearly automatic from that point on. A car capable of driving itself 
from Boston to San Francisco without a human operator might also be viewed as "automatic" 
rather than "autonomous". The meaning of autonomy in everyday language seems to require 
something above and beyond even fairly sophisticated automation.   

In our view, autonomous systems automatically perform tasks in some environment, with 
unforeseen variations occurring in both, through some type of automatic learning and adaptation 
that improves the system's performance with respect to its high-level goals. Learning and 
adaptation in this context refer to the ability of a system, when facing situations with some degree 
of similarity to those already experienced, to consistently alter its responses based on what worked 
in the past, and improve the system’s responses such that over time they become incrementally 
better in respect to the active goals or utility function(s). This view is faithful to the ancient Greek 
definition of autonomy and maps well to the everyday use of the term. While not a formal 
definition, this view provides the necessary link between autonomy and intelligence, one that is 
sufficient for our purposes and includes learning as an integral part. More importantly, this allows 
us to start exploring the interesting an relatively unexplored intersection of autonomy and 
intelligence.  

Of course, comparing the autonomous capabilities of radically different systems is a non-
trivial problem, with no generally accepted methodology at present. Some work has been done on 
creating autonomy metrics, with the Autonomy Levels for Unmanned Systems (ALFUS) 
framework among the most prominent (Huang et al., 2003, 2005). ALFUS is not specifically 
geared towards AI systems and is of limited use when comparing cognitive architectures, partly 
because it does not address learning aside from its mention as potential future work by its authors 
(Huang et al., 2004). As discussed below, the concept of autonomy with regards to AI systems is 
vastly multi-dimensional, making it problematic to create simple, low dimensional and useful 
autonomy metrics. In an abstract sense, one system can be considered more autonomous than 
another if it performs a greater number of higher complexity tasks, operates in more complex 
environments, and, in particular, is better able to improve its own performance, adapt to changes, 
and react to its environment.2 It would be highly desirable to have concrete sets of tasks and 

                                                   
1  http://dictionary.reference.com/browse/autonomy 
2  While the complexities of defining the concept of autonomy for natural systems goes even further, 
in that reliance on various support during initial growth (e.g. parents, social context, etc.) is obviously 
relevant to this discussion in the case of animals, and ultimately relevant in the larger context of the present 
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environments for comparing levels of autonomy. However, in the case of existing cognitive 
architectures, this is not possible as each architecture has been demonstrated with specific, largely 
non-overlapping tasks, and none of the architectures is yet at a level where a solid common ground 
or principles can be used as a basis for comparison. While it would be highly beneficial to have a 
benchmark or common test problem for cognitive architectures to facilitate such comparison, to 
our knowledge no appropriate benchmark of reasonable maturity exists:3 

As a backdrop for our architecture evaluation, consider the following example of a system 
that embodies several important aspects of autonomy:4 

 
Let us imagine an exploration robot that can be deployed, without special preparation, into 
virtually any environment, and move between them without serious problems. The various 
environments the robot may encounter can vary significantly in dynamics and complexity; 
they can be highly invariable like the surface of Mars or the Sahara desert and dynamic like 
the Amazon jungle and the vast depths of the ocean. We assume the robot is equipped with 
a number of actuators and sensors and is designed to physically withstand the ambient 
environmental conditions of these environments. It has some general pre-programmed 
knowledge, but is not given mission-specific knowledge prior to deployment, only high-
level goals related to exploration, and neither it nor its creators know beforehand which 
environment(s) may be chosen or how they may change after deployment. For the purposes 
of this example, missions are assumed to be time-constrained but otherwise open-ended. 
The robot has the goal of exploration, which translates into learning about the environment, 
through observation and action.  
Immediately upon deployment, the robot thus finds itself in unfamiliar situations in which it 
has little or no knowledge of how to operate. Abilities of adaption and reactiveness are 
critical requirements as the environment may contain numerous threats which must be 
handled in light of the robot's persistent goal of survival. Specific actuators may function 
better than others in certain environments, for example when moving around or 
manipulating objects, and this must be learned by the robot as quickly as possible. Resource 
management is a core problem, as the robot's resources are limited. Resources include 
energy, processing capacity, and time: Time is not only a resource in terms of the fixed 
mission duration, but at lower levels as well since certain situations, especially ones 
involving threats, have inherent deadlines on action. The resource management scheme 
must be highly dynamic as unexpected events that require action (or inaction) can occur at 
any time.  

 
Let's look at some key features that the robot's mind must possess. As the environments 

are highly complex and dynamic, fixed-depth processing of all sensory data that is available, or 
generated directly from the environment's raw inputs, is out of the question. Given that the robot's 
processing capacity is limited and the environment(s) information rich, the robot must implement 
some kind of attention in order to select which sensory data to process and how deeply. To 
successfully orient its attention, the robot must have some expectations with regards to upcoming 
events, to steer its exploration and focus of attention. To generate expectations, prediction 
capabilities are necessary. The robot must couple reasoning capability with prediction, if only 
because it will face situations involving irreversibility, for which trial-and-error approaches are 
infeasible. Reasoning is also needed since it is unlikely that all of the relevant causal chains in the 
environment are directly observable, calling for inference as the only alternative to "fill in the 
blanks". Filling in the blanks means creating models of the environment that can be used for 
                                                                                                                                                         
work, we will leave such considerations outside the scope of the present article. 
3  The recently proposed “Toy Box Problem“ presents one such possibility (Johnston 2010). 
4  We acknowledge that our choice for the example is not original, but there is a good reason why exploration 
robots are popular examples in AI literature. 
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reasoning and predicting. The robot also has introspective capabilities that allow it to evaluate and 
reason about itself and improve its internal, and thus external, operation, potentially involving the 
generation of improved methods for learning. 

Four main themes essential to the system's operation can be extracted from this example: 
Realtime, resource management, learning, and meta-learning. These themes were chosen because 
we believe they are a good set of indicators for the level of autonomy of a given system. We are 
not suggesting that other functions, such as memory, perception, reasoning and planning, are 
unimportant. We assume these functions to be necessary as well, warranting their thorough 
investigation when further researching the relationship between autonomy and intelligence in the 
context of cognitive architectures. While autonomy can be envisioned without meta-learning, 
introspection and meta-learning provide the system with ways to change its own internal workings 
in a directed fashion, giving rise to self-growth and enabling significantly higher levels of 
autonomy. The following sections discuss each of these themes in turn.  

2.1 Realtime 

Realtime system operation is used here to refer to the general time management mechanisms of a 
system, referring not to CPU time or some pre-defined small constant, but to system performance 
with respect to the actual passage of time in the containing environment and the speed of events in 
that world. When we consider systems solving ongoing problems in real-world environments that 
march to their own clock, realtime operation is a central theme for autonomy in this sense, and a 
critical principle for any embodied system that must act in synchronization with its surroundings. 
Factoring time directly into operation control is a prerequisite to effective resource management 
and action scheduling. Factors of importance include the granularity of processing, which 
determines how much uninterruptible processing the system performs between accepting new 
information. Reactiveness is closely linked with this property and defines how dynamic the system 
is with regards to being preempted, accepting new information as well as the efficiency of the 
sense-act pathway. Another important aspect is the temporal planning horizon – the ability of the 
system to execute longer-term tasks and generate expectations into the future. Finally, the uptime 
of the system indicates whether it is built for constant operation or requires scheduled or 
unexpected off-line time.  
 

2.2 Learning 

Learning is the general capability of a system to improve its performance over time. Various kinds 
of learning result from various kinds of system architecture and implementation; and, although a 
system can essentially only learn from its experience, there may be restrictions on what kinds of 
experience can be learned from. For example, a system might only be able to learn from the direct 
results of its own recent or immediate actions. A system may not be capable of learning large 
variations on particular patterns because of the shortcomings in its available learning mechanisms. 
Learning may also be based on observations of the environment, possibly including the system’s 
imitation based on the observation of actions that are exhibited by other entities in the 
environment. Instructions, verbal or otherwise, can also be a form of indirect experience that the 
system can learn from. The interplay of these factors determines the learning styles of a system. 

To implement the various kinds of learning one or more methods might be employed 
within a system, such as numerous types of reinforcement learning and logical inference. 
Integration of new knowledge with existing knowledge may be handled in a number of ways, 
affecting how the system manages conflicting knowledge, and to what degree existing unrelated 
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and related knowledge remains intact as new procedural and declarative skills are learned.  
The learning rate of a system is an important characteristic, which specifies how much exposure 
to the environment is required to acquire relevant knowledge or skills, and to what level of 
reliability. The capacity for knowledge is another important factor that affects how long, and in 
what form, knowledge is retained. Finally, an aspect of capacity for knowledge is how, or even 
whether, the system manages situations where capacity is exceeded, which is one part of a 
system's resource management capabilities.  

