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Abstract. Autonomous knowledge transfer from a known task to a new
one requires discovering task similarities and knowledge generalization
without the help of a designer or teacher. How transfer mechanisms in
such learning may work is still an open question. Transfer of knowledge
makes most sense for learners that must learn numerous novel things,
since the value of the ability to transfer will rise with increased experience
(other things being equal). In this case a cumulative learning mechanism
incrementally unifies new knowledge of novel phenomena with existing
knowledge, increasing its breadth, depth, and accuracy over time as expe-
rience accumulates. Here we address the requirements for what we refer
to as autonomous cumulative transfer learning (ACTL) in novel task-
environments, including implementation and evaluation criteria, and how
it relies on the process of similarity, analogies and ampliative reasoning.
While the analysis here is theoretical, the fundamental principles of the
cumulative learning mechanism in our theory have been implemented
and evaluated in a running system described priorly. We present argu-
ments for the theory from an empirical as well as analytical viewpoint.
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1 Introduction

Any agent with general intelligence must be able to deal with novel situations.
Since novelty is relative to a learner’s knowledge of the world, one way to handle
novelty – whether it is a novel juxtaposition of familiar things, a never-before-
seen variable or factor, or something entirely new – is to use for guidance priorly
experienced situations that seem similar. This is what the canonical concept
in psychology of transfer learning (TL) (or transfer of training) refers to [5].
What is at stake is an application of prior knowledge and training to a new
instance which may (or may not) be mostly identical, or wildly different from
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what the agent has seen to date. Since novelty is abundant in the physical
world, this must be (partly) how the learning process works in many animals:
They can autonomously (without direct teaching) transfer prior experience to a
new situation to (a) classify it, (b) identify its principal factors, in light of active
goals, (c) view it in light of prior experience of similar situations, (d) create and
initiate the goal-driven actions, in light of currently active goals, and (e) monitor
progress in light of predicted outcomes and adjust actions accordingly, possibly
involving a, b, c and d.

This kind of TL requires methods for measures of similarity and relevance,
and a compositional knowledge representation. It is cumulative due to the inte-
gration of new with old information, but also in that the selective application
of prior experience is furthermore subject to learning: If incorrect conclusions
are drawn when judging similarity and relevance this can be retroactively dis-
sected, inspected, and learned from. A major mechanism for the comparison is
analogies, and this is in turn what is learned: Improved analogy making.

Other kinds of reasoning, however, are necessary also – abduction, deduction,
and induction – which means we are really talking about ampliative reasoning.
The more domain-independent the cumulative learning is, the more effective and
efficient knowledge accumulation can become, and this is where ampliative rea-
soning enters the picture: Using (a) deduction for prediction, based on learned
(hypothesized) principles, (b) abduction for deriving plausible causes, and (c)
analogies for adapting acquired knowledge to new situations, multiple lines of
reasoning can help the learner exclude certain things while highlighting others,
more quickly getting to the crux of how to achieve any task in light of prior ex-
perience. Finally, (d) induction enables generalization based on invariants across
multiple tasks and situations. Reasoning in the physical world must be non-
axiomatic because there is no ultimate guarantee that anything is as it seems,
and this means that cognitive reasoning cannot follow the rules of formal rea-
soning [12]. Logic can steer the knowledge accumulation process and enables the
cognitive system to make predictions, do planning and transfer its knowledge.

Just as knowledge can take various forms, learning – the effective accumu-
lation of knowledge for future usage – may also rely on various methods. Since
each type of situation/task has its own complexities that may make learning and
performing difficult for a specific learner, a general machine intelligence (GMI)
must be able to not only use the relevant knowledge (knowledge transfer), but
also change its own learning style (transfer of learning), based on the features
of a particular situation/task. Transfer of learning calls for multiple meta-levels
of learning that allows an autonomous cognitive system to choose a knowledge
acquisition paradigm that fits a particular task/situation, something which re-
mains to be properly addressed.

To build an intelligent machine that can create its own knowledge and au-
tonomously transfer it to different related situations, evaluate the outcome, and
learn from this, all autonomously, an architecture is needed that can make analo-
gies on its own accord and, rather than relying on a human’s intuition about
similarity and relevance, create its own knowledge for how to do that, based on
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its own understanding of the world. For GMI the focus needs to be on the actions
listed above (a to e), and these need to be integrated with ampliative reasoning.
To our knowledge, two approaches to cumulative transfer learning have been
demonstrated to date, the AERA system [7] and NARS [13], but an analysis of
these with respect to TL remains to be done.

