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INTRODUCTION 

 

This report describes a task analysis for safe, trustworthy automation of Arrival Control (AC) – the Air 
Traffic Control (ATC) job of ensuring that aircraft arrive at the airport with sufficient time in 
between. This is an implementation of a methodology we have developed for the analysis of tasks, 
intended to complement the training and education of automatic learners, specifically learners that 
are intended to be introduced incrementally into automated workflows. Our work specifically 
targets incremental introduction of safe and trustworthy automation for complex workflows, 
hereinafter referred to as STACW. We refer to a chosen task – the main task that is the target of 
training (Arrival Control in this case) – as the High-Level Task (HLT).  

In our methodology the HLT is decomposed into a hierarchy of lower-level tasks, which are to be 
learned cumulatively by an AI system. Arrival control is highly suited to this due to a-priori well-
documented structure and ability to be evaluated for quality. 

The authors gratefully acknowledge partial support for this work from Isavia - Iceland's aviation 
authority.  
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1  Task Analysis Methodology 

1.1  Task Evaluation & Selection 
The HLT’s is analyzed using a match rubric (MR), consisting of several criteria on which the high-level 
task (HLT) must be scored. The MR is intended to give an initial rough indication of 1) how difficult 
automating a HLT will be and 2) how much it will benefit from our methodology targeting STACW 
(safe and trustworthy automation for complex workflows), as opposed to other (current and future) 
methods. Specifically, in cases of relative simplicity, where manual programming is relatively 
straightforward and no learning is necessary, and where there is no expectation of modification or 
increase in automation after deployment, the STACW methodology is likely to be overkill. It should 
be noted that this indication cannot be perfect since perfection would require an actual 
implementation where its numerous details of execution are settled. 

Scoring an HLT on the MR should be done in a collaborative effort between developers, clients and 
users, and can be refined through a deeper understanding of the STACW methodology, AI system 
and the HLT itself. As such, the evaluation can be performed in stages: at first rough estimates might 
be given for each criterion, and if the HLT then looks promising enough (e.g. compared to other 
candidates) it can be analyzed deeper, which then facilitates further refinement of the estimates, so 
that a more accurate verdict can be given.  

1.2  Task Decomposition 
The High-Level Task will need to be decomposed so that components can be cumulatively learned 
and introduced into the workflow. We recognize three complementary types of decomposition: 

Decision-based decomposition identifies all decisions that need to be made in the HLT, at a 
sufficiently low level. The concept of “decision” is taken very broadly and incorporates for instance: 
performing actions, making predictions, obtaining particular information, updating the current 
knowledge base, etc. Lower level decisions may be grouped together into higher level decisions to 
form a decision hierarchy, where a low-level decision process may be used by multiple higher-level 
decisions. 

Feature-based decomposition (or situation-based decomposition) in a directly-learned task (or 
decision) attempts to identify (ideally independent) subgroups of features/variables that could be 
learned separately. For instance, in the “predict arrival time” decision, we have features for wind 
and precipitation, and we plan to train the system first on “no wind, no precipitation”, then on 
“various wind conditions, no precipitation” and “no wind, various precipitation conditions”, and 
finally on “everything combined”. This expect this to lead to faster (curriculum) learning of 
“everything combined” than if we had started with that from the beginning. Furthermore, by 
allowing us to “skip” tricky situations, they no longer hold back the introduction of (partial) 
automation into the workflow; the system could still automate the majority of simpler cases, while 
warning or deferring to a human operator in trickier ones that have not been adequately learned 
yet. 

Functionality-based decomposition is a decomposition based on the functionality that is introduced 
into the workflow, which tends to be based mostly on decision-based decompositions and 
somewhat on feature-based ones. To create and introduce functionality, it is not sufficient that the 
AI system has (partially) learned the relevant tasks; it is also necessary to integrate such functionality 
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into the workflow, e.g. by adding certain GUI elements to the workers’ software. In addition to being 
guided by other decompositions, which determine what functionality might be available, this is also 
guided by the actual workflow and identifying opportunities / situations where automation is most 
desired. 

 

2  Task Selection for STACW Development 

The Match Rubric mentioned above and described in detail in Appendix 1 was adapted from an 
earlier Project Rubric that was meant to determine how well a High-Level Task would be suited for 
the Project of developing the STACW methodology and testing its feasibility. The criteria for 
developing and applying the methodology are slightly different: during development we need don’t 
only need to worry about how well STACW will work for the HLT, but also how well the HLT will 
allow us to test out different approaches for task decomposition, curriculum design, teaching and 
learning.  

Appendix 2 shows how our task analysis methodology was used on four candidate HLTs: Arrival 
Control, Conflict Resolution, Workload Optimization and Directive Adaptation Assistance. Ultimately, 
the high-level task of Arrival Control selected for the STACW development project as it was found to 
best match the desiderata. 1 

In the context of the STACW research project — and perhaps also future application of the project's 
results — we should initially create one or more simplified abstractions of the selected High-Level 
Task, with well-specified progressing levels of complexity and realism. This enables us to first test 
out the feasibility of ideas, without the confounds inherent in a highly complex application domain, 
with subsequent steps already mapped out to chart the progress of the research. 

The process of “mocking up” a simplified task can be performed using several strategies. The main 
idea is to reduce the number of things that need to be taken into account by the AI system and the 
teacher. The decompositions mentioned above can help with this. Functionality-based 
decomposition can be used to select a (small) cluster of subtasks that still form a meaningful unit of 
functionality. Decision-based decomposition can be used for Wizard of Oz prototyping where 
(sub)tasks are replaced with components that either provide some arbitrary data or actually 
hardcode the functionality (so it doesn’t need to be learned). Feature-based decomposition is 
important for the isolation of variables / features / dimensions, which can be omitted or restricted in 
range — e.g. by discretizing a continuous variable, or only allowing certain (ranges of) values.  

For Arrival Control, the main simplification we made is as follows: 

There is a fixed number of aircraft, which all have an ID, a velocity and a distance to the runway. An 
action involves listing an aircraft ID and a plus or minus, signifying that the aircraft should instantly 
increase/decrease its velocity by 10%. When an aircraft lands, the AI gets a reward of 10, and when 
another aircraft lands within one minute it gets a punishment of -1000. Subtasks include calculating 
the time to land, noticing conflicting aircraft pairs, and solving conflicts. The System is provided with 

 
1 This does not mean that the STACW methodology is unsuited for the other HLTs: they are merely less optimal 
for the methodology’s development.  
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control structures that iterate over: aircraft for which the arrival time is unknown, pairs of aircraft, 
and the list of potential conflicts. 

Variations can then be introduced, such as noise in the observations or actions, partial observability, 
various kinds of weather, failed/rejected actions, more flexible actions, removal of hardcoded 
functionality, etc.  

 

Task Characteristics 

An important part of task theory is to understand the characteristics of a task-environment.  

These characteristics can help compare different tasks, understand how difficult it will be to 
learn/automate, and pinpoint where the problems lie.  

We have identified the following characteristics as relevant when one wants to teach a task to a 
cumulative learner: 

 

Learnability 
The HLT should be learnable by the algorithms and systems we intend to use (i.e. CAPTAIN, but 
ideally also Hierarchical Reinforcement Learning / Inductive Programming, and perhaps NARS and/or 
AERA or other similar systems).  

‘Grading’ refers to how well the technologies we’re currently considering could potentially learn the 
task. A 0 here would mean it’s impossible, while a 10 would mean it’s completely trivial. We should 
probably aim for something like a 7 or 8, because it still needs to be interesting and be able to derive 
significant benefit from pedagogy. 

One example of something that can reduce learnability is if there is a variable amount of inputs, and 
evaluating them pairwise cannot be done because there are too many interdependencies.   

 

Teachability 
We want to use artificial pedagogy, so the (sub)tasks will need to be teachable by using techniques 
like part-task training, heuristic rewards, curriculum learning, demonstration, etc. This is more of a 
meta-requirement that works through other ones like decomposability, data availability, etc. 

Grading: This is a function of many criteria and grading guidelines have not yet been developed for 
the teachability dimension. What needs to be taken into account is how many different teaching 
methods could potentially be used, both considering the task and the available data. Also, 
consideration must be made about the necessity and estimated added value of teaching.  

 

Decomposability 
The HLT will need to be decomposable into a hierarchy of subtasks. This will be done by humans. 
The hierarchy is a directed acyclic graph where the nodes are (sub)tasks and the vertices indicate 
usage of one inside of another. If the hierarchy is a tree, lower-level subtasks are not shared 
between higher-level ones, which does not allow as much functionality sharing and transfer 
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learning, but may enable parallelization of learning and could be easier to deal with. Ideally, each 
subtask should be fairly modular and individually useful for the client/user, and learning one should 
be facilitated by knowledge of others. If multiple distinct decompositions are possible, this is a plus. 