2.3 Resource Management 

For systems operating in complex environments, sensory data can be expected to be overly 
abundant at all times. Such a system will often, or even constantly, encounter situations that drive 
it into states of limited resources, as data is generated faster than the system can process. Some 
form of resource management strategy is required to deal with information overload in an 
organized manner. As information overload affects a system's ability to react to dynamic 
environments in a timely manner, resource management mechanisms therefore play a central role 
in its performance. Such mechanisms often have an intricate relationship with a system's operation 
since they must decide what is important in light of active goals (i.e. solve the relevance problem) 
as well as which goals are important and should thus be active, including goals that pertain to what 
kinds of information must be sought out and that which should be avoided.  

In systems with flexible goal management, thought must be given to how the performance 
of the resource management mechanism is affected by an increasing number of simultaneously 
active goals. Here, a key consideration is which types of resources are under the control of the 
resource management mechanism. Traditionally, these include computation and memory, but time 
may be treated as a resource as well, and these can all be viewed from multiple levels of detail and 
operation. Generally speaking, the most important job of resource management is prioritization, 
which applies to potentially all data contained within the system, including its goals and tasks.  

2.4 Meta-learning 

Meta-learning refers to the capabilities of a system to make changes to itself, both in respect to 
how it learns and how it controls its own inner workings, and resulting in the improvement of its 
own performance. It is given special treatment here not only because it may have a profound effect 
on the operation of any system that employs it, but also because it is seldom included in 
implemented cognitive architectures, and proposals for how to achieve effective and practical 
meta-learning for it remain scarce. Conceptually, meta-learning and introspective capabilities can 
provide a system with ways to change its own internal workings and thus induce self-growth. 
Meta-learning, essentially the ability of learning to learn, suggests non-linear learning rates and 
requires some form of self-reconfiguration. Implementing reliable and effective introspective 
capabilities call for powerful transversal self-evaluation methods. The factors that define a 
system's meta-learning capabilities include the system's available introspection methods, methods 
used for self-evaluation, and the learning styles supported in the modification of its own operation, 
in addition to the operation of the meta-learning methods themselves.  

Meta-learning represents a viable path towards higher levels of autonomy for any system; 
robust meta-learning mechanisms hold promise of flexibility and adaptive powers well beyond 
what would be possible without them.  
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2.5 Synthesis 

Figure 1 shows a diagram that combines the elements discussed above in light of autonomy (i.e. 
learning, meta-learning, resource management, and realtime). The diagram is a visualization of our 
autonomy comparison framework. This framework is not intended to provide hard metrics for 
autonomy of systems, but rather to provide a basis for the otherwise difficult comparison of 
autonomy levels between systems. 
 

 
Figure 1: Autonomy comparison framework focusing on mental capabilities. Embodiment is not part of the present 
framework, but is included here for contextual completeness. 
 

Having presented the spectrum of issues relevant to our notion of autonomy, we now turn to a 
discussion of architectures that highlights more important aspects in view of advancing the 
capabilities of cognitive systems.  

3. Cognitive Architectures 

In this section, we review selected cognitive architectures and evaluate them in light of the 
previously introduced autonomy comparison framework and exploration robot example, using the 
four themes of realtime, learning, meta-learning, and resource management to organize the 
discussion. This review has the goal of highlighting some critical issues in architectural design that 
bears on the issue of autonomy – it is thus not an attempt to provide a complete overview of 
cognitive architectures or doing a feature-by-feature comparison of recent architectural work. 
However, since autonomy is in fact a central issue in cognitive architectures, whether researchers 
explicitly address it or not, the paper bears a resemblance to such review papers (e.g. Langley 
2009). Rather than discussing the potential of particular cognitive architecture methodologies – 
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Subsumption (cf. Brooks, 1986), production-systems approach  (cf. Andersen et al., 1995), BDI 
(cf. Rao & Georgeff, 1995), CDM (cf. Thórisson et al., 2004), BOD (cf. Bryson, 2004), schema-
based approaches (cf. Roy, 2005; Pezzulo, 2009), etc. – we focus on actual implemented 
architectures, with the benefit of a more direct comparisons to the architectural needs generated by 
our exploration robot challenge. Our selection of architectures is a representative sample intended 
to highlight the key areas and topics in the autonomy space discussed above – we do not attempt to 
present an exhaustive and complete overview of existing architectures (for such a review see e.g. 
Samsonovich, 2010), even though related architectures are referenced when appropriate.  

We start at the robotics end with Ymir (Thórisson, 1999), which aims to bridge the basics 
of subsumption (Brooks, 1986) and related behavior-based approaches with those relying more 
heavily on explicit representation, while retaining a strong focus on perception-action 
coordination. Subsequently, we move to more traditional cognitively-focused architectures such as 
ACT-R (Anderson, 1996, 2003), Soar (Laird, 2008), and NARS (Wang, 1995), which mostly leave 
out perception, action, and planning to focus primarily on logic and inference. We end the 
overview with a discussion of CLARION (Sun, 2001), which distinguishes itself by addressing the 
fusion of symbolic and sub-symbolic information and metacognition, and the rather unique Ikon 
Flux architecture (Nivel, 2006), which carves out a category of its own. 

 

3.1 Ymir 

The Ymir cognitive architecture was created with the goal of endowing artificial agents with 
human-like communicative and manipulation capabilities in the form of embodied multimodal 
task-oriented dialog skills (Thórisson, 1996, 1999). Versions of Ymir have been implemented for 
the Cognitive Map architecture running on the ASIMO robot (cf. Ng-Thow-Hing et al., 2009) and 
dialogue systems with human-like adaptive capabilities (cf. Jonsdottir & Thórisson, 2008). Ymir-
based agents can carry on realtime face-to-face interaction where users communicate with the 
agent in a natural fashion, without artificial protocols (i.e. as if communicating with another 
human). A complete and multi-level perception-cognition-action control loop is implemented, with 
higher-level cognitive functions affecting low-level perception, and vice versa, in a layered 
feedback-loop model. Lower layers in Ymir deal directly with perceptual information and operate 
at faster time scales than higher layers, in which more advanced cognitive functions occur.  

The architecture contains three “horizontal” layers: Reactive, Process Control, Content, 
and one “vertical” layer, the Action Scheduler, that interfaces between cognitive processes and the 
agents' body, essentially managing it like a resource. Each layer has a set of processing elements, 
including perceptual modules, where uni-modal perceptors focus on a specific modality, while 
multimodal integrators fuse data from different modalities, and deciders make decisions based on 
available data. Information sharing between modules and layers is accomplished using 
blackboards. The Reactive Layer performs the initial processing of perceptual data and handles the 
low-level reactions it produces. The Process Control Layer handles the flow of dialog and 
performs processing relevant to turn taking. The Content Layer contains knowledge bases that 
have the ability to receive perceptual and internal state data from modules in their own layer and 
the layer below, producing output in the form of topic-relevant behavior requests and control 
messages to internal modules. In the Alpha implementation (Thórisson, 1996, 1999) one 
knowledge base was dedicated to general dialog knowledge, while others were topic-specific. The 
Action Scheduler accepts behavior requests from these three layers and is responsible for 
translating those to low-level motor movements. To this end, a behavior lexicon containing 
specifications of supported behaviors is used and provides a clear separation between behavioral 
intent and execution. Action scheduling in multimodal dialogue is a complex problem, highly 
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dependent on time and context, as execution of simultaneous behaviors must be allowed, and some 
of these may conflict. An anytime scheduling scheme providing adequate rather than optimal 
response is adopted. Long, incremental behavior sequences are a regular part of operation, but 
interruption of these can also be allowed at any time. 

Compared to subsumption-based architectures, Ymir features greater flexibility in 
expansion, as the methodology developed for its construction provides development methods that 
go well beyond object-oriented programming principles by helping to build complex, coordinated 
systems (Thórisson et al., 2004). Ymir's levels allow changes and additions that, unlike 
subsumption systems, do not require significant re-design of related structures. Ymir-based 
cognitive levels can be expanded to include as many knowledge bases as needed, and while these 
are fairly non-integrated at the higher cognitive levels, the Ymir framework provides clear 
principles for system expansion at all levels, unlike many other comparable architectures.  

Like behavior-based architectures commonly exemplified by the subsumption approach, 
Ymir-based systems address the issue of time head-on; time is handled in an explicit fashion 
within the system, with time-stamps on every piece of data received and produced. Ymir 
implements a mixture of continuous and discrete control and decision-making. The layered 
architecture of Ymir, with layers operating at different time scales, reflects the task performance of 
human cognition in that different tasks require different amounts of time, depending on their 
complexity among other factors, before actions are generated. The architecture has been shown to 
give rise to some human-like qualities in implemented systems (Thórisson, 1996).  