In this paper we present a theoretical analysis of transfer learning (TL),
based in part on this prior work, with an attempt to put it into the context of
both narrow artificial intelligence (AI) systems and general machine intelligence
(GMI). To clearly separate our work on TL from work outside of GMI, we
use the term autonomous cumulative transfer learning (ACTL). Faced with a
novel situation, a learner capable of ACTL selects a specific model or modeling
paradigm on its own accord, in light of an analogy that it has itself come up with,
creates a new set of models, and uses them in the novel situation. The ACTL
process relies in part on selective comparison of similarity and high-level analogy-
making. After related work, we describe our theory of autonomous cumulative
transfer learning. This is subsequently supported by analytical arguments and
empirical data.

2 Related Work

TL has made an appearance in various machine learning (ML) paradigms to
date, invariably with the shared goal of increasing learning rate and improving
its flexibility. Working on deep neural networks (DNNs) some have implemented
a scheme where a human programmer selects a subset of trained network’s layers
and reuses them to train another network in a similar related domain [14], [15].
Working with the concept of TL in reinforcement learning (RL) techniques others
have trained RL for a task and then repurposed it to a similar one [10]. Often
in these approaches a human software developer is needed for choosing tasks
and making the necessary analogies between the two tasks. Such an approach
falls short of what is needed for general machine intelligence (GMI), where the
machine must do this automatically and on its own accord, including making
the analogies, learning from them, and unifying any new knowledge produced
this way with existing knowledge in an explainable manner.

To achieve a positive TL, the agent must determine “what, when, how and
why” a knowledge in the memory has to be chosen and transferred to another
task. Most of current TL methods assume that the transfer is done offline, that is,
happening before the agent starts learning the target task, and thus the question
of “when” to transfer has not been much addressed in ML research to date. In
addition, a human programmer decides “what” should be transferred, according
to some intuition or sense of similarity. Thus, task similarity is another topic that
has largely been out of scope in ML research, although a handful of papers have
proposed task mappings via concepts from bisimulation [3] and homomorphism
[9]. Efficient methodologies are needed to autonomously find similarities that are
independent of domain knowledge, although teaching an AI about the domains
and the way it can decompose them into sub-domains based on features could be
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promising [1]. To have an autonomous life-long learning architecture, the learner
must be able to find inter-task mappings on its own, do TL while it is learning
and performing the target task, and choose the most appropriate knowledge in
a specific situation with respect to the time.

One way of thinking about TL is that the knowledge should be created, con-
verted into a generalized form, and stored in the memory in a way that it will be
applicable in many future situations. From this point of view, knowledge transfer
is, in fact, using the most relevant existing knowledge in different scenarios, in
an autonomous manner. This is very similar to how NARS [13] and AERA [8]
do TL.

3 Autonomous Cumulative Transfer Learning—A Theory

We consider the novelty of an experienced phenomenon Φ a measure on its famil-
iarity to a cognitive agent—how similar Φ’s aspects are to the agent’s available
current knowledge. We assume a phenomenon Φ such as state, a process, an
occurrence, etc. to consist of aspects4 made up of elements {ϕ1 . . . ϕn ∈ Φ} of
various kinds, including relations <Φ (causal, mereological, sub-structural, etc.)
and transitions TΦ (component processes, transformations, etc., i.e. sub-divisions
of Φ), that couple sub-parts of Φ with each other (and with those of other phe-
nomena). Operationally, given a cognitive agent in a task-environment TE and
a particular such target phenomenon Φ, if the agent can predict a particular
selected aspect ϕn ∈ Φ using its prior knowledge, then ϕn is familiar to the
agent, and non-novel. If the agent can do so for all important aspects of Φ it
may be claimed “totally” familiar and non-novel.5 An agent whose knowledge is
compositional – that is, consisting of models made up of smaller models, and can
be meaningfully decomposed in a multitude of ways – can, for every complex Φ
with a large number of aspects, test its ability to predict each of those aspects
(ϕ1, ϕ2 . . . ϕn ∈ Φ) and record the result; the outcome would be a single number
Φnov that implies a percentage or equivalent of Φ that is novel to an agent, i.e.
those aspects the agent failed to predict.