Grading: If the HLT cannot really be decomposed, the grade should be a 0. The ideal case for 
decomposition arises when the subtask hierarchy is both wide and deep, if subtasks are used by 
multiple parent/supertasks, if subtasks are modular and individually useful. Here we are primarily 
concerned with decompositions into subtasks. In other words: temporally abstracted superactions. 
Decomposition of a task by e.g. considering different regions of input space (e.g. predict X with clear 
weather, predict X with rain, predict X with wind, etc.) can be useful, but typically not for 
hierarchical reinforcement learning.  

 

Scalable Complexity 
The HLT in its simplest form should be reasonably simple so that it can be the beginning of 
something larger, as the machine learns more. It also should be complex enough that it can be 
decomposed into meaningful subtasks. Ideally, we should be able to tune/scale the 
simplicity/complexity for pedagogical, scientific and practical reasons.  

Grading: The ideal case for scalable complexity would be if the simplest case is very simple, and 
there exists a clear and gradual trajectory through which task complexity/difficulty can be scaled up 
to an intricate real-world task. Points will be deducted for: difficult simplest case, 
trivial/uninteresting hardest case, and non-smooth complexity scaling. The last case could occur if 
there are only a few complexity settings that make sense. The best/smoothest complexity scaling 
would even allow for using different scales with the same AI instance (i.e. for curriculum learning).  

 

Definability 
We should be able to define the HLT with relatively high precision. Most importantly, we need to 
know exactly what decisions are made—consciously and subconsciously—in terms of (possibly) 
relevant inputs, type of outputs, and the goal that is served.  

Grading: This is a question of how well the HLT can be described in terms of inputs, outputs, 
methodology and evaluation. Something vague like “prevent planes from crashing into each other 
based on all available (unspecified) information and expertise” should get an extremely low grade 
(evaluation is also hard, because no difference is specified between different cases with no crashes). 
A very high grade means that all of these things need to be specified to a very high level of detail: i.e. 
a computer needs to know all decisions that need to be made and does not have a human’s 
common sense, so nothing can be left implicit.   

 

Ease of Performance Evaluation 
As far as task analysis is concerned, most tasks in the ATC domain are fairly well defined. However, 
how to measure performance is not always as clear as would be desired for a learning machine. 
Ideally we should have an exact and objective formula that calculates the desirability of all actions 
and outcomes in the HLT.  
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Grading: This will be 0 if performance evaluation is completely subjective; 10 if it can be captured by 
a simple algorithm. If this is high then training can be more easily automated; the lower, the more 
probable the need for a human trainer/teacher.   

 

Data Availability 
Data must be available for training. For pure supervised learning, we need input-target pairs where 
each input specifies the complete situation and each target the current-timestep ideal output. It 
would in principle be possible to train on these in random order, but if they are part of a sequence 
we can see if we can do something clever with timing--especially if we also have rewards/goals. If we 
use a simulator, this type of data will only be available reliably if we already know what to do in 
every situation, which makes the need for learning a bit redundant, but can be useful in rare 
situations (e.g. because it allows us to get this knowledge into a different “mind”, which can then 
perhaps generalize or reuse that knowledge). For reinforcement learning we need rewards or 
(sub)goals. The more the better. Furthermore, it would be useful to have interesting scenarios as 
opposed to just random ones. A measure of interestingness would allow us great teaching 
opportunities. Finally, if data is not available yet, it should at least be easy to acquire. 

Grading: Important dimensions for data availability are 1) how much is available, 2) whether it 
contains all relevant variables, 3) the temporal nature of the data, 4) whether it is easy to work with 
/ extract / adjust, 5) whether it is already available or can be obtained easily, 6) whether data is only 
from normal/random/boring scenarios or geared towards teaching. Simulators can help generate 
lots of new data and provide a great sandbox for learning control, especially if success can be 
quantified and evaluated in real time.   

 

Achievability 
The achievability of the potential HLT is a measure that takes into account the status of various 
other requirements listed below, as well as envisioned time, monetary and manpower budgets for 
the project.  

Grading: The score can be seen as a probability (0 = 0\%, 10 = 100\%) that indicates the likelihood of 
finishing the project with this HLT given the planned amount of time, resources and manpower.   

 

Task Decomposition 
The High-Level Task will need to be decomposed so that components can be cumulatively learned 
and introduced into the workflow. We recognize three complementary types of decomposition: 

Decision-based decomposition identifies all decisions that need to be made in the HLT, at a 
sufficiently low level. The concept of “decision” is taken very broadly and incorporates for instance: 
performing actions, making predictions, obtaining particular information, updating the current 
knowledge base, etc. Lower level decisions may be grouped together into higher level decisions to 
form a decision hierarchy, where a low-level decision process may be used by multiple higher-level 
decisions. 
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Feature-based decomposition (or situation-based decomposition) in a directly-learned task (or 
decision) attempts to identify (ideally independent) subgroups of features/variables that could be 
learned separately. For instance, in the “predict arrival time” decision, we have features for wind 
and precipitation, and we plan to train the system first on “no wind, no precipitation”, then on 
“various wind conditions, no precipitation” and “no wind, various precipitation conditions”, and 
finally on “everything combined”. This expect this to lead to faster (curriculum) learning of 
“everything combined” than if we had started with that from the beginning. Furthermore, by 
allowing us to “skip” tricky situations, they no longer hold back the introduction of (partial) 
automation into the workflow; the system could still automate the majority of simpler cases, while 
warning or deferring to a human operator in trickier ones that have not been adequately learned 
yet. 

Functionality-based decomposition is a decomposition based on the functionality that is introduced 
into the workflow, which tends to be based mostly on decision-based decompositions and 
somewhat on feature-based ones. To create and introduce functionality, it is not sufficient that the 
AI system has (partially) learned the relevant tasks; it is also necessary to integrate such functionality 
into the workflow, e.g. by adding certain GUI elements to the workers’ software. In addition to being 
guided by other decompositions, which determine what functionality might be available, this is also 
guided by the actual workflow and identifying opportunities / situations where automation is most 
desired. 

 

 

2.1  SIMPLIFIED ARRIVAL CONTROL 
 

Scenarios in Simplified Arrival Control 

Scenario S1: Arrival Control 
The System is presented with IDs, velocities and distances of a fixed number of aircraft and needs to 
predict the time at which each aircraft is expected to arrive at each runway (D1.1). Based on this 
information, the System needs to detect if the arrival times of any two aircraft conflict (D1.2). 
Detected conflicts must then be resolved by telling an aircraft to speed up or slow down by 10% 
(D1.3).  

 

Decisions in Simplified Arrival Control 

Decision D1: Arrival Control 
See Scenario S1. 

Input: IDs, velocities and distances of a fixed number of aircraft 
Output: ID + speed up/slow down 10% command, or nothing 
Method: predict landing times (D1.1), detect conflicts (D1.2), resolve conflicts (D1.3) 
Evaluation: +10 per landed aircraft, -1000 per conflict 

Decision D1.1: Arrival time prediction 
Predict the time at which aircraft A will arrive at the runway. 
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Input: aircraft info for A (ID, velocity and distance) 
Output: time 
Method: distance/velocity 
Evaluation: ‖predicted time - actual time sans interventions‖2 (L2 norm) 

Decision D1.2: Conflict detection 
Predict whether two aircraft A and B will have conflicting landing times. 

Input: estimated landing times for A and B 
Output: yes/no 
Method: ‖timeA - timeB‖1 < threshold 
Evaluation: ‖timeA - timeB‖1 < threshold 

Decision D1.3: Conflict resolution 
Resolve the conflict between aircraft B and C. 

Input: ID, velocity, distance and arrival time of aircraft A, B, C, D, where A is immediately before B, 
and D immediately after C 
Output: ID of B or C + speed up/slow down 10% command, or nothing 
Method: See if the conflict can be mitigated by speeding up B, without introducing conflict with A. If 
not, see if slowing down C works and doesn’t conflict with D. If not, do it anyway.  
Evaluation: ‘global conflict badness after’ – ‘global conflict badness before’ (global conflict badness 
is the sum of all local conflict badness for aircraft pairs, which should be represented by a smoothed 
square wave): 

 

Decomposition of Simplified Arrival Control 

As described above, decision D1 makes use of D1.1, D1.2 and D1.3, while decision D1.3 also makes 
use of the functionality of D1.1 and D1.2. 
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No feature-based or functionality-based decomposition is shown here, because the task is simplified 
to a point where this would not be instructive. More information about decompositions can be 
found in section “Task Decomposition” above and Appendix A. 
 

3  AI Training procedures 

The optimal way in which training can be conducted depends on the task, the learning system, and 
available resources for teaching. Machine learning (ML) is often divided into three main paradigms:  

• Supervised learning, where the AI system is (usually) presented with pairs of inputs and 
target outputs. In the context of arrival control, this could e.g. require a dataset with ATCO 
decisions coupled with a rich representation of the information they used. It would be 
generally assumed that the ATCOs’ decisions were optimal, and the AI would (try to) learn to 
mimic them.  