The Process Control and Content layers have the ability to influence processing in lower 
layers by turning modules on and off, enabling mixed bottom-up/top-down control within the 
system, as well as controlling the flow of information to and from modules; the typical module in 
an Ymir system is smaller than a standard subsumption level. The simultaneously bottom-up and 
top-down control in Ymir gives rise to a crude attention mechanism in which things can be ignored 
by the system by turning off specific modules that produce or consume particular types of data. 
However, these mechanisms for attention are implicit in the architectural construction, and are 
therefore fairly rigid. Learning for attentional mechanisms has not been demonstrated in Ymir 
systems to date. 

Recent Ymir-based systems have been outfitted with reinforcement learning modules 
(Jonsdottir & Thórisson, 2008). Like many of its predecessors, e.g. Maes' task network (Maes, 
1989) and Brook's subsumption architecture (Brooks, 1986, 1991), Ymir-based systems are 
completely static at the module level as modules and the connection potential in their architecture 
are manually specified a priori; they do not change themselves during operation, and the system 
does not grow or self-reconfigure. This has been referred to as a constructionist approach to 
building AI architectures (Thórisson, 2009). Because they rest on the need to program the entire 
system by hand, all constructionist architectures significantly stress the limits of human 
programmers, as interactions and side effects can get exponentially more complex with increased 
architectural size. Although introspective capabilities could possibly be integrated into an Ymir 
system, it is not clear that this would be a fruitful exercise, as the introspection mechanisms would 
either be working with "building blocks" that are too coarse-grained or, alternatively, would have 
to be able to write C++ or Lisp code at a reasonably sufficient level, on par with human coders, 
something that clearly no automatic system to date has been able to achieve. Constructionist AI 
architectures are thus developed by hand, through principles comparable to the planning of urban 
design and the architecture of buildings. These architectures generally do not have system-wide 
learning, their learning, if any, is rigid and limited, special-purpose. The same can be said for other 
features such as system-wide attention, runtime robustness, and introspection in general; these are 
lacking or of limited scope, and thus constructionist-built cognitive architectures are doomed to 
have limited self-reconfiguration abilities (Thórisson, 2009).  
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While Ymir represents one of the more advanced examples of a constructionist AI 
architecture, it inherits limitations from older classical AI systems. With regard to our autonomy 
comparison framework, and artificial general intelligence in the larger picture, such classical AI 
systems are essentially “sophisticated thermostats”, having limited ability to learn if at all, and 
addressing targeted domains and tasks. 
 
Realtime Yes. Core design goal, time handled in explicit fashion. 
Resource 
management 

Yes. Crude resource management and attention implemented by dynamically 
turning on/off modules; these mechanisms must be prepared manually and remain 
static at runtime. 

Learning Not architecturally integrated, but has been demonstrated in add-on modules. 
Meta-learning Not supported. 
 
Table 1. Overview of the Ymir architecture in light of our autonomy dimensions.  

3.2 ACT-R 

ACT-R5 is a cognitive architecture that implements a theory of human cognition that is heavily 
inspired by biology and cognitive psychology. The architecture is largely designed as a production 
system in which rules are activated when their preconditions are met; human cognition emerges 
out of interaction between numerous declarative and procedural knowledge elements (Anderson, 
1996, 1997, 2003). Declarative knowledge is represented by data structures called chunks, which 
encode relations and properties of objects. Procedural knowledge is represented by production 
rules, which may be activated when their preconditions are met to produce actions. The existence 
of a specific goal is one example of a precondition, while the generation of a sub-goal is an 
example of produced action. Working memory is implemented with data structures called buffers 
into which chunks and rules are retrieved based on the results of a special activation process that 
essentially determines which of them are important, in light of the situation the system may find 
itself at any moment. While chunks and production rules are symbolic constructs, the activation 
process is sub-symbolic in nature so that ACT-R can be considered a hybrid architecture. The 
architecture operates in atomic processing cycles, by starting each cycle with the activation 
process. This is a parallel process that adjusts the activation of chunks and production rules 
according to their, Bayesian method calculated, probability of usefulness in the current situation. 
Higher activation values translate into increased probability that the item in question will be 
retrieved from working memory and then processed. Thus, the activation process can be said to 
guide the operation and performance of the system. 

The perceptual module of the system implements attentional functionality, effectively 
filtering sensory data which is processed by the system. However, this selection is not influenced 
by the availability of resources, which is problematic for realtime operation. 
Learning is performed on two levels: The activation process adapts to the system’s experience, and 
thus to the environment’s, statistical structure, while new chunks and production rules can also be 
learned. New chunks are created upon the completion of goals and introduction of new percepts, 
while new production rules can be created by combining existing ones. 

As a predecessor to Soar, one of the best-known existing cognitive architectures, ACT-R 
is historically significant. The architectures are sufficiently similar so that they can be discussed 
simultaneously in terms of the autonomy framework presented above, as will be done in the 
following section on Soar. It should be noted, however, that a key difference is ACT-R's goal of 

                                                   
5  Review based on ACT-R 5.0. 
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targeting human cognition and its limitations, and that one of its intended and realized uses is to 
explain and predict human performance on various tasks, which are goals not shared by Soar. It is 
therefore limited by design, and cannot rely on principles considered non-biological or on any 
performance dimension on which an artificial system possibly could exceed human capabilities.  

 
 
Realtime Not addressed, time does not influence control mechanisms. 
Resource 
management 

Not supported. Availability of resources does not influence control mechanisms – 
system decides what is important and processes without consideration to 
resources or time. Crude attention demonstrated in perceptual modules as 
filtering.  

Learning Yes. Adaptive sub-symbolic activation, addressing semantic and procedural 
knowledge. 

Meta-learning Not supported. 
 
Table 2. Overview of the ACT-R architecture in light of our autonomy dimensions.  

3.3 Soar 

Soar is one of the most mature cognitive architectures currently in development, and has been used 
by many researchers worldwide during its roughly 30-year life span (Laird, 2008). During this 
time it has also been revised and extended in a number of ways; we will limit our discussion here 
to the latest version as this represents its present state of the art.  

The main operating principle of Soar is its decision cycle: When a problem is presented to 
the system, it searches its memory for knowledge relevant to related goals or rewards. If 
insufficient information is found it generates a sub-goal to split the problem into smaller ones, but  
if no solutions are found then this recursive process continues. When a solution has been created, 
the system may compress the solution into a compact form that can be applied directly, and store it 
until a later time, if the same problem should be encountered, in a process called chunking. The 
pipelined decision cycle determines the temporal granularity of the system by defining the update 
frequency for accepting new sensory data.  

The architecture consists of heterogeneous components that interact during each decision 
cycle. These are working memory and three types of long-term memory: semantic, procedural, and 
episodic. Working memory is where information related to the present is stored, with its contents 
being supplied by sensors or copied from other memory structures based on relevancy to the 
present situation. Working memory also contains an activation mechanism indicating the 
relevancy and usefulness of working memory elements when used in conjunction with episodic 
memory. Production rules are matched and fired on the contents of working memory during the 
decision cycle, implementing both an associative memory mechanism because rules can fetch data 
from long-term memory into working memory, and action selection which rules propose, evaluate, 
and apply to operators). One of the most recent additions to the Soar architecture is sub-symbolic 
processing used for visual capabilities, where sub-symbolic and symbolic processing is bridged 
with a form of feature detection.  

In Soar, operators are the building blocks of all actions, both internal and external. The 
application of an operator is carried out by a production rule and either causes changes in the 
working memory or triggers an external action. Problem solving is based on search spaces, and 
operators can be seen as ways to move between states. In cases where operator selection fails due 
to insufficient or conflicting knowledge, an impasse event occurs and the recursive sub-goal 
creation process described above is started. The results of this process are then converted to 
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production rules by use of chunking. It is worth noting here that this works identically for parent 
goals and sub-goals, which helps with the transfer of learning as different parent goals may share 
identical sub-goals.  

The symbolic and production-based approach has recently been extended with 
reinforcement learning, which is used for relating production rules to operator selection to 
maximize future rewards in similar situations. As the Soar working memory can contain execution 
traces, introspective abilities are possible. As the architectural learning mechanisms of the system 
are fixed, however, self-reconfiguration (e.g. improving own learning capabilities) is not achieved, 
but it is worth noting that reinforcement learning gives the architecture a method of managing 
knowledge more effectively over time, for example by choosing which type of memory is most 
appropriate for certain situations. 