Prediction of a phenomenon must cover the dynamic interference or pertur-
bation by the agent (or something else), and thus some of the relations modelled
must include causality. Since causal relations in a lawful world, and in fact all
types of relations, make it possible to generate and use rules, the agent’s cogni-
tive system must contain some rule-handling mechanisms—reasoning. Reasoning
may also be important for selecting which aspects are important for which sit-
uations or tasks. Building up knowledge incrementally over time means making

4 We use ‘aspects’ as shorthand for ‘sub-divisions of a phenomenon that are of prag-
matic importance to an agent’s goals and tasks’.

5 Since phenomena in the physical world contain an infinite set of subdivisions such
a claim would always be limited by pragmatic considerations (see prior footnote).
Time and energy will also present hard limits for any such consideration. Thus, there
is no literal sense in which complete familiarity may be reached.
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a model composed of smaller models that increasingly explains target phenom-
ena, not unlike the process of scientific empirical research. As we have argued
elsewhere [11], ampliative reasoning (combined deduction, abduction, induction
and analogies) is a way to manage knowledge created under these requirements.

To compute the familiarity of ϕ the agent must retrieve relevant knowledge
from its knowledge base, k ⊂ KB, for comparison, ΦSim = Ψ(k, ϕ), where Ψ
is a multi-dimensional comparison computation using ampliative reasoning and
ΦSim\Φnov is the similarity ratio, relative to the set of target aspects of Φ. Other
things being equal, the less familiar something is to the agent, the more novel it
is. Novelty is thus always relative to the agent’s own current knowledge and is
multi-dimensional and continuous.

The transfer learning mechanism we propose states that this multidimen-
sional similarity computation is used to identify overlap between new patterns
and previously learned patterns and use it to solve the new task. An autonomous
cumulative transfer learner (ACTL) makes analogies and comparisons regarding
the number, values, dynamics, and importance of sets of percepts6 and inferred
relations through ampliative reasoning, extracting the importance of each iden-
tified perceived variable (or state) and in parallel, discovers the proper set of
important variables (of each state), the values of these variables and the dynam-
ics of those values.

The AERA-S1 system [8] was constructed based on a proto-version of this
theory and demonstrated to be capable of learning highly complex tasks from
observation. Its operational results concur with the theory’s predictions, lending
the theory some credence. Below we provide further arguments in support for
it, from two angles, one analytical the other empirical.

4 Argument from Similarity

One hypothesis we can draw from our theory as outlined above involves percepts.
Assuming that a phenomenon at time t is composed of any number of aspects, as
defined above. The values of the variables that comprise each aspect can change
over time, as well as the precept of the aspect, in accordance with the nature of
the phenomenon Φ under observation. The agent can affect aspects of Φ via its
actuators; we call variables that can be changed in this way “controllable,” VC .
The following is involved in our argument from similarity:

– The available variables VA. A variable of VA which can be measured at a
time t is an observable of the phenomenon Φ. It should be noted that only a
part of VA might be always observable, and those are the variables that has
measurable values in only particular time periods.

– Transition functions (via physical forces).
– prediction functions

6 The term ”percept” as used here references sets of variables in the preceding sense,
whether generated by sensors here-and-now, retrieved from memory, or imaginatively
constructed.
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– The commands the agent produces via its actuators
CMD = {cmd1(t), cmd2(t), . . . , cmdn(t)}.

which have permissible ranges of values, in accordance with the actuators’
specifications.

– The controllable variables the commands can affect,
Vc = {vc,1(t), . . . , vc,n(t)}.

– The agent’s knowledge of a task with respect to the task’s goal(s), including
all its essential constraints and initial information sufficient to successfully
perform the task (and originally bootstrap learning it).

– Knowledge-based similarity estimation functions, KBSF, which check values
and occurrence times in which causation happened, of available variables in-
side their observability range. For a causal link, a SF finds similarity between
the values and the occurrence times via a time and a value threshold.