• Reinforcement learning, where the AI system is given information about the environment as 
well as a desirability score for environment states and actions. The most common way to do 
reinforcement learning has the AI system make its own decisions in a (simulated) 
environment and requires humans to code an automatic scoring function. Learned behavior 
would try to optimize the scoring function, which could lead to superhuman performance.  

• Unsupervised learning, where the AI system is only given unlabeled inputs/observations. 
Without a sense of what is right or wrong, this cannot directly result in desirable behavior, 
but it is sometimes used in combination with other paradigms. By capturing the structure of 
and regularities in the underlying data distribution, supervised learning can be improved 
through “pretraining” or “semi-supervised learning”, and a model of environment dynamics 
can be learned to aid reinforcement learning. Probably the most notable use in arrival 
control would be to use continuous data from real life or the simulator to teach the AI to 
predict future environment states. 
 

Ideally we should have an AI system capable of all three methods of learning, to be 
used depending on the task and availability of data. 

 

D1 

D1.1 D1.2 

D1.3 



Reykjavik University SCS Technical Report   RUTR-SCS18001 

Bieger & Thórisson Page 11 of 47 Reykjavik University 

The typical machine learning process involves gathering a lot of data, or building a simulator, and 
then simply giving it to the AI system to train on. From a teaching perspective this is very minimal 
and suboptimal. There are many teaching strategies that are potentially beneficial (Bieger et al., 
2014): 

• Heuristic rewarding for reinforcement learning, where the AI system does not just receive 
rewards when an ultimate goal is actually reached, but also received intermediate feedback 
to guide it in the right direction. In a chess game we only care about win, draw or lose, but in 
addition to giving large rewards when the game ends (e.g. 1000, 0 or -1000), we could also 
give small rewards when pieces are captured to indicate that this is a good thing to 
try/avoid.  

• Shaping, where a task is first simplified and then gradually increased in difficulty. An 
important concept in learning theory is Vygotsky’s zone of proximal development, which 
indicates the “zone” just outside the learner’s current knowledge/capabilities (so we don’t 
waste time learning what is already known) but not too far away (so learner is not totally 
confused, overwhelmed and demotivated). This can be accomplished by first training on 
samples / situations that are easier, such as when predicting aircraft arrival times without 
wind or precipitation.  

• Part-task training, where the learner first learns individual parts of a larger whole composite 
task. Starting from scratch, the whole task may be too far outside the zone of proximal 
development. Furthermore, there is often a combinatorial explosion of possibilities when 
decisions in the subtasks need to be made based on different, independent information that 
can be avoided in this way. This is one reason why task decomposition is a core part of 
STACW. 

There are other teaching methods, including situation selection, demonstration, teleoperation, 
coaching, explanation and cooperation, which we will not explicitly test in this project. 

 

4  AI Evaluation Procedures 

Most AI projects are evaluated by defining a metric and either testing on a separate test set (for 
supervised learning), or testing in a (slightly) different environment (for reinforcement learning, and 
future predicting unsupervised learning). We will follow this approach in this project. In our case this 
will be a numeric function that assigns different (negative) scores to aircraft crashing into each 
other, aircraft violating separation bounds, fuel costs, delays number of interactions, etc. Ideally this 
would mirror how such negative events are viewed when resulting from the actions of human 
ATCOs. This will allow us to evaluate the AI system not only in various simulations but also in light of 
real-world deployment, where it can be compared with human ATCO performance. Special 
consideration is needed for the system indicating that it doesn’t know what to do (e.g. the test may 
need to incorporate an ATCO who can take over in this case). Additionally, since it may be impossible 
for ATCOs to capture everything important in such an evaluation function, it may be necessary to 
survey ATCOs on how good (and possibly humanlike) they subjectively think the AI system performs. 

However, such (a) raw performance is not all that matters (Thórisson et al., 2015; Bieger et al., 
2016). In the context of STACW we are especially interested in how (b) trustworthy the system is 
perceived to be. This could again be evaluated by ATCOs observing the system passively. Of course it 
will be more informative if the ATCOs (c) base their judgment on actual experience of working in 
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tandem with the developed (and possibly developing) AI system, having observed it in action 
alongside their own work. In this case we would need to develop some measure of work-load 
reduction that the AI system enables. We would also want to (d) evaluate the understandability of 
the AI’s decisions (Bieger et al., 2017). However, at this point no concrete methods for doing so have 
been developed, although some ideas can be gleaned from Bieger & Thórisson (2017).  

For the development of STACW it is furthermore important to be able to evaluate different teaching 
methods in tandem with the developed AI system(s). Here we are interested not only in eventual 
performance, but also in (e) learning speed, (f) data efficiency, (g) generalizability of 
knowledge/capabilities and flexibility to change (such as if the optimal distance between aircraft 
changes, or if we want to increase the difficulty/realism of a task compared to a simplified version), 
and last but not least, (h) knowledge transfer.  

So far we have developed evaluation procedures for (i) stand-alone performance, (ii) learn rate and 
data efficiency for the simplified mockup task, and are capable of (iii) qualitatively estimating 
understandability and flexibility of the AI system and its decisions. Concrete evaluation procedures 
for more realistic settings still need to be selected / developed, based on discussions with domain 
experts and users as well as the exact details of the tasks and sub-tasks and chosen training 
procedures. 

 

5  AI Requirements 

We have analyzed the requirements for an ideal AI system that the STACW goals imply. A compact 
summary on these follows.  

Safety-critical and complex workflows should be minimally disrupted by automation introduction, 
avoiding large, sudden changes, which means automation must be introduced into the process 
gradually. We ought to start by introducing functionality to automate or assist with a few small 
tasks, and gradually increase the number and scope of automated tasks. This implies a kind of 
modularity and gradual learning in the AI system. Furthermore, we want to be able to expand the 
system’s functionality efficiently and without deteriorating performance on older tasks, which means 
the system needs to be able to do robust cumulative learning (related concepts include “transfer 
learning” and avoiding “catastrophic forgetting”). Sometimes newer tasks make use of, combine, or 
subsume other tasks, so the system needs to support hierarchical task representation and learning 
structure. Furthermore, since parameters of tasks in ATC can sometimes change, we need an AI that 
is efficiently adaptive (i.e. the adaptation must be pragmatic and fall within sensible values of time 
and energy/resource requirements). The holy grail of efficient growth and adaptation would be if it 
could be done entirely through training/teaching without any manual code changes (natural 
growth). Since we intend to use teaching, the system should also be teachable in various ways. 

Trustworthiness and safety are enhanced when both the human operator and AI system know the AI 
system’s limits. On the AI side, we want the system to be robust, which ideally means it will 
generalize good decisions to unfamiliar conditions, but at least it means it needs to be aware of its 
limitations and be able to signal them to its superior (which for now is always a human). On the 
human side, trustworthiness and safety are enabled by experience with the system, interpretability 
of the AI’s models and decisions, and/or traceability of smaller decisions on (possibly opaque) 
human-understandable subtasks leading to a decision. Trust can further be earned through learning 
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quickly from explicit corrections of a human operator using online one-shot learning, and through 
formally verifying components for certification, which requires them to be fairly granular.  

In the chosen domain of the Air Traffic Control task of Arrival Control (and also conflict resolution), 
there are further requirements that extend beyond current state-of-the-art machine learning and AI 
methods. Among the larger ones is the variable number of aircraft. Since the number of aircraft can 
change at any moment, the AI needs to deal with variable input sizes. Furthermore, the ratio of 
observations to required actions and actual “rewards” is very large (sparse actions and rewards), as 
the time for a typical arrival extends over at least 30 minutes, there are highly variable delays 
between actions and rewards, and there are complex causal chains in the relationship between 
actions and rewards (e.g. a reward given when an aircraft lands successfully does not necessarily 
imply anything about the latest action that was taken, or in fact any action at all; a punishment given 
due to a separation conflict may similarly not reflect on the latest action, but rather on the fact that 
no (good) action was taken in the timesteps since it was predictable). Most contemporary methods 
are simply incapable of dealing with variable input sizes, and require that the input representation is 
hacked in some way to make it have a fixed size, which places fundamental limits on the maximum 
size that can be handled. Furthermore, this complication as well as the others typically results in 
significantly decreased performance of learning methods that were not explicitly designed to deal 
with them.  

For each individual subtask there may be slightly different requirements based on the nature of the 
task and the availability of data and teaching resources/knowledge. It is in principle possible — to 
some degree — to use a different stand-alone algorithm for each subtask, but maintaining other 
properties like cumulative learning ability, self-awareness of limitations, and interpretability makes 
this difficult. For numerous reasons this is an inferior approach; a unified system for learning (near) 
everything to a system that must be engineered and designed bit by bit is much preferable. Such a 
system is a cornerstone of the present work.  