The Soar architecture provides one of the largest collections of simultaneously running 
cognitive processes of any cognitive architecture so far. Interestingly, however, there is no explicit 
mechanism for control of attention; this is not seen as a central cognitive capability by its authors, 
but as "processing that belongs to the perceptual side".6 We are highly skeptical of this view of 
attention for numerous reasons, many of which have already been detailed above; suffice it to say 
that attention will not be very useful if it cannot be meaningfully influenced by the active goals of 
an agent, and several other properties of its internal state.  

Not containing attention-like functionality, the architecture is based on the assumption of 
abundant computational power, in the sense that it is assumed that all incoming data from the 
environment can always be processed. This is problematic, and, not surprisingly, the execution in 
Soar is done in a strict step-lock form. In particular, the duration, or amount of computation, in 
each decision cycle can vary greatly due to impasse events that occasionally arise. At its core, the 
architecture is based on a single sense-decide-act step-lock control cycle, and it is theoretically not 
designed to operate in parallel; therefore, were it to encounter situations in which the assumptions 
of abundant computation do not hold, it would not help significantly to add computing power by 
(e.g. adding more processors). While production rules can be fired in parallel, this is just one phase 
within the operating cycle. Although it is not clear how fast the single processor that runs a Soar 
system must be for it to approach human levels of intelligence, it is clear that this stage has not 
been reached yet, even on the fastest supercomputer to date. Performance of the architecture’s 
particular implementations is not being faulted here, but rather the core of the architecture’s 
operating principles, which assumes sufficient computational resources at all times. Soar has 
essentially not been designed to cope with situations for which it does not have computational 
power to process "everything".  

In conclusion, Soar is principally incapable of realtime operation. It is possible that future 
versions of the architecture could address this by somehow parallelizing its operation; but, as the 
current design of the sense-decide-act cycle is quite core to Soar's identity, this would in our view 
be quite a different architecture.7 

In regard to our autonomy framework, Soar's lack of attention mechanism(s) presents 
problems for practical operation (viz. the exploration robot example above), as the architecture’s 
only available response to insufficient knowledge is essentially pausing its operation in the 
environment. While Soar has certainly made contributions to the fields of AI and cognitive 
psychology, the design of this architecture seems to be quite detached from its operation in 
everyday environments, which are highly complex from the perspective of existing cognitive 
architectures, and march to the beat of their own time. So, in regard to the autonomy comparison 

                                                   
6  John E. Laird, personal communication with H. P. Helgason, 2010. 
7  Paralellism and scalability alone would not change the fact that the architecture is based on the 
assumption of abundant resources. 
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framework, there are evident problems with Soar’s resource management and realtime operation. 
Finally, one might argue that the development of Soar has been somewhat characterized by 
“adding boxes”, or components, to the architecture when it might have been better to follow a 
more unified approach, putting integration at the forefront. 

As key elements of the Soar architecture, notably learning heuristics, are based on 
constructionist AI principles, the architecture as a whole is subject to limitations imposed by the 
cost and practicalities of human labor. This will limit its possibilities of developing powerful 
learning mechanisms of its own, making it significantly less likely that it will ever achieve the 
kinds of autonomy discussed above. 

There are a few cognitive architectures that resemble Soar and can be placed categorically 
on the same track. These include ICARUS (Langley, 2005), which strongly emphasizes 
embodiment and has shown promise, in terms of generality, for a number of toy problems such as 
in-city driving. As in Soar, different types of memory are implemented in specialized components 
and have a single-track step-lock decision cycle.  
 
Real-time Not addressed, time does not influence control mechanisms. 
Resource 
management 

No. Availability or performance of resources does not influence control mechanisms. 

Learning Yes. State-space search provides the basis for learning with knowledge being retained 
in specialized type-specific memory stores. Reinforcement learning also used for 
tuning of certain control parameters. 

Meta-learning No. Can reason about own operation, but core learning and control mechanisms are 
fixed. 

 
Table 3. Overview of the Soar architecture in light of our autonomy dimensions.  

3.4 NARS 

The Non-Axiomatic Reasoning System (NARS) is a general-purpose intelligent reasoning system 
designed for operation in realtime under conditions of insufficient knowledge and resources 
(Wang, 1995). Knowledge in a NARS system is grounded in its experience, both in terms of 
meaning and reliability. However, a NARS system is only embodied and situated in the sense of 
its actual experience, rather than the more traditional sensory-motor sense as NARS does not 
address sensory-motor issues. 

In stark contrast to conventional reasoning systems, most of which exclusively use 
Boolean truth-values, beliefs in NARS are real-valued numbers based on the experience of the 
system. This allows a NARS-based system to manage different types of uncertainty such as 
randomness, fuzziness, and ignorance. NARS is based on a term-oriented formal language called 
“Narsese”, which has experience-grounded semantics and a set of inference rules. Thus, 
knowledge and beliefs contained within the system have associated non-Boolean truth-values that 
are shaped by operational experience. Learning is achieved by reasoning upon this experience, 
generating beliefs that grow stronger as they are repeatedly confirmed or weaker if they are 
contradicted.  

Unlike most cognitive architectures, NARS was designed with real-time operation as a 
requirement from the start. The logic of Narsese is embedded with time, making truth-values of 
appropriate statements time-dependent, in contrast with traditional logic languages that are 
completely timeless. Time is represented in a relative fashion, with the timing of one event being 
defined in terms of the timing of another. Temporal logical relations and operators are present in 
the language as well, providing some necessary tools for temporal reasoning and inference. Core 
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mechanisms in NARS, such as learning – and by extension meta-learning – are fixed.  
The control strategy for computation in NARS systems is called controlled concurrency: 

the execution of tasks is controlled by two special prioritization parameters, urgency and 
durability. The urgency value gradually decays over time, with the strength of the decay 
determined by the durability value. The values depend on both the environment and internal state 
of the system. These parameters are used to implement dynamic resource management, allowing 
the system to spend most of its time on what is most important, giving rise to a type of attention 
mechanism. Effectively, tasks constantly compete for processing within the system, with losers 
eventually removed from the task pool. An interesting property of this mechanism is that resource 
allocation is context-dependent, (i.e. the same task with the same urgency and durability values 
will vary in execution time depending on other active tasks at any given time). 

Wang (2006) examines the implications of realtime operation under insufficient 
computational resources, concluding that Turing machines and traditional models of computation 
are not applicable for such scenarios. The author makes a convincing case that deadline-based task 
management is not appropriate for intelligent, reactive systems. Instead, he suggests using problem 
solving algorithms that generate solutions or answers after each iteration with solutions improving 
as the number of iterations increases, iterations being the atomic processing unit of the system or 
what has been called an anytime algorithm (Dean & Boddy, 1988). Resource management needs 
to be highly dynamic in these scenarios, influenced  by, among others, the intermediate progress of 
problem solving processes and exploration of multiple solution paths concurrently and at different 
speeds, although not necessarily at the hardware level. Space is also addressed, with bag-based 
memories being suggested, as memory is finite and it can be expected that items will need to be 
added and removed frequently during operation. 

In regard to our autonomy comparison framework, the design of NARS takes into account 
most of the important aspects, including some related to realtime and resource management. It 
should be mentioned, however, that relative handling of time, as provided for in NARS, is not as 
precise as absolute numerical treatment, but certainly has its benefits and is clearly better than no 
explicit handing of time.  

As for attention, NARS views tasks and goals in a fairly traditional way: A distinction is 
made between original goals, being input tasks originating outside the system, and derived goals, 
being created within the system in response to original goals. While urgency and durability 
parameters are assigned by the system to derived goals, this is not the case for original goals which 
are supplied externally (e.g. by the system designers). This implies that original goals are accepted 
by the system with these pre-assigned parameters, which makes sense for persistent goals, such as 
survival, but may not be ideal in situations when the system is accepting multiple tasks 
simultaneously, perhaps from different sources that cannot collaborate to find adequate parameter 
control for each task.  
 
Realtime Yes. Control mechanisms heavily influenced by time, which is handled in a 

relative fashion. 
Resource 
management 

Some. Available resources are allocated to tasks proportionally to the importance 
of the task. Relies on external sources for initial priority of tasks. 

Learning Yes. Real-valued logical inference developed specially for NARS. 
Meta-learning No. Learning and control mechanisms are fixed. Current version does not allow 

for reasoning about own performance, but this is targeted as future work. 
 
Table 4. Overview of the NARS architecture in the context of our autonomy dimensions.  
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3.5 OSCAR 

OSCAR is an implemented architecture for generally intelligent agents operating under 
uncertainty and incomplete knowledge (Pollock, 2008). The work is inspired by the fact that any 
human's knowledge of individuals, in the epistemological sense (e.g. individual grains of sand, 
individual apples on the trees on the planet, etc.), as well as general knowledge, is very sparse. Yet 
we manage to form beliefs and make decisions with relative ease in our daily lives. According to 
OSCAR's author, the prevalence of operating under uncertainty strongly suggests some form of 
statistical probability processing. For this to work, a mechanism is needed to resolve conflicting 
conclusions, as the introduction of probability into the reasoning process implies that incorrect and 
contradicting conclusions will occur. This type of reasoning is called defeasible reasoning, and 
forms the basis of the OSCAR architecture.  