Our argument rests on comparing states. Similarity functions are defined for
variables, states, relations, and transformation functions. The state of a phe-
nomenon is composed of a set of variables which are available for the agent
and can be observed and manipulated. A phenomenon going trough changes
is considered as a sequence of states, as specified by a set of relevant transition
functions (dictated by the world). To compute the similarities between these and
relevant knowledge, the variables of the states must be either (already) observed
or currently observable by the agent. Taking actions on manipulatable variables
produced new states and new aspects of a phenomenon; this is an important
method to test predictions, and the process may produce new knowledge about
a phenomenon’s aspects.

If two or more states, phenomena, or aspects have a high number of identical
variables, over the total set of variables (uninon of all vars under consideration),
they have state similarity in arity (SSA). This form of similarity is time-
and value-independent. Assume two states, s1 and s2; the relationship s1 SSA
s2 holds if the ratio of identical variables (Vidnt = s1 ∩ s2) to all variables
(V = s1∪s2) is above an arbitrary threshold ε, that is, if the number of elements
in Vidnt is n, and the number of elements in V is m, we have

0 < ε <
n

m
< 1 (1)

Another dimension that’s needed we call the state similarity of important
variables (SSIV) between two states. First, the importance of variables must
be determined based on the task goal(s).7

Each variable is scored with respect to its (predicted) presence in the causal
relations that lead to achieving goals.

Therefore, if two or more states have some common variables and the follow-
ing ratio is above an arbitrary threshold δ, those two states are considered to

7 This may be done by e.g. backward-chaining from the goal state to the present state
using various assumptions about the TE. However, an adequate demonstration and
analysis of this process would require its own paper and will not be discussed here.
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have SSIV. The SSIV could be calculated in this way: ratio of the sum of the
scores of common variables multiplied by 2 to sum of the scores of all variables.

0 < δ <
2 ·

∑m
i=1 score(vidnt(i))∑n

i=1 score(vnidnt(i)) + 2 ·
∑m
i=1 score(vidnt(i))

< 1 (2)

where m is the number of identical variables, and n is the number of non-identical
variables.

The importance is calculated based on scores the variables acquire over time.
The scores are given with respect to the repetition of variables’ presence in the
path(s) of achieving a specific goal. In AERA [8], the saliency of an input (com-
posed of variables with different values - i.e. state) is compared to the system’s
models, and if the saliency (overall confidence) is higher than a specific threshold,
the input will be considered relevant. Here, we introduce an analogous mecha-
nism, which considers a threshold for each of the proposed dimensions, including
the arity, value, importance, and transition dynamics in the states. Two or more
states, which contain some common variables, have state similarity regard-
ing closeness of variables (SSCV ) if the shared variables have closeness in
either values (Value SSCV) or time in which the variables are measurable (Tem-
poral SSCV). Assume s1 and s2 with n identical variables, and vi, i = 1, .., n, is
an identical variable of s1 and s2. Consequently, vi(t

′) and vi(t
′′), have Temporal

SSCV if

t′′ − t′ < α, t′ < t′′ (3)

and value SSCV if

|vi(t′′)− vi(t′)| < βi, i = 1, ..., n (4)

where α and βi are arbitrary thresholds, and they can be adjusted by the agent
through experience with respect to the TE.

The SSCV approach also holds for single variables similarity comparison,
and we may have value variable similarity regarding closeness (value
VSC ) and temporal variable similarity regarding closeness (temporal
VSC ).

In the third category, which is relational similarity, the relations between
states are compared; here we will stick to causal relations. If state s1(t) is the
cause of state s2(t′), and if state s3(t′′) is the cause of state s4(t′′′), we can
compare the cause states and effect states of s1 → s2 and s3 → s4. In this
comparison, the similarity dimensions of SSA, SSCV, and/or SSIV are exam-
ined between pair of causes ”s1 and s3” and the pair of effects ”s2 and s4”. If
the causes are similar, we have state casual relational similarity (SCRS),
and if the effects are similar, we have state effectual relational similarity
(SERS).

The fourth category, transitional similarity, relies not only on state sim-
ilarity but also on confidence of the causal relations between states. If s1(t) →
s2(t+t′) holds, it is required to check if s3(t′′) has SSA, SSCV, and/or SSIV with
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s1(t). If so, a prediction is made to produce s4(t”+t′′′). Finally, if s4(t”+t′′′) has
SSA, SSCV, and/or SSIV relation with s2(t+ t′), the prediction is correct and
therefore, s1(t) → s2(t + t′) and s3(t′′) → s4(t′′ + t′′′) will have both relational
similarity. Then, we can say s1(t) and s3(t′′) have state transitional similar-
ity (STS), if both of them with the same transition (or prediction) function
reach similar effect states.