 

7 AI Candidate Technologies 

Below we evaluate a number of well-known and/or promising techniques for meeting these 
requirements:  

• (deep) neural networks ((D)NNs) 
• (hierarchical) reinforcement learning (RL and HRL) 
• the X classifier system (XCS) 
• automatic program learning (APL) 
• the Non-Axiomatic Reasoning System (NARS) 
• the Autocatalytic Endogenous Reflective Architecture (AERA) 

 

Neural Networks 

Neural networks (NNs) especially of the deep variety (DNNs) with “deep learning” constitute one of 
the most popular families of machine learning algorithms today (Goodfellow et al., 2016). These 
algorithms have somewhat recently facilitated great strides in performance on messy problems like 
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human perception, language processing and game playing. While they can often attain high levels of 
performance, they fail on virtually every STACW requirement.   

While (D)NNs constitute a large family of slightly different approaches, they all tend to work using 
immense networks of nodes (“neurons”) with weighted connections between them. “Activation” 
spreads through the network from the input nodes to the output nodes, and if feedback is available 
the error is “back propagated” to adjust the connection weights so that next time the network will 
make a smaller error. With a lot of training data consisting of input-output examples, huge deep nets 
can learn surprisingly complex tasks.  

However, the activation of individual “hidden” nodes is meaningless to humans, and the activation 
of many thousands is inscrutable. Neural networks are therefor often regarded as “black boxes” 
where we have no idea what they’re basing their decisions on. One DNN can learn a complex task, 
but there is no way to gradually introduce subtasks into the workflow or to adapt just one part. They 
must go over large data sets multiple times, so online one-shot learning is out of the question, and if 
one task is learned after another the first will be forgotten.  
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(D)NN ✔ ± ± 🗙 🗙 🗙 🗙 🗙 ± 🗙 🗙 🗙 🗙 🗙 🗙 🗙 🗙 🗙 ? ? ? 

RL ± 🗙 ± 🗙 🗙 🗙 🗙 🗙 ± 🗙 🗙 🗙 🗙 ✔ 🗙 🗙 🗙 🗙 ± ? ? 

HRL ± 🗙 ✔ ✔ ± ✔ ± 🗙 ± 🗙 🗙 🗙 ± ✔ 🗙 🗙 ± 🗙 ± ? ? 

(H)XC
S 

✔ ± ✔ ✔ ? ± ± 🗙 ± 🗙 ± ✔ ± ± ? 🗙 ✔ 🗙 🗙 🗙 ? 

IP ✔ ± ✔ ✔ 🗙 ✔ ± 🗙 ± 🗙 🗙 ✔ ✔ ± ± 🗙 ± ± ? ? ? 

DT ✔ ± ± ± ± ± ± 🗙 ± 🗙 🗙 ✔ ✔ ± ± 🗙 🗙 🗙 ? ? ? 
NARS ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ± ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

AERA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ± ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

 

Reinforcement Learning 

Typical reinforcement learning (RL) algorithms learn online to control some process from (usually) 
delayed rewards and punishments (Sutton & Barto, 1998). Unlike most supervised learning 
algorithms, they don’t need to know exactly what they should have done in each moment in order 
to learn.  

Non-hierarchical versions of RL must however take the entire state space into account, which is 
often infeasible. Function approximation (e.g. using other methods like NNs) can somewhat alleviate 
the issue. However, the learned policy is monolithic and inscrutable to humans, resulting in similar 
problems that occur with (D)NNs (except raw RL methods have a worse track record w.r.t. 
performance). 
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Hierarchical Reinforcement Learning 

In reinforcement learning the AI learns to accomplish a task by receiving feedback about the 
desirability of states of affairs, actions, or combinations thereof, as they occur (Hengst, 2012). In 
hierarchical reinforcement learning the task is decomposed into a hierarchy of (ideally) smaller 
tasks. A child task is often viewed as a temporally extended action in the parent task. In the ideal 
case, this allows for the reuse of subtasks (so they only need to be learned once) and decreases the 
state*action space for each smaller task. 

HRL can work if your entire Task consists of reinforcement learning tasks, but less well when you 
also have (un)supervised learning tasks. It works especially well if a subtask is used multiple times in 
different states of the parent task.  

Unfortunately, structure is very difficult to learn, so it must typically be specified up front. Like other 
RL methods, the individual components are typically not interpretable, but if the component tasks 
are human-understandable (which is likely if we specified them), then a trace of invoked subtasks 
can make high-level decisions somewhat understandable. Like with other methods, there is typically 
no way to deal with a variable number of aircraft.  

X Classifier System 

The X Classifier System (XCS) is a Learning Classifier System (LCS) that learns to act by evolving and 
tuning a population of classification rules (Wilson, 1995). Over time, the algorithm drives towards a 
minimal, fit, non-overlapping population of rules. Each rule applies in a certain situation, "proposes" 
an action and predicts the expected payoff of that action (direct + expectation for best subsequent 
actions). 

The rules are fairly interpretable, making the system as a whole transparent.  

XCS works best in classification settings where rewards are immediate and subsequent input-action-
reward interactions are independent from each other. Getting it to work with sequences of 
interactions and (extensively) delayed rewards is tricky.  

Hierarchical XCS 

Hierarchical XCS (HXCS) works by creating a partitioning of input variables and having different 
(H)XCS agents pay attention to each (Barry, 2001). This is essentially feature-based decomposition as 
mentioned above. The main downside is that it only seems to work if the partitions are independent 
of each other: i.e. if exactly one of the partitions is relevant to the solution.  

Decision-based decomposition does not seem entirely impossible, although it requires modifications 
of HXCS to deal with heterogenous sub-agents. This is likely to lead to problems, since only one sub-
agent gets to make a decision at each instant, and if they use different confidence metrics, it will be 
difficult to decide between them and avoid some agents being “starved“.  

Inductive Programming 

Inductive programming (IP) is a learning technique where (computer) programs are inferred from 
experience/data, typically using methods resembling induction or abduction (Flener & Schmid, 
2008). By contrast, “deductive programming” would synthesize a program from a specification. 
While most learning paradigms are more prone to produce relatively simple pattern matching, IP 
produces a potentially recursive algorithm that can more easily capture a process. IP is usually used 
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to produce declarative logic programs (ILP) or functional programs (IFP), and not typically to create 
imperative programs which probably fit more naturally to the AC domain.  

The synthesized programs are interpretable, can deal with variable inputs, and can potentially form 
a hierarchy of reusable programs which could be adapted separately. Current approaches are not 
really capable of natural growth, cumulative learning, or dealing with unknown situations. 
Furthermore, it is typically necessary for a programmer to provide a large portion of the program, 
because it’s only feasible to fill in some minor details through learning.  

Decision Trees 

Decision Trees (DTs) are classification systems that are formed by a tree of (often binary) rules or 
questions (Kotsiantis, 2013). For a particular input, we start with an hypothesis that it might belong 
to any input class. As we descend through the DT and answer its questions, we eventually have 
enough information to (hopefully) classify the input. Algorithms like ID3 and C4.5 can be used to 
generate DTs through supervised learning, or in other words: to learn what questions should be 
asked.  

The main strength of DTs is their understandability. They also have some limited ability to do online, 
cumulative and one-shot learning, although this may result in very sub-optimal decision trees. There 
are also algorithms that allow reinforcement learning to be used. In one sense, DTs are obviously 
hierarchical, but learning algorithms don’t tend to make use of this for transfer learning between 
branches. Similarly, there is very little meaningful modularity. 

NARS 

The Non-Axiomatic Reasoning System (NARS) aims to be a general-purpose intelligent system that 
learns from experience and adapts to unknown environments (Wang, 2013). It is built from the 
ground up around the Assumption of Insufficient Knowledge & Resources. The multi-layered non-
axiomatic logic allows the system to model itself and its own knowledge and limitations. 

NARS can grow and expand functionality naturally without re-programming by learning 
cumulatively, it should be robust to changes in the environment and—given human-understandable 
inputs—the models are in principle interpretable. The system can provide a trace of activity leading 
to decisions, and the only potential obstacle to full understandability is that the reasoning traces can 
become too large to easily comprehend with the limited human brain. The system can learn on-line 
and occasionally in one shot, it is robust to changes and self-aware of its limitations, and importantly 
it can easily deal with variable numbers of inputs.  

We believe NARS indeed meets—or can be adapted to meet—all of the STACW requirements. The 
main issue with using it so far has been that NARS is a highly complex, perhaps overly general-
purpose learning and reasoning system, which is difficult to get started with. We estimate that it 
would take about one year for a graduate student to sufficiently familiarize themselves with the 
NARS theory and implementation to create a version that would work for this project, assuming 
extensive help or collaboration from someone intimately familiar with NARS. 

AERA 

The Autocatalytic Endogenous Reflective Architecture (AERA) also aims to be a fully general control 
architecture (Nivel et al., 2013). It creates small models of itself and the environment from 
experience, that can chain together to reach complex decisions and behaviors. AERA was built with 
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AIKR in mind and specializes in finding causal structure and taking into account the temporal nature 
of the domain, making it well-suited to control tasks with resource constraints. AERA’s small models 
are interpretable and decisions can be traced, although there may be too many to easily 
comprehend in some cases. 