Beliefs are encoded in OSCAR as first-order representations, and first-order logic is the 
basis of reasoning. Inference schemes supplied a priori are used for the reasoning process, such as 
statistical syllogism. The correctness of inference schemes is evaluated over time; if a particular 
scheme has been found unreliable under specific circumstances this will be reflected in the 
reasoning process and conclusions which are based on that scheme, and therefore less likely to be 
made. The mechanism for invalidating inferences based on experience are called undercutting 
defeaters and they are processed in a distinct phase of the reasoning process called defeat status 
computation. For the sake of practicality, argument construction and defeat status computation are 
interleaved; otherwise all knowledge that could possibly be relevant to present processing would 
need to be considered in the argument construction phase before defeat status computation could 
occur. However, the construction of new arguments can affect defeat status computation with the 
side effect that argument construction is not only defeasible but the defeat status computation 
itself, which is why the reasoning in OSCAR is called doubly defeasible. This produces important 
properties for generally-intelligent agents, as reasoning can be interrupted at any time, yielding the 
best conclusions available at that particular point in time and essentially implementing an anytime 
reasoning algorithm.  

The main modules of the architecture are called Practical Cognition and Epistemic 
Cognition. The former has the responsibility of posing planning problems, evaluating and selecting 
plans as well as directing plan execution; the latter is responsible for constructing plans, generating 
and revising beliefs, as well as forming epistemic goals. The connection between the two form a 
loop where epistemic cognition can supply practical cognition with the goal of learning some new 
information and practical cognition will in turn issue that goal to epistemic cognition. As plan 
construction relies on defeasible reasoning, it is a defeasible process and constructed plans can be 
expected to be invalidated at any time should relevant new information be acquired. Planning and 
learning are interleaved as forward reasoning, "prediction", from perceptual inputs is coupled with 
backwards reasoning, "planning", from goals or interests. 

The strength of the OSCAR architecture is its powerful time-bound symbolic reasoning 
with support for deadlines. The reasoning process, which includes planning, is interruptible at any 
time for the best available current information, making it suitable for realtime operation. Some 
introspective capabilities are present, such as dynamic construction of defeaters for inference 
schemes. Some work remains to be done for OSCAR to be able to control embodied agents.  

When considered in light of our autonomy comparison framework, some weak points 
become clear. One is the lack of attention mechanisms present in the architecture, which has 
problematic implications for realtime processing when available information exceeds processing 
capacity. Furthermore, the limitations of memory in the architecture are somewhat unclear from 
the literature available, for example whether any form of procedural or episodic memory has been 
implemented.  



THÓRISSON & HELGASSON 

16 

Finally, how the architecture scales its multi-processor hardware and parallelization is an 
important question that relates directly to its scalability and practical use: The centralized nature of 
its operation may hint at problems in this regard. Nevertheless, OSCAR may offer valuable 
contributions for future work on cognitive architectures as it presents a practical way to implement 
time-bound reasoning under uncertainty. 

 
 

 
Realtime Yes. Key components support realtime processing, but this is not fully leveraged 

in the system. 
Resource 
management 

No. Availability of resources does not influence control mechanisms. 

Learning Yes. Defeasible reasoning with first-order logic. 
Meta-learning Partial. Reasoning schemes are fixed but their selection is adaptive. 
 
Table 5. Overview of the OSCAR architecture along our autonomy dimensions.  

3.6 AKIRA 

AKIRA is a fully implemented open-source framework whose architecture is inspired by 
biological systems and is designed for parallel, asynchronous, and distributed computation 
(Pezzulo, 2007). The AKIRA framework has been used in a number of implemented experimental 
systems including a biological simulation of the praying mantis (Pezzulo, 2006). The key aspects 
of biological systems that the architecture seeks to produce are self-organization, adaptivity, and 
robustness. The AKIRA architecture fully implements the perception-action loop. 

The architecture consists of a number of modules, or schemas, that are interconnected by 
weighted activation links. Each module contains procedural information as well as an activation 
value that determines the resources that the module has at its disposal. The activation value of a 
module can be changed by other modules through positive or negative feedback via activation 
links, and by itself. Together the modules and activation links form a network called the energetic 
network. Information exchange and synchronization are possible by using shared, global, 
variables, message passing, and a public blackboard. The links in the network are fully dynamic, 
its modules that succeed more often than others will develop strong links to many more modules, 
while unsuccessful modules will have weak links to few modules. The dynamic nature of 
activation links leads to functionally related modules becoming tightly connected and forming 
"coalitions", which can be seen as functional units for solving composite tasks. This allows 
cooperation and competition to be realized over the course of the modules’ collection.  

AKIRA evolves and adapts through changes in the activation links, which are based on the 
success or failure of individual modules and coalitions. This process is continuous, meaning that 
even if the system performs some task perfectly it will adapt if the task changes, and evolves 
towards a new configuration that drives the system towards perfect performance.  

A serious limitation of the AKIRA framework is that the procedural information is 
completely static, which means that the system cannot solve, or evolve an ability to solve, a 
problem that cannot be addressed by some combination of the hard-coded procedures stored in its 
modules. This limitation can be partly mitigated with granularity (i.e. by having many 
procedurally simple modules instead of few moderately complex ones). However, as new modules 
or module variations cannot be generated as part of the system's operation, the restriction is still 
quite severe.  

AKIRA supports important cognitive capabilities such as learning and attention, and 
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implements a full perception-act loop. With regards to the autonomy comparison framework, some 
important cognitive functions such as reasoning and planning are absent. Furthermore, the 
architecture seems to have limited capabilities for introspection and does not achieve meta-
learning. Some of the missing capabilities have been manually implemented in AKIRA-based 
systems to various degrees (e.g. planning and reasoning) but remain absent from the core 
architecture (Pezzulo, 2009). 

Context awareness is an interesting property of the AKIRA architecture as the structure 
and exchange of activation in the energetic network will typically ensure that modules that are 
relevant to the current situation, or context, have high activation values while irrelevant modules 
will have lower values. The system’s spreading activation can be considered as implementing a 
type of attention mechanism. As time is not explicitly addressed in the architecture, general-
purpose realtime operation is nevertheless a serious weak point of the architecture.  

 
 

Realtime No. Time does not influence control mechanisms of the system. 
Resource 
management 

Yes. Activation levels of system modules control performance and can 
implement a variety of resource management schemes, manually built and 
learned.  

Learning Partial. Coarse-grained learning based on static manually-created building blocks. 
Meta-learning No. Core mechanisms and building blocks are fixed. 
 
Table 6. Overview of the AKIRA architecture regarding our autonomy dimensions.  

3.7 CLARION 

The CLARION architecture is motivated by cognitive psychology and social simulation (Sun 
2001, 2003, 2006). It is based on dual representations using both symbolic and sub-symbolic data, 
as well as the interaction between the two. Some often overlooked issues such as metacognition 
and agent-motivation are specifically addressed, making CLARION a fundamentally hybrid 
architecture that allows agents to learn autonomously without relying on knowledge supplied a 
priori. Symbolic knowledge is captured with data structures called rules and chunks, while sub-
symbolic knowledge is encoded in connectionist networks. Both top-down and bottom-up learning 
are supported in such a way that low-level procedural knowledge develops first followed by 
higher-level declarative knowledge at later stages. This gives Clarion the rather unique ability to 
generate symbolic knowledge from sub-symbolic knowledge, which is achieved by a combination 
of connectionist, reinforcement, and symbolic learning methods.  

As a result of its focus on social considerations, the architecture addresses the interaction 
between cognition, environment, and motivation. CLARION has four main interacting modules 
that handle different aspects of its operation, each of which has a dual symbolic/sub-symbolic 
representation: The Action Centered Subsystem (ACS) is responsible for managing the internal or 
external actions of the agent. The Non-Action Centered Subsystem (NACS) is responsible for 
managing system knowledge, including declarative symbolic knowledge as well as sub-symbolic 
knowledge. The Motivational Subsystem (MS) provides motivation for the system operation, 
namely perception, cognition and action. This is performed using impetus, a particular type of 
motivation, and feedback, evaluation, of the actions’ results. The Meta-Cognitive Subsystem 
(MCS) is responsible for monitoring and dynamically modifying other modules, particularly the 
ACS. Action selection is a cooperative process between the symbolic and sub-symbolic aspects of 
the ACS and is based on sensory input, working memory items, and current goals. Generated 
actions are either external, environmental, or focused on internal aspects of working memory and 
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goals. 
In terms of our evaluation framework, the CLARION architecture has a number of 

strengths. The way in which low-level learning of skills leads to high-level declarative knowledge 
is biologically plausible and goes beyond what has been attempted in most cognitive architectures 
to date. The system’s relatively sophisticated approach to learning results in a fairly high score 
along the learning dimension of our autonomy comparison framework.  