If something (variable, state, or relation) is similar to something else (in
the same form) in the knowledge base, it is familiar. If it turns out that a
pair of causal relations has STS, the situation is totally familiar for the agent.
Negative knowledge transfer takes place, if the available states/variables have
state/variable similarity, while they do not have STS. This makes the agent’s
predictions fail, since it uses the same improper prediction function for a par-
tially familiar state it observes. Besides, reaching a goal in a task verifies that
the agent’s predictions were correct. In other words, the agent cannot efficiently
reach a goal (except by pure luck) unless it can make acceptably precise pre-
dictions. A phenomenon with various aspects may have unforeseen and unpre-
dictable aspects. Therefore, given a phenomenon and agent’s knowledge with
some similarity to its sensory information, if the agent can make correct predic-
tions about some aspect of the phenomenon, that aspect is totally familiar and
therefore not novel.

5 Argument from Empirical Data

We used SAGE [4] to evaluate an actor-critic (AC) reinforcement learner [6]
on transfer learning by training it on the cart-pole-task and inverting the forces
after initial training. This corresponds to the source task (original) and the target
task (inverted). Although in the target task (second phase) the force application
has been inverted, all the variables and constraints of the task and observations
are the same, and therefore, we have a high SSCV, a high SSIV and a high
SSA of the observable states. However, as can be seen in the figure (1), negative
transfer learning has happened in the second phase of the learner’s lifetime, and
re-learning of the target task takes about four times longer, than the original
learning of the source task. This means that STS is likely to be very low between
the two tasks, since the chosen actions in the source task lead to a negative effect.

This performance degradation stems from the fact that AC learner does not
use any metric for autonomous analogy-making during its life time, since task
two is, in fact, very similar, and there is only one change in a variable (which, in
general, might or might not be important) but drastically reduces the re-learning
performance. There is also a third phase in the AC learner’s life-time, in which
the force has switched back again to the normal mode (after 2500 epochs). As
can be seen, again the learner does not find the ”force”s importance. Otherwise,
it would show faster convergence in the third phase.

This shows that a cumulative learner and of course, an ACTL are needed
to spot the novelty in the effect states and compare it to previous effect states
identifying cause-effect-chains with high SCRS and low SERS and re-linking the
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models representing those two causal relations in order to change the way of
making prediction and thus, taking actions in the target task.

Fig. 1. Training and evaluation on TL of an Actor-Critic (AC) reinforcement learner.
Cart-pole task used for training and evaluation derived from [2]. After training period
the controllables are inverted (forces from F = [10, -10] N to F = [-10, 10] N). Original
training is the source, inverted re-training the target task. AC trained for 500 episodes
before inverting. Re-trained for 2000 epsiodes before re-inverting. Evaluated using the
SAGE platform [4].

6 Conclusions

In this paper we have introduced a new theory about autonomous cumulative
transfer learning (ACTL). It uses similarity measures to identify relevant knowl-
edge in order to transfer it to novel situations during the learner’s life-time. This
similarity computation relies on analogies, performed in an intertwined man-
ner with non-axiomatic reasoning, which are then used to guide the similarity
measurement of a cumulative learner. Similarity as a multidimensional metric
to compare situations not only with previously reached states, but rather on
the level of states including their composing variables opens the door for further
investigation of phenomenon description. Thus this approach might not only be
helpful in order to make life-long, cumulative learning possible, but might also
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give further insights into how a learner can put experience into contexts and
domains.
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8. Eric Nivel, Kristinn R Thórisson, Bas R Steunebrink, Haris Dindo, Giovanni Pez-
zulo, M Rodriguez, C Hernandez, Dimitri Ognibene, Jürgen Schmidhuber, Ricardo
Sanz, et al. Bounded recursive self-improvement. arXiv preprint arXiv:1312.6764,
2013.

9. Jonathan Sorg and Satinder Singh. Transfer via soft homomorphisms. In Proceed-
ings of The 8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pages 741–748, 2009.

10. Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(Jul):1633–1685,
2009.
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