Issues with AERA are similar to NARS. In addition, the system is not nearly as well documented, is 
highly complex and difficult to use. While not impossible, since the original development team has 
left RU, getting the system running for STACW would likely take 24 man months or more.  
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Appendix A: Task Selection & Analysis Methodology 

 

The STACW methodology consists of multiple components, including the selection and analysis of a 
High-Level Task (HLT), selection/design/implementation of an AI system, and guidelines for how to 
teach, test and interact with it. This section focuses on evaluating the match between a HLT and (the 
rest of) the STACW methodology. This can help select a HLT for the STACW development project, 
and help predict the potential difficulties of using STACW on an envisioned HLT in the future.  

Determining the match starts with an attempt to fill out the match rubric. In the case of task 
selection for the STACW project, we have done this for four prospective HLTs. While a (partially) 
filled out rubric does not tell us everything about the match between STACW and an HLT, it does 
provide a solid indication of which HLTs are more promising.  

For the more promising HLTs, we can then perform a further analysis by forming a decomposition 
strategy. By decomposing the HLT into a hierarchy of subtasks, and specifying in detail what we 
know about them and what data we have, more information is gained about the difficulty of 
automating the HLT (which allows for making better / more confident updates to the rubric). 
Furthermore, this analysis will serve as the basis for forming a teaching strategy later on. 

  

Task Requirements & Desiderata 
While some co-dependence between the below requirements is unavoidable, we have tried to 
separate them clearly.  

1. Achievability 
• The achievability of the potential HLT is a measure that takes into account the status 

of various other requirements listed below, as well as envisioned time, monetary 
and manpower budgets for the project.  

2. Learnability 
• The HLT should be learnable by the algorithms and systems we intend to use (i.e. 

CAPTAIN, but ideally also Hierarchical Reinforcement Learning / Inductive 
Programming, and perhaps NARS and/or AERA or other similar systems).  

3. Teachability 
• Since we want to use artificial pedagogy, the (sub)tasks will need to be teachable by 

using techniques like part-task training, heuristic rewards, curriculum learning, 
demonstration, etc. This is more of a meta-requirement that works through other 
ones like decomposability, data availability, etc. 

4. Decomposability 
• The HLT will need to be decomposable into a hierarchy of subtasks. This will be done 

by humans. The hierarchy should be a directed acyclic graph where the nodes are 
(sub)tasks and the vertices indicate usage of one inside of another. If the hierarchy is 
a tree, lower-level subtasks are not shared between higher-level ones, which does 
not allow as much functionality sharing and transfer learning, but may enable 
parallelisation of learning and could be easier to deal with. Ideally, each subtask 
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should be fairly modular and individually useful for the client/user, and learning one 
should be facilitated by knowledge of others. If multiple distinct decompositions are 
possible, this is a plus. 

5. Scalable complexity 
• The HLT in its simplest form should be reasonably simple so that it can be the 

beginning of something larger, as the machine learns more. It also should be 
complex enough that it can be decomposed into meaningful subtasks. Ideally, we 
should be able to tune/scale the simplicity/complexity for pedagogical, scientific and 
practical reasons.  

6. Definability 
• We should be able to define the HLT with relatively high precision. Most 

importantly, we need to know exactly what decisions are made—consciously and 
subconsciously—in terms of (possibly) relevant inputs, type of outputs, and the goal 
that is served.  

7. Ease of performance evaluation 
• As far as task analysis is concerned, most tasks in the ATC domain are fairly well 

defined. However, how to measure performance is not always as clear as would be 
desired for a learning machine. Ideally we should have an exact and objective 
formula that calculates the desirability of all actions and outcomes in the HLT.  

8. Data availability 
• We will need data to train on. For pure supervised learning, we need input-target 

pairs where each input specifies the complete situation and each target the current-
timestep ideal output. It would in principle be possible to train on these in random 
order, but if they are part of a sequence we can see if we can do something clever 
with timing--especially if we also have rewards/goals. If we use a simulator, this type 
of data will only be available reliably if we already know what to do in every 
situation, which makes the need for learning a bit redundant, but can be useful in 
rare situations (e.g. because it allows us to get this knowledge into a different 
“mind”, which can then perhaps generalize or reuse that knowledge). For 
reinforcement learning we need rewards or (sub)goals. The more the better. 
Furthermore, it would be useful to have interesting scenarios as opposed to just 
random ones. A measure of interestingness would allow us great teaching 
opportunities. Finally, if data is not available yet, it should at least be easy to 
acquire. 

9. Added value from automation via machine learning 
• Not everything can benefit maximally from machine learning. When a task can be 

defined very precisely, it’s often possible to just write a program for it. In other 
cases, search or planning can also be preferable. This typically requires a model of 
the world (which could be learned). Learning typically works best when there are a 
medium amount of relevant inputs that are combined in a somewhat intuitive but 
not completely clear manner to arrive at a decision whose success can be measured 
in some way.  

10. Interest to client 
• The chosen HLT should have some interest for the client in question (e.g. air traffic 

authorities).  
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Grading guidelines 

For each potential task, the following rubric should be filled out. “Grade” should be a numeric score 
out of 10, and “Conf” is short for “confidence” and can be a kind of standard deviation. Below each 
criterion is room for analysis and justification of the grading. Finally, there is an overall verdict. In 
this rubric we will now use the analysis space to provide guidelines for grading that part.  

 
Achievability Grade:  Conf:  

The score can be seen as a probability (0 = 0%, 10 = 100%) that indicates the likelihood of finishing 
the project with this HLT given the planned amount of time, resources and manpower.  

Learnability Grade:  Conf:  

This is how well the technologies we’re currently considering could potentially learn the task. A 0 
here would mean it’s impossible, while a 10 would mean it’s completely trivial. We should 
probably aim for something like a 7 or 8, because it still needs to be interesting and be able to 
derive significant benefit from pedagogy. 
One example of something that can reduce learnability is if there is a variable amount of inputs, 
and evaluating them pairwise cannot be done because there are too many interdependencies.  

Teachability Grade:  Conf:  

Since this is a function of many other criteria, I’m not sure how to provide grading guidelines. 
What needs to be taken into account is how many different teaching methods could potentially 
be used, both considering the task and the available data. Also, we need to consider the necessity 
and estimated added value of teaching. 

Decomposability Grade:  Conf:  

If the HLT cannot really be decomposed, the grade should be a 0. The ideal case for 
decomposition arises when the subtask hierarchy is both wide and deep, if subtasks are used by 
multiple parent/supertasks, if subtasks are modular and individually useful. Here we are primarily 
concerned with decompositions into subtasks. In other words: temporally abstracted 
superactions. Decomposition of a task by e.g. considering different regions of input space (e.g. 
predict X with clear weather, predict X with rain, predict X with wind, etc.) can be useful, but 
typically not for hierarchical reinforcement learning. 

Scalable complexity Grade:  Conf:  

The ideal case for scalable complexity would be if the simplest case is very simple, and there exists 
a clear and gradual trajectory through which task complexity/difficulty can be scaled up to an 
intricate real-world task. Points will be deducted for: difficult simplest case, trivial/uninteresting 
hardest case, and non-smooth complexity scaling. The last case could occur if there are only a few 
complexity settings that make sense. The best/smoothest complexity scaling would even allow for 
using different scales with the same AI instance (i.e. for curriculum learning). 

Definability Grade:  Conf:  

This is a question of how well the HLT can be described in terms of inputs, outputs, methodology 
and evaluation. Something vague like “prevent planes from crashing into each other based on all 
available (unspecified) information and expertise” should get an extremely low grade (evaluation 
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is also hard, because no difference is specified between different cases with no crashes). A very 
high grade means that all of these things need to be specified to a very high level of detail: i.e. a 
computer needs to know all decisions that need to be made and does not have a human’s 
common sense, so nothing can be left implicit.  

Performance Evaluation Grade:  Conf:  

This will be 0 if performance evaluation is completely subjective; 10 if it can be captured by a 
simple algorithm. If this is high then training can be more easily automated; the lower, the more 
probable the need for a human trainer/teacher.  

Data availability Grade:  Conf:  

Important dimensions for data availability are 1) how much is available, 2) whether it contains all 
relevant variables, 3) the temporal nature of the data, 4) whether it is easy to work with / extract 
/ adjust, 5) whether it is already available or can be obtained easily, 6) whether data is only from 
normal/random/boring scenarios or geared towards teaching. Simulators can help generate lots 
of new data and provide a great sandbox for learning control, especially if success can be 
quantified and evaluated in real time.  

Benefit from ML Grade:  Conf:  

This should be a 0 if it makes absolutely no sense to use machine learning for this task, a 10 when 
it absolutely requires ML, and something like a 5 if ML is not necessary, but it’s not completely 
ridiculous to use it.  