Some steps are taken towards meta-learning, as the architecture contains a dedicated 
module for metacognition that handles introspective aspects and self-evaluation. However, the 
architecture cannot fundamentally improve its own learning capabilities in terms of functionality, 
as there is no reconfiguration possible at the structural level. Yet along this dimension, the 
architecture goes significantly beyond what is commonly seen in architectures reviewed so far.  
In terms of resource management, the MCS module applies filter/selection to input and output data 
as well as selecting appropriate learning methods for each situation, implementing attentional 
functionality that guides the operation of the system. CLARION has been successfully tested on 
tasks involving time pressures and is designed with some focus on time-related issues. However, 
available documentation indicates that this deals mostly with response times of individual modules 
rather than presenting an integrated approach to temporal management. The designers of this 
architecture have indicated that potential for real-time processing is significantly greater than can 
be deduced from currently published material.8 
 
Realtime Limited. Some temporal management is implemented but an integrated and 

explicit handling of time appears absent. Has been demonstrated on time 
constrained tasks.  

Resource 
management 

Some. Filtering and selection implement attention functionality that controls use 
of resources. 

Learning Yes. Sub-symbolic and symbolic learning. 
Meta-learning No. Dedicated meta-cognitive module reasons on system performance. This 

mechanism is fixed. 
 
Table 7. Overview of the CLARION architecture in light of our autonomy dimensions.  

3.8 LIDA 

 
The LIDA architecture (Baars, 2009) is intended for intelligent and autonomous software agents 
and is based upon IDA (Intelligent, Distributed Agent), which is an earlier architecture used in an 
autonomous US Navy software system that negotiates assignments for personnel based on US 
Navy policies, sailor preferences, and other factors (Franklin 2006). The architecture is an 
implementation of the Global Workspace Theory of consciousness (Baars, 1988).  

LIDA features several types of specialized memory: sensory, sensory-motor, perceptual 
(implemented as a slip net), episodic, declarative and procedural (implemented as a scheme net). 
The operation of LIDA-based systems is a series of cognitive cycles, each consisting of sense, 
attend and action selection phases. In the sensing phase, the current representation of the internal 
and external environment of the system are updated. Incoming sensory data activates low-level 
feature detectors as output from these are sent to perceptual memory, where higher-level feature 
detectors process the information further. Final processed sensory data is then sent to the local 
workspace and exposed to declarative memory and episodic memory to generate associations 

                                                   
8  Ron Sun, personal communication with H. P. Helgason, 2012. 
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which are also copied to the workspace. This combined data constitutes the system's current 
understanding of its operating situation. In the attending phase, Attentional Codelets (essentially a 
collection of small programs) form coalitions of data from the Local Workspace and move these to 
the Global Workspace. A coalition may be viewed as a collection of functionally related data. In 
the Global Workspace, the most urgent coalition (only one is selected in each cycle) is selected by 
a competitive process, and broadcast throughout the system. The broadcast reaches several 
components of the architecture that are related to learning, memory and decision making (Action 
Selection, Perceptual Memory, Procedural Memory, Episodic Memory, Local Workspace and 
Attentional Codelets) and triggers different types of learning that are performed in parallel: 
Procedural learning occurs as the data reaches Procedural Memory, attentional learning occurs as 
the data reaches the Attention Codelets, perceptual learning occurs as the data reaches Perceptual 
Memory and episodic learning occurs as the data reaches Episodic memory. Following the 
broadcast, possible actions given the current situation (encoded by the broadcast) are selected in 
Procedural Memory and sent to the Action Selection module where one action is selected for 
execution by a competitive process. 

The LIDA architecture does not address time in an explicit fashion, tasks can be scheduled 
in terms of “ticks” (operating cycles) but not in realtime. However, some promising steps are taken 
in realtime direction, such as learnable alarm structures, which are reflex-like mechanisms for 
reacting quickly (faster than the average operating cycle) to certain events. While nothing prevents 
the system from performing temporal reasoning, there are no provisions for dealing with realtime 
operation in the control mechanisms of the system. An integrated approach to attention is followed 
by the architecture where attention is one of three central processes in the operating cycle. 
Attention is implemented as filtering/selection which potentially allows the architecture to 
gracefully handle situations of information overload. However, availability of resources does not 
affect the processing of the system, with each operating cycle always selecting a single coalition of 
data for further processing. It should be noted that LIDA implements attentional learning, giving it 
the capability to improve its own resource management in terms of data filtering. This is 
significant especially in light of the many different types of learning supported by the architecture, 
both symbolic (e.g. declarative) and sub-symbolic (e.g. perceptual). The core learning mechanisms 
of the architecture are fixed but as internal data is handled identically to external (environmental) 
data, the architecture is well suited for introspection and self-improvement at the content level 
while the architectural level remains fixed.  

Recently, a customizable implementation of LIDA has been made available as a general 
framework to implement AGI software agents (Snaider, 2011).  

 
 
Realtime Limited. Tasks can be scheduled at tick-level and learnable alarm structures are a 

step in the right direction. Time does not influence the control mechanisms of the 
system.  

Resource 
management 

Some. Filtering and selection of data implement attention, which is a dynamic 
process that is learned. Availability of resources does not affect processing. 

Learning Yes. Sub-symbolic and symbolic learning. 
Meta-learning No. Core learning mechanisms are fixed but introspection capabilities are present. 
 
Table 8. Overview of the LIDA architecture in light of our autonomy dimensions.  

3.9 Ikon Flux 

The Ikon Flux architecture is aimed at creating autonomous systems that adapt and evolve in open-
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ended environments with incomplete knowledge (Nivel, 2007). From a minimal manually-
constructed initial specification, continuous self-directed growth takes over and aims at 
maximizing current and future performance through targeted realtime evolution of structure and 
code embodying newly-created knowledge. Observation is the key component to knowledge 
construction in Ikon Flux: Both the external environment and the internal operation of the system 
are monitored constantly, as part of the system's own operation, which effectively implements self-
reflection. 

Knowledge in Ikon Flux is encoded in models that may have multiple levels of detail. 
Models in Ikon Flux are of two types, forward models and inverse models. Forward models deal 
with prediction, using present states to determine what states will follow. Inverse models have 
explanatory power as they deal with explaining how states were, or can be, brought about by using 
of previous states which contain a recipe for reaching a target state from a starting state. Models in 
Ikon Flux are continuously modified to maximize their correctness in light of the system's 
experience. As models are expressed in the native terms of the machine’s instructions, they are 
grounded in the hardware's operation. 

Models are key to the adaptive and evolutionary nature of the architecture, as desired 
future states of the system are expressed as target models. Goal achievement works in a similar 
way, with goals also expressed as target models. Rather than using traditional planning methods, 
Ikon Flux is designed for reactive planning at multiple levels of detail, where many solutions 
compete for execution at each level. The model-based approach creates the opportunity for the 
system to perform simulations, which are leveraged to find new or better solutions for problems 
without acting in the external environment. An anticipation mechanism is implemented using 
simulations with forward models and is useful for plan optimization and the construction of 
complex composite plans.  

Ikon Flux implements limited attention control with control values and thresholds that 
define a focus of attention. This process is critical to system operation as Ikon Flux systems are 
intended to contain a very large number of programs, all of which cannot run constantly under 
realtime constraints as resources are limited. In the system, internal objects and input data both 
have control values. For an input to be processed by the system, it must have both sufficiently 
large activation values and the same must be true for at least one program, or model, that accepts 
inputs of that type with respect to present situation. It is worth noting that input data does not only 
mean information coming from the environment, but may also be generated by the system itself. 
By following this approach, attention does not just act as a filter on input data, but is also 
responsible for selecting which objects are important within the system at any time.  

Ikon Flux is one of the few cognitive architectures that implements architectural self-
growth, or learning at the structural level. Currently, there is limited experience in using the 
architecture, but enough to suggest that it is a practical and promising direction for cognitive 
architectures. To achieve significant results, the Ikon Flux architecture requires a considerably 
greater amount of computational resources than the other architectures reviewed here, on all fronts 
(e.g. CPU muscle, memory size, and data transmission – high speed, low latency).  

The lack of existing learning and meta-learning demonstrations influences our evaluation 
of this architecture along relevant dimensions, particularly learning and meta-learning. 
Nevertheless, our autonomy comparison framework does not highlight any weak points in this 
architecture; in fact it performs admirably and has the potential to address all of them. Therefore, 
this architecture reaches relatively high on our autonomy scale. But since deep evaluation of this 
architecture is limited, this result should only be taken as indicative. Ikon Flux is one of the main 
sources of influence in the AERA architecture of the HUMANOBS9 project (c.f. Thórisson, 
                                                   
9  http://www.humanobs.org 
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2009); basic principles of Ikon Flux, in the incarnation of that project, will undergo thorough 
evaluation over the next two years. 

 
 

Real-time Yes. Explicit handling of time. 
Resource 
management 

Yes. Processes compete for available resources based on importance; control 
mechanism is resource-aware. 

Learning Yes. Forward and inverse models describing the external environment and the 
system itself are continuously produced and modified based on operational 
experience. 

Meta-learning Yes. Models of internal operation enable directed self-configuration at the 
architectural level. 

 
Table 9. Overview of the Ikon Flux architecture in light of our autonomy dimensions.  

4. Comparison 

The autonomy scale we have defined ranges from purely reactive systems at the low end, such as a 
thermostat (zero autonomy), to independent thinking beings such as primates. We view autonomy 
as a key (necessary but not sufficient) aspect of intelligence: As a first approximation, an 
architecture with greater support for autonomy is better equipped for supporting high levels of 
intelligence, other things being equal.  

A comparison between the reviewed systems are given in Table 10. Scores are given 
based on our evaluation of each architecture to address the full scope along each dimension of our 
scale. An empty cell indicates severe lack of addressing the dimension in question; five pluses 
(+++++) represent the highest possible score. The highest possible score means significant 
potential to address a dimension in light of our autonomous exploration robot example. Other 
scores are placed relatively (approximate normalization – authors' best effort) between these two.  

For an architecture to achieve the highest score for a dimension it must have demonstrated 
strong results in that aspect, and a strong potential for continued growth along that dimension. The 
sum of scores from the four dimensions constitutes the final score of each architecture.  

In Figure 2, a qualitative comparison is shown between three representative architectures 
(Ymir, Soar and Ikon Flux) where differences are highlighted in a visual spectrum-like fashion. 
Here our goal is to highlight the breadth of coverage that the reviewed architectures present and 
extract some of the variability in approaches that are relevant to the themes discussed in the paper. 
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SELECTED A.I. ARCHITECTURES EVALUATED ALONG DIMENSI ONS OF AUTONOMY 
 Realtime Resource 

Management 
Learning Meta-learning Total 

IKON FLUX10 + + + + + + + + + + + + + + + + + + + + + + + (17) 
CLARION + + + + + + +  + + + + + + + + + + + + (15) 
LIDA + + + + + + + + + + + + + + + + + + + (15) 
NARS + + + + + + + + + + + +  + + + + + + + (15) 
OSCAR + + +  + + + +  + + + + + (9) 
Ymir + + + + + + +  +  + + + (8) 
Soar   + + + + + + + + + (7) 
AKIRA  + + + + + + +  + + (7) 
ACT-R  + + + + + +  + (6) 

 
Table 10: Selected AI architectures evaluated along dimensions of autonomy (columns). The dimensions in this table 
represent the four major foundations of autonomy that we have identified and defined (see text). Autonomy in our view is 
the ability to act independently in the (real) world – the selected dimensions being key features underlying such 
autonomy. While all of the above architectures have been implemented as running systems, the extent of evaluation, and 
the availability of evaluation data, varies significantly.  
 
 

 
Figure 2: Qualitative comparison of three representative cognitive architectures: Soar, Ikon Flux and Ymir. The 
architectures shown were selected on the basis of two main principles, first, together they present a continuum of 

                                                   
10  As the principles of Ikon Flux have not yet received rigorous scientific evaluation, the score of this 
architecture should be taken as indicative. 
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solutions along axes of interest to the concepts explored here, especially that of autonomy; second, they span a wide 
spectrum of approaches to building cognitive architectures, from the behavior-based approaches in the 80s to the 
present state-of-the-art. The arrows connecting the architectures highlight most significant differences between each 
pair of architectures. The key characteristics of each architecture are listed, which are core architectural principle, top-
level architecture, granularity and types of learning. Top-level architecture refers to whether systems based on the 
architecture have static or plastic structure at run-time while granularity refers to the size (in terms of functionality and 
processing time) of processing units employed in the architecture. 

4.1 Realtime 

Both Ikon Flux and Ymir are designed with a strong focus on realtime operation, and both handle 
time in an explicit fashion. NARS is also designed for realtime operation but handles time in a 
relative fashion, rather than absolute as in Ikon Flux and Ymir, meaning that the temporal aspects 
of NARS focus largely on the sequence of events: the timing of a particular event is defined in 
relation to the occurrence of other events. This is a weaker form of temporal management than in 
Ikon Flux and Ymir, both of which offer the possibility of reasoning upon the absolute temporal 
sequence of events, which is better when working with precise deadlines. OSCAR is one of a very 
few systems that are designed for symbolic reasoning under time constraints, providing the best 
currently available solution to a problem at any moment, with the solutions generally improving as 
the system is given more time to solve the problem. However, temporal control is largely isolated 
to the reasoning process and is not apparent in the overall architecture. The CLARION 
architecture is designed with some focus on time-related issues and has been evaluated on time-
constrained tasks but does not appear to take an integrative and explicit approach to time in its 
core design. Much the same can be said of LIDA. The remaining architectures, Soar, AKIRA and 
ACT-R, do not address realtime operation in that the passage of time does not affect the operation 
of these systems – they generally process tasks without any consideration of time and are not in a 
reactive state (in terms of the environment) while this processing occurs. 

4.2  Resource management 

Ikon Flux implements attention by continuously, at runtime, ranking both information and 
processes along dimensions of importance ("salience"), and applying available resources to tasks 
accordingly, with the highest priority items forming the focus of attention. This may be viewed as 
a competition for system resources by data and processes. The approach prevents the possibility of 
the system becoming overloaded, as it will automatically disregard tasks of low importance when 
insufficient resources for all tasks are available. NARS follows a similar approach, except that the 
initial priorities of tasks need to be supplied by the user, and are thus not generated by the system 
itself as in Ikon Flux. This may be a disadvantage in some situations, as was discussed above in 
the section on NARS. LIDA implements attention in an explicit and integrated way, but does not 
factor availability of resources into its control mechanisms. The CLARION architecture also 
contains an implementation of attention, where input and output data are filtered by relevance 
based on goals and ongoing processing. It is unclear to what degree the availability of resources 
affects such filtering and the principles of how the architecture deals with sensory overload 
situations. The spreading activation in the AKIRA architecture leads to to emergent attention 
functionality that gives priority to modules that are most relevant in each situation; this attention 
functionality only affects processes of the system, however, and does not filter incoming sensory 
data in any way as resource management is entirely process driven. In Ymir, attention 
functionality can be manually implemented by programmers at design time, in a logic-based 
framework, and does not evolve once created. ACT-R performs filtering on incoming data but this 
functionality is not influenced by availability of resources and thus does not help to deal with 
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sensory overload situations. The OSCAR architecture does not implement notable resource 
management or attentional capabilities. 
 

4.3 Learning 

The CLARION architecture includes both sub-symbolic and symbolic learning, with these two 
learning modes having a rather unique relationship in which symbolic knowledge is built on top of 
sub-symbolic knowledge. This approach to learning is unique among the reviewed architectures, 
especially in that it allows for systems that do not strictly require any initial knowledge 
(bootstrapping). LIDA features several types of learning, both sub-symbolic and symbolic, with 
each being focused on individual parts of the system. Explicit learning of attentional control is 
noteworthy in the architecture. In NARS, learning is performed by a special type of non-axiomatic 
reasoning that is performed on experienced data which leads to beliefs that have different degrees 
of certainty. In its current implementation, NARS has some limitations when it comes to learning 
procedural skills as commands for actuators are not a natural fit for a logical reasoning language. 
Work is currently underway to address this issue.11 OSCAR performs learning on the basis of first-
order logic with supplied inference schemes, with the selection of individual inference schemes 
being adaptive according to experience. The defeasible reasoning process accommodates and 
resolves conflicting beliefs when necessary. As in NARS, learning in OSCAR is performed only at 
the symbolic level and the same issues with procedural learning apply.The Soar architecture has a 
main learning mechanism that involves search spaces and operators, with solutions being stored 
for future use as chunks. A sub-symbolic reinforcement learning mechanism is also present which 
relates stored knowledge to operational situations. As both symbolic and sub-symbolic learning 
are included and operators are a natural match for actuator commands, the learning mechanisms of 
Soar can be considered fairly complete. ACT-R is, historically and operationally, closely related to 
Soar and has similar learning mechanisms, although Soar has more diverse learning modes and 
types of memory (semantic, procedural, episodic). In Ikon Flux, learning is performed by creating 
models from observed experience which are bi-directional in nature (forward/inverse), meaning 
that they can both predict future states and generate operations to bring about desired states. Not 
being limited to reasoning for learning gives the architecture a considerable advantage in dealing 
with procedural learning compared to architectures like NARS and OSCAR. Learning in AKIRA 
consists of adaptive changes to weights of activation links based on system performance and thus 
addresses the subsymbolic level only. This is an advantage for procedural learning but greatly 
limits or even precludes symbolic reasoning. While the core YMIR architecture does not perform 
learning, it has been augmented with reinforcement learning in later work. 
 