Desirability for Isavia Grade:  Conf:  

This should be graded as “how much Isavia wants this task automated”. This is purely their (fact-
based) opinion, so we (RU) can only estimate it based on our talks. Here we should not take into 
account the value of succeeding at some abstract task and then later on being able to do 
something more directly useful, and also not the odds of success (that is already part of other 
criteria). 

Overall Grade:  Conf:  

Here an overall conclusion and possibly verdict should be written. The grade does not necessarily 
need to be an average of the previous ones.  

 
Scenarios 
Here we should describe scenarios / use cases / (user) stories of what a typical sequence of events 
and decisions may look like under different circumstances. Such scenarios are used to determine 
what decisions are made, and should be annotated with the decision tags used in the next section.  

 

Decisions 
Here we should describe, in as much detail as possible, all decisions that are involved in carrying out 
the Task. For each decision, this involves answering:  

• What is the input? What variables / information can or must be taken into account? 
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• What is the output or result? This can be anything, ranging from e.g. “a message to pilot X to 
move up/down by Y amount at time Z” to “preparation/prediction of the information for 
another decision”. 

• By what method do we transform input to output? This can be a straightforward series of 
steps or calculations, or a vague description of an intuitive process. 

• How can the decision be evaluated? What variables are being optimized? What is their 
relative importance? 

• Optionally: what features does the decision have that could be used for decomposition? 

Ideally, no decisions should be left implicit. There can be some redundancy due to describing 
decisions at both high and low levels (e.g. one decision may be “tell pilot what to do, based on all 
data”, which may involve decisions like “decide which pilot to talk to, based on closeness to airport”, 
“predict closeness to airport, based on weather”, etc.). 

 

Decomposition 
Here we should make a graphical representation of the task / decision hierarchy described in the 
previous section. This decision-based decomposition can (later) be annotated with feature-based 
and functionality-based decompositions. These decompositions should be described and motivated.  

In the example diagram below we have a hypothetical task with five decisions. The decision-based 
decomposition shows that decision D1’s method directly involves the use of D2, D3 and D5, decision 
D2 uses D4, and decision D3 uses D4 and D5. The feature-based decomposition shows that decision 
D1 has 4 features (named a, b, c and d), decision D2 has three, and D3 has five, while no feature-
based decomposition was performed for D4 and D5. The functionality-based decomposition shows 
that one “block” of functionality could consist of D2 (using only features a and b) and D4 (orange), 
and that another functionality block consists of D3, D4 and D5. More information on task 
decompositions is provided in the section ”Task Decomposition” above. 
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Figure showing various methods of task decomposition.  
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Task evaluation template 
It starts with a level 2 heading with the title of the task (“Task evaluation template” here) followed 
by a short description of the task (this paragraph). Then we go into more depth by considering 
scenarios / (user) stories, detailed decisions and how they form a task hierarchy. Afterwards an 
evaluation follows by filling out the match rubric. However, it is typically wise to start filling it out 
with best guesses, and skipping the more detailed analysis in case the current HLT does not look 
promising or as promising as others. 

 

Scenarios in Task 

Scenario S1: Name 
Description with references to decisions (D1) listed below (D2). 

Scenario S2: Name 
Description with references to (other) decisions (D1.1) listed below (D1). 

Decisions in Task 

Decision D1: Name 
Short description... 

Input:  
Output:  
Method:  
Evaluation:  

Decision D1.1: Name 
Short description... 

Input:  
Output:  
Method:  
Evaluation:  

Decision D2: Name 
Short description... 

Input:  
Output:  
Method:  
Evaluation:  

Decomposition of Task 

Here the task decomposition hierarchy is described based on the analysis of decisions above. 
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Evaluation of Task 

 

Achievability Grade: 

 

Conf: 

 

 

Learnability Grade: 

 

Conf: 

 

 

Teachability Grade: 

 

Conf: 

 

 

Decomposability Grade: 

 

Conf: 

 

 

Scalable complexity Grade: 

 

Conf: 

 

 

Definability Grade: 

 

Conf: 

 

 

Performance Evaluation Grade: 

 

Conf: 

 

 

Data availability Grade: Conf: 
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Benefit from ML Grade: 

 

Conf: 

 

 

Desirability for Isavia Grade: 

 

Conf: 

 

 

Overall Grade: 

 

Conf: 
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Appendix B: Task Analyses 

 

1. Candidate Task 1: Arrival Control 
The primary goal of Arrival Control (AC / AMAN) is to ensure an optimal flow of aircraft arrivals at 
the airport. There must be a certain minimum amount of time separating two aircraft landing on the 
same runway, in addition to dynamic deviations due to things like other runway occupancy (e.g. for 
take-off). For a given runway, real-time predictions must be made about when each aircraft will 
arrive given the current 3D coordinates and speed, the flight plan, aircraft specs and weather 
conditions. If conflicts are detected or opportunities for improved arrival flow identified, the primary 
means of intervention is to ask a pilot to speed up or slow down. When a change to a flight occurs 
(or is requested), the consequences must be predicted, potential problems must be identified, a 
coping plan must be devised and a value judgement must be rendered (i.e. "no problem", "requires 
cheap intervention" or "requires very costly intervention”). 

 

Scenarios in Arrival Control 

Scenario S1: Conflict resolution 
The System is presented with information about all aircraft, the weather, etc. and needs to predict 
the time at which each aircraft is expected to arrive at each runway (D1). Based on this (and other) 
information, the System produces a list of likely conflicts (D2). The main job of the System is to 
resolve all conflicts (D3) by telling aircraft to speed up or slow down. Conflicts tend to be fixed one 
by one (D4). First a tentative decision must be made about which conflict to focus on (D5). Speed up 
/ slow down commands for one aircraft or more must be selected (D6) and evaluated (D7). If a 
solution solves the conflict without introducing more, it must be verified with the main ATCO (D8) 
and the aircraft pilot (D8). If the candidate solution is accepted, it can be finalized (D9). If no solution 
can be found that doesn’t introduce new conflicts, the System can try to solve these new conflicts as 
well in a similar manner (D6). At any point, the urgency of the currently evaluated conflict compared 
to others can be re-evaluated, and the System may switch to a different conflict (D5).  

Scenario S2: Requests 
A request comes in for a change to a certain aircraft’s speed (D10). The System must calculate the 
new hypothetically expected arrival time (D1), evaluate its desirability (D7), and communicate it 
back to the requestor (D11).  

Scenario S3: Monitoring 
The System is constantly monitoring all aircraft in the airspace (D12). Changes are evaluated (D13) 
and incorporated in the System’s current model (D14). Likely changes are predictable updates to 
aircraft’s location/speed, but they can also be more unexpected like a new aircraft entering the 
airspace or an error about some aircraft being fixed. If a change was unexpected (D15), new arrival 
times will need to be calculated (D1), conflicts detected (D2) and resolved (D3). 
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Decisions in Arrival Control 

Decision D1: Arrival time prediction 
Predict the time at which aircraft A will arrive at runway R. 

Input: aircraft info for A (including coordinates (X, Y, Z) and speed (dX, dY, dZ), the flight plan, 
aircraft specs), runway R, and weather 
Output: time (+ maybe confidence, or a distribution over times) 
Method: Maybe look at flight plan and adjust for currently known delays + heuristics about weather 
Evaluation: (predicted time - actual time sans interventions)^2 

Decision D2: Conflict detection 
Detect possible conflicts in arrival times for runway R.  

Input: minimum time window, runway R, and a sorted list of estimated arrival times (+ maybe 
confidences, or a list of time distributions) 
Output: list of conflicting pairs ordered by likelihood of conflict and urgency 
Method: Go over list and see where the separation is too low 
Evaluation: accuracy 

Decision D3: Global conflict resolution 
Resolve conflicts between aircraft arrival times by issuing commands to some of them. 

Input: aircraft info, predicted arrival times, weather and conflicts 
Output: list of speed up / slow down commands for various aircraft 
Method: Select a conflict based on priority and resolve it 
Evaluation: based on number of resolved (and introduced) conflicts and cost of interventions (which 
includes their number, magnitude, etc.) 

Decision D4: Single conflict resolution 
Given a conflict, resolve it. 

Input: same as D3 + conflict to focus on 
Output: list of speed up / slow down commands for aircraft (possibly multiple, but likely just one) 
Method: assess whether it’s better to speed up the first aircraft or slow down the last one 
Evaluation: based on cost of interventions (which includes their number, magnitude, etc.) 

Decision D5: Conflict urgency evaluation 
Evaluate the urgency of a given conflict. 

Input: same as D3 + conflict to focus on 
Output: urgency value 
Method: take the closest conflicting pair 
Evaluation: indirect by evaluating reward received for parent task 

Decision D6: Resolution candidate generation 
Generate a promising candidate solution for solving the given conflict. 

Input: same as D3 + conflict to focus on + history of tried hypotheses 
Output: speed up / slow down command for aircraft (possibly multiple, but likely just one) 
Method: intuition / try random values of speed up or slow down 
Evaluation: originality or proposal / proposal acceptance rate and speed / optimality of proposals / 
calculate how much the global conflict badness score is affected 
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Decision D7: Resolution candidate evaluation 
Generate a promising candidate solution for solving the given conflict. 