4.4 Meta-learning 

 
Meta-learning is the ability of an architecture to get better at learning something – to learn to learn. 
None of the Ymir, AKIRA, and ACT-R architectures contain functionality allowing or supporting 
self-inspection, and as a result they are all incapable of supporting meta-learning. NARS does not 
contain meta-learning functionality, but this is certainly not precluded in its present state since it 
already supports learning and reasoning, and is targeted as future work. Similarly, Soar is capable 
of reasoning about its own operation, but like NARS this results only in changes in content – the 

                                                   
11  Pei Wang, 2012, personal communication.  
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system is static at the structural level. Further limiting is the fact that self-inspection is not an 
integral part of the Soar architecture, and the difficulty or ease of imparting meta-learning to Soar 
is highly dependent on the already-implemented learning algorithms, and the difficulty associated 
with implementing learning for the particular domain(s) the system is intended for. On this point 
NARS is slightly ahead of Soar. In OSCAR, the adaptive selection of reasoning schemes is a step 
in the meta-learning direction, but again, is not explicitly addressed. CLARION has a dedicated 
module for meta-cognitive aspects which monitors operation and modifies parameters of other 
modules at runtime, and is thus a step up from the already-mentioned architectures. However, 
CLARION is similarly fixed at the structural level. The learning mechanism of Ikon Flux is 
identical at the meta-cognitive level, giving the architecture the strong capabilities of the bunch to 
reason about its own performance and modify itself, on both the content and structural level. The 
unique ability of Ikon Flux to reconfigure its own structure is the result of the plastic and fine 
grained nature of the architecture. Although LIDA also features identical learning mechanisms at 
cognitive and meta-cognitive levels, the underlying architecture is fixed. 
 

5. Autonomy Discussion 

How appropriate are the reviewed architectures as platforms for building AI systems with respect 
to our autonomous exploration robot example? Table 10 attempts to roughly quantify the scale of 
the problems faced by each architecture in each one of the four areas of our autonomy comparison 
framework based on the reviews above.  

Table10 highlights a common tendency – which is also true for cognitive architectures in 
general – to ignore realtime operation and resource management aspects. From a practical point of 
view, these capabilities are essential for any higher-level intelligence, and therefore hints at a 
prevalent detachment of cognitive architecture design from concrete operation in real-world 
settings. Ignoring practical matters clearly delays most useful applications of the technologies 
being developed. But the resulting problems may cut deeper. Ignoring the needs for resource 
management is likely to lead to time being spent on projects with such fundamental problems that 
the future goal of embodied real-world operation will be nearly – or completely – impossible. 
What is worse, by ignoring fundamental principles in the operation of such systems the theoretical 
foundation is likely to be flawed. To take an example, the Soar architecture has been in 
development for over 30 years. It is tempting to ask why it does not have more powerful 
capabilities and demonstrated applications to practical problems. Architectures that assume 
unlimited time or computational resources cannot give rise to systems that operate in a world (i.e. 
the real world) where unlimited resources do not exist – such approaches can only support 
problems that we would consider toy problems, devoid of much of the complexity of the real 
world that human beings live and operate in.  

Table 10 also highlights the importance of designing architectures from the get-go with a 
more complete set of cognitive functions and operational capabilities, as was the case in the 
development of the architectures scoring highest. There is substantial difficulty involved in 
retrofitting existing architectures with new cognitive functions (cf. Garlan & Ockerbloom 1995). 
Consider, for example, the problem of adding meta-learning capabilities to architectures that were 
not designed with this ability in mind, or implementing realtime functionality in architectures that 
are largely “timeless”. For most, if not all, complex systems conceivable, this is an intractable 
problem. 

Current methodologies in the design of AI systems almost exclusively involve manually 
constructed systems, where learning takes place on the data/content or module levels, which we 
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have called constructionist AI. It is reasonable to assume that significantly larger and more 
complex system than exist today are necessary to realize systems approaching human-level 
intelligence. However, methodologies relying solely on a constructionist approach are doomed 
because of the practical restrictions on complexity and size for any software systems designed and 
implemented by humans. Thórisson (2009) proposes a constructivist AI methodology that 
advocates self-directed, bottom-up architectural growth instead of the top-down, handcrafted 
approach currently prevalent in the field. Although constructivist AI certainly presents new 
challenges, it holds promise in terms of building systems where complexity must go beyond what 
humans can deal with using present methods. Ikon Flux is the only architecture we are aware of 
that addresses the difficult problems related to distributed-ness. The CLARION architecture comes 
a close second, but while meta-learning is desirable in terms of autonomy, it is not as critical as 
fundamental support for realtime operation, which it lacks. Ikon Flux and CLARION differ 
substantially in terms of granularity, with Ikon Flux having smaller components, making self-
modification more feasible. Ikon Flux has been implemented and put to use in practical settings, 
but a thorough evaluation of its premises and performance lies in future research, as some of its 
key principles will be evaluated over the next two years as part of the HUMANOBS project (c.f. 
Thórisson, 2009). VARIAC is an architecture with seemingly similar goals of open-ended self-
growth (Hall, 2008). However, insufficient information about this architecture has prevented us 
from making a sufficiently thorough comparison of it to the other architectures reviewed here. 

Some predictions place the availability of affordable computers with a processing capacity 
equivalent to that of the human brain at around the year 2020-2025 (Kurzweil, 2006). This 
estimate is based on reasonably strongly argued evidence; even if the estimation of the human 
brain’s computing power is off by an order of magnitude or more this would only delay the 
prediction by a few years, as the drop in the cost per CPU cycle is increasing exponentially. 
However, assuming that computational power equivalent to the human brain is needed to generate 
human-level artificial intelligence, this is probably a low estimate as researchers have generally 
required at least tenfold the computing power to develop a technology that a product relying on 
this technology ultimately requires after refinement; we should see the first inklings of such 
machines perhaps around 2030 or shortly thereafter. However, this hinges on our ability to find 
implementation methods that do not rely on constructionist AI, and it is highly doubtful that 
manual design is a viable or even possible approach to building such software. The amount of 
remaining work in creating such systems should thus not be underestimated: Considering that 
evolution had around 4 billion years, as measured from beginning of life on earth, to create the 
human brain, it is likely that these future AGI systems will have to deal with some part of a 
development history too, which might require an additional one or two orders of magnitude more 
computing power. In other words, development of such systems may involve an interleaved 
mixture of evolving with the environment through self-growth, leaving open the possibility that 
existing predictions for human-level AI may require two orders of magnitude more computing 
power than present estimates suggest. 

Even without the somewhat pessimistic estimates of computing power requirements, there 
are strong and obvious reasons to assume that architectures based on methods that are inherently 
unable to run on parallel hardware will face severe challenges moving forward: There are strong 
limits to the speed that any single-pipeline CPU will reach in the coming decades, as well as hard 
physical limitations on the horizon. Should quantum computers become commonly available in the 
next few decades, some architectures based on parallel processing may reap huge benefits over 
those that are not. But even so, the present move towards multicore CPUs is a trend that is likely to 
continue for essentially this reason. 

While it is perhaps a bit too early to tell, our results indicate that it is quite possible that 
currently available technology presents a somewhat incomplete framework that can be used to 
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build future autonomous systems rivaling that of our example jungle-space-underwater exploration 
robot. No single architecture seems perfectly positioned to do so, but many of the features 
demonstrated in the reviewed architectures take steps that give reason for being optimistic. 

The architecture comparison presented in this paper reveals that very few existing  
cognitive architectures are based on viable methodologies to reach human-level autonomy or 
beyond, as represented by our autonomy comparison framework, by continued incremental 
development.To achieve the potential of human-level autonomy and intelligence we argue that 
present research must search for methodologies with some promise in that direction, able to handle 
systems of substantial size and complexity. Given our best estimates of the complexity of such 
systems, this excludes methodologies based on manual implementation as well as structurally 
and/or functionally fixed architectures. In our opinion, constructivist AI is – i.e. systems that can 
automatically organize their own growth in light of experience – is the most promising candidate 
in this respect 
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