Input: same as D3 + conflict to focus on + candidate solution from D6 
Output: whether it solves the conflict and introduces different ones 
Method: calculate how much the global conflict badness score is affected 
Evaluation: accuracy 

Decision D8: Candidate resolution proposal 
Propose the candidate solution to others (ATCO & pilot), and wait for response.  

Input: aircraft + candidate command 
Output: whether the proposal was approved 
Method: use comms 
Evaluation: delivery rate / user feedback 

Decision D8: Request change evaluation from aircraft 
Request a desirability value for certain change from an aircraft (e.g. speed up or slow down).  

Input: aircraft, change 
Output: message to aircraft 
Method: use comms 
Evaluation: delivery rate / quality of answers / user feedback 

Decision D9: Candidate resolution implementation 
Command all aircraft to implement the candidate solution and notify others (e.g. ATCO) 

Input: aircraft + candidate command 
Output: whether the proposal was approved 
Method: use comms 
Evaluation: delivery rate / user feedback / compliance 

Decision D10: Request change from aircraft 
Request a certain change from an aircraft (e.g. speed up or slow down).  

Input: aircraft, change 
Output: message to aircraft 
Method: use comms 
Evaluation: delivery rate / user feedback 

Decision D11: Request handling 
A request for a change for some aircraft comes in (e.g. to speed / route) and must be handled.  

Input: Same as D6 + request value 
Output: approval / dismissal + reason 
Method: Approve if desirable according to D5, otherwise compare undesirability to “request value”. 
Dismiss if not urgent. Otherwise, attempt conflict resolution with the hypothetical change, and 
compare request value to cost of approval. 
Evaluation: see D8 and D3 

Decision D12: Change handling 
Respond to a change in some information about an aircraft. 

Input: Same as D6 + change for one aircraft (speed, location, type, course, etc.) 
Output: incorporate change into knowledge (D14) and resolve new conflicts (D1,D2,D3) 
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Method: use D13, D14 and D15 
Evaluation: use overall performance rewards 

Decision D13: Change surprise evaluation 
Evaluates whether a change is surprising or in line with predictions.  

Input: Same as D12 
Output: surprise value 
Method: calculate dissimilarity between prediction and observation 
Evaluation: accuracy of dissimilarity 

Decision D14: Change incorporating 
Incorporate a change into the system’s current knowledge. 

Input: Same as D12 
Output: updated arrival time predictions, conflict detections 
Method: depends on AI system 
Evaluation: accuracy 

Decision D15: Unexpected change handling 
Respond to a surprising change in some information about an aircraft. 

Input: Same as D12 
Output: incorporate change into knowledge (D14) and resolve new conflicts (D1,D2,D3) 
Method: see D14, D1, D2 and D3 
Evaluation: see D14, D1, D2 and D3 

Decision D16: Aircraft freedom range estimation 
Estimate the range of freedom that a particular aircraft has to deviate from its current speed. 

Input: same as D3 + aircraft to focus on 
Output: range of acceptable speeds that would still avoid conflict 
Method: find two closest aircraft and perform basic arithmetic 
Evaluation: accuracy 

Decomposition of Arrival Control 
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Example Evaluation of Arrival Control Using Proposed Evaluation Methodology 

 

Achievability Grade: 

8 

Conf: 

5 

The relatively low dimensionality of simple versions of this task should make it doable to use this Task 
as a prototype for the methodology we aim to develop. 

Learnability Grade: 

6 

Conf: 

5 

We predict that the task can be learned, but that the prediction part may be rather monolithic and the 
interdependencies between a variable amount of aircraft will add significant complexity. 

Teachability Grade: 

7 

Conf: 

2 

This mostly remains to be seen. Intermediate rewards could likely be given based on individual 
conflict resolutions. Decomposition seems limited. We should be able to teach both with rewards and 
examples. It’s not clear how much (de)simplification will help. It seems fairly easy to create 
“interesting” training scenarios. 

Decomposability Grade: 

5 

Conf: 

5 

The Task seems rather monolithic to us. The main tasks are arrival time prediction and conflict 
resolution. Both seem difficult to divide into many learnable subtasks, although there are some 
possibilities with conflict resolution (urgency identification, hypothesis generation, evaluation, etc.). 
Decomposition into e.g. sectors and kinds of weather should also be possible, but doesn’t help much 
with hierarchical reinforcement learning. 

Scalable complexity Grade: 

9 

Conf: 

7 

The simplest version of this task is rather a rather simple 1D task (e.g. given arrival predictions, tell 
each airplane to slow down or speed up), but it can be scaled up to include e.g. weather, higher 
dimensions, noise, difficult pilots/ATCOs, complex costs, etc. 

Definability Grade: Conf: 
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9 8 

It is pretty clear what the task is, what data is needed and what actions need to be taken. 

Performance Evaluation Grade: 

8 

Conf: 

7 

It seems to us that an algorithm could be created that uses e.g. average distance between airplanes 
and whether all of them are larger than the minimum time window. Little effort (fewer commands) is 
better than many, for any time window. Maybe qualified by the difficulty (number of airplanes, 
windspeed).  

Data availability Grade: 

9 

Conf: 

2 

Our understanding is that a good amount of data is available. Isavia showed us they keep a database 
of related information. However, we need to dig deeper to understand what it is exactly, and how 
good/useful it is. 

Benefit from ML Grade: 

6 

Conf: 

6 

Some judgment is involved in especially the prediction part, but the planning part can probably be 
accomplished fairly well with existing planning algorithms. 

Desirability for Isavia Grade: 

8 

Conf: 

2 

Both Isavia and Tern came to us with this Task and we got the impression they would find automation 
useful.  

Overall Grade: 

8.5 

Conf: 

5 

Overall this Task seems fairly suitable for our artificial pedagogical approach.  
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2. Candidate Task 2: Conflict Resolution 
The primary goal of Conflict Resolution (CR) is to ensure that minimum separation rules between 
aircraft in the airspace are maintained so as to avoid collisions. This requires real-time predictions of 
the trajectories of all aircraft given their current 3D coordinates and speed, the flight plan, aircraft 
specs and weather conditions. If a potential conflict between aircraft is detected, the ATCO can 
request one or both to slightly change course (mostly left/right, seldomly up/down), which would 
presumably replace some “checkpoint” in the flight plan. The effects for (requests for) changes to 
flight plans must be predicted and if they introduce a conflict, they can be rejected (possibly after 
estimating the difficulty of resolving the conflict). 

 

Scenarios in Conflict Resolution 

Scenario S1: Separation maintenance 
The system is presented with information about all aircraft, the weather, etc. This information must 
be incorporated in memory in order to make predictions about each aircraft’s trajectory while it is in 
the airspace (D1), at least N minutes into the future, but ideally until it is predicted to leave the 
airspace. The System needs to decide in what order to update the trajectories for each aircraft 
(D1.1; I’m using weird numbering to preserve similarity with AC). Based on these predictions, the 
System must produce a list of likely conflicts (D2), after which its main task is to resolve them (D3). 
This tends to happen one by one (D4) after priorities have been assigned to each conflict (D5). 
Functionality may exist that first estimates an area for attention (D2.1).  

Conflicts are resolved by issuing commands to aircraft to (usually) divert to the left or right or 
(sometimes) up or down. Candidate solutions must be generated (D6) and evaluated (D7). If the 
candidate seems promising, it must be communicated to and approved by the involved aircraft and 
potentially other ATCOs (D8), after which the final command can be issued (D9). The urgency of any 
conflict can be re-evaluated at any time, at which point the System may switch to resolving a 
different one (D5).  

Scenario S2: Requests 
A request comes in for a change to a certain aircraft’s speed or course. The System must calculate 
the new expected trajectory (D1), evaluate its desirability (D7), and communicate it back to the 
requestor (D11).  

Scenario S3: Monitoring 
The System is constantly monitoring all aircraft in the airspace (D12). Changes are evaluated (D13) 
and incorporated in the System’s current model (D14). Likely changes are predictable updates to 
aircraft’s location/speed, but they can also be more unexpected like a new aircraft entering the 
airspace or an error about some aircraft being fixed. If a change was unexpected (D15), new arrival 
times will need to be calculated (D1), conflicts detected (D2) and resolved (D3). 
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Decisions in Conflict Resolution 

Question marks indicate missing data. Text following question marks represent a proposal for that 
item. 
 

Decision D1: Trajectory prediction 
Predict the trajectory of aircraft A for the foreseeable future.  

Input: aircraft info for A (including coordinates (X, Y, Z) and speed (dX, dY, dZ), the flight plan, 
aircraft specs), runway R, and weather 
Output: trajectory (where the aircraft will be at what time) 
Method: TBD – Maybe look at flight plan and adjust for currently known delays + heuristics about 
weather 
Evaluation: accuracy compared to actually flown route 

Decision D1.1: Trajectory prediction priority assessment 
Decide for which aircraft the trajectory should be predicted / updated next. 

Input: aircraft info for all (including coordinates (X, Y, Z) and speed (dX, dY, dZ), flight plans, aircraft 
specs), current predictions, and weather 
Output: an aircraft ID 
Method: Possibly look at which predictions are oldest, which aircraft are close to others, and which 
are close to landing 
Evaluation: Whether the System succeeds in predicting trajectories before it is too late 

Decision D2: Conflict detection 
Detect possible separation conflicts. 

Input: minimum separation window, and a list of trajectories + D1’s input 
Output: list of conflicting pairs ordered by likelihood of conflict and urgency 
Method: Order aircraft by proximity and check for intersections in trajectory 
Evaluation: accuracy 

Decision D2: Area of attention detection 
Mark an area that should be paid attention to.  

Input: minimum separation window, and a list of trajectories + D1’s input 
Output: an area where conflicts will be more likely to occur 
Method: Density estimation or possibly something else 
Evaluation: <undefined> 

Decision D3: Global conflict resolution 
Resolve conflicts between aircraft arrival times by issuing commands to some of them. 

Input: aircraft info, predicted arrival times, weather and conflicts 
Output: list of commands for various aircraft 
Method: TBD 
Evaluation: based on number of resolved (and introduced) conflicts and cost of interventions (which 
includes their number, magnitude, etc.) 

Decision D4: Single conflict resolution 
Given a conflict, resolve it. 

Input: same as D3 + conflict to focus on 
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Output: list of commands for aircraft (possibly multiple, but likely just one) 
Method: TBD 
Evaluation: based on cost of interventions (which includes their number, magnitude, etc.) 

Decision D5: Conflict urgency evaluation 
Evaluate the urgency of a given conflict. 

Input: same as D3 + conflict to focus on 
Output: urgency value 
Method: TBD 
Evaluation: TBD 

Decision D6: Resolution candidate generation 
Generate a promising candidate solution for solving the given conflict. 

Input: same as D3 + conflict to focus on + history of tried hypotheses 
Output: command for aircraft (possibly multiple, but likely just one) 
Method: TBD 
Evaluation: TBD 

Decision D7: Resolution candidate evaluation 
Generate a promising candidate solution for solving the given conflict. 

Input: same as D3 + conflict to focus on + candidate solution from D6 
Output: whether it solves the conflict and introduces different ones 
Method: TBD 
Evaluation: TBD 

Decision D8: Candidate resolution proposal 
Propose the candidate solution to others (ATCO & pilot), and wait for response.  

Input: aircraft + candidate command 
Output: whether the proposal was approved 
Method: TBD 
Evaluation: TBD 

Decision D8: Request change evaluation from aircraft 
Request a desirability value for certain change from an aircraft (e.g. speed up or slow down).  

Input: aircraft, change 
Output: message to aircraft 
Method: TBD 
Evaluation: TBD 

Decision D9: Candidate resolution implementation 
Command all aircraft to implement the candidate solution and notify others (e.g. ATCO) 

Input: aircraft + candidate command 
Output: whether the proposal was approved 
Method: TBD 
Evaluation: TBD 

Decision D10: Request change from aircraft 
Request a certain change from an aircraft (e.g. speed up or slow down).  
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Input: aircraft, change 
Output: message to aircraft 
Method: TBD 
Evaluation: TBD 

Decision D11: Request handling 
A request for a change for some aircraft comes in (e.g. to speed / route) and must be handled.  

Input: Same as D6 + request value 
Output: approval / dismissal + reason 
Method: Approve if desirable according to D5, otherwise compare undesirability to “request value”. 
Dismiss if not urgent. Otherwise, attempt conflict resolution with the hypothetical change, and 
compare request value to cost of approval. 
Evaluation: see D8 and D3 

Decision D12: Change handling 
Respond to a change in some information about an aircraft. 

Input: Same as D6 + change for one aircraft (speed, location, type, course, etc.) 
Output: incorporate change into knowledge (D14) and resolve new conflicts (D1,D2,D3) 
Method: use D13, D14 and D15 
Evaluation: TBD 

Decision D13: Change surprise evaluation 
Evaluates whether a change is surprising or in line with predictions.  

Input: Same as D12 
Output: surprise value 
Method: TBD 
Evaluation: TBD 

Decision D14: Change incorporating 
Incorporate a change into the system’s current knowledge. 

Input: Same as D12 
Output: updated arrival time predictions, conflict detections 
Method: TBD 
Evaluation: accuracy 

Decision D15: Unexpected change handling 
Respond to a surprising change in some information about an aircraft. 

Input: Same as D12 
Output: incorporate change into knowledge (D14) and resolve new conflicts (D1,D2,D3) 
Method: TBD 
Evaluation: TBD 

Decision D16: Aircraft advice 
For a particular aircraft, issue advice for what to do to the ATCO 

Input: same as D3 + aircraft to focus on 
Output: a command + urgency value 
Method: TBD 
Evaluation: accuracy 
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Decomposition of Conflict Resolution 

TBD  

Evaluation of Conflict Resolution 

 

Achievability Grade: 

5 

Conf: 

5 

The higher dimensionality make the simplest version of this task more difficult than AC, and it may be 
tricky to get something resembling real conflict resolution to work within the time period.  

Learnability Grade: 

8 

Conf: 

5 

We think this can be learned. Certainly in its simplest form. 

Teachability Grade: 

7 

Conf: 

2 

This mostly remains to be seen. Intermediate rewards could likely be given based on individual 
conflict resolutions. Decomposition seems possible. We should be able to teach both with rewards 
and examples. It’s not clear how much (de)simplification will help. It seems fairly doable to create 
“interesting” training scenarios. 

Decomposability Grade: 

7 

Conf: 

5 

We think the task can be decomposed into steps like “identify potential problem area”, “predict 
aircraft trajectory”, “detect pairwise conflicts”, “resolve conflict”, ... 

Scalable complexity Grade: 

8 

Conf: 

7 

The simplest version would be to simply consider aircraft within a certain distance of each other 
pairwise. Complexity can be scaled up from here, but it is slightly more complicated than in AC, 
because this is at least 2D.  

Definability Grade: 

7 

Conf: 

8 
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Overall it is pretty clear, but (higher dimensional) trajectories and changes to them are harder to 
evaluate than 1D speeds. 

Performance Evaluation Grade: 

7 

Conf: 

7 

Probably a little more difficult than AC, but not overly so. 

Data availability Grade: 

7 

Conf: 

2 

Our understanding is that a good amount of data is available. However, it is not clear whether all 
variables that are required are recorded. Since this Task is less structured, it is more difficult to know if 
this data is good or sufficient.  

Benefit from ML Grade: 

9 

Conf: 

6 

Possibly a bit more complex than AC, but probably not much. 

Desirability for Isavia Grade: 

7 

Conf: 

2 

Both Isavia and Tern came to us with this Task and we got the impression they would find automation 
useful, but they were more excited about AC. 

Overall Grade: 

8 

Conf: 

5 

Overall this Task seems fairly suitable for our artificial pedagogical approach, but harder to implement 
in our timeline.  
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3. Candidate Task 3: Workload Optimization (stress/boredom management) 
The main goal of the Workload Optimization (WO) Task is to estimate the amount of work that 
would be neither too boring nor too stressful for each individual ATCO, and to then help to achieve 
this optimal workload. The inverted U theory states that performance is low when arousal is either 
too low or too high, and optimal somewhere in the middle. The exact shape of the arousal-
performance curve is different for each person, and may even differ per day. Essentially, we want to 
monitor (and possibly control) a person’s work pressure so that it does not exceed a point where 
performance will drop drastically. When this happens, a warning could be sent to the ATCO and/or 
staff manager, or the workload can be lessened by dividing the airspace into smaller pieces (or 
expanding it, if the ATCO is bored) or taking over part of the work with automation. The task 
involves “estimating work pressure”, “predicting performance, given pressure”, and “predicting how 
pressure is affected by several coping methods”. Pressure estimates could be learned based on 
(statistics about) the inputs an ATCO receives, or based on physiological and behavioral 
measurements. We would need (probably a lot) of data that includes performance evaluations. This 
task also seems difficult to simplify and (further) decompose, so I'm not sure it is a good idea at this 
point in time. 

Scenarios in Workload Optimization 

Scenario S1: Workload monitoring 
We estimate an ATCO’s workload (D1) and (possibly) physiological state (D2) and performance (D3). 
This is then combined to estimate the ATCO’s mental state (D4) and compared to that ATCO’s 
desired level (D5). This information can then be displayed for the ATCO (D6) so they can act on it 
themselves or communicated to a manager (D7). 

Scenario S2: Workload balancing 
Based on the ATCO’s mental state, we could also decide that workload rebalancing is in order. 
Workload decrease could e.g. be done by taking over part of the task (D8). Workload increase could 
be done by stopping to take over certain parts (D9), adding arbitrary distractors (D10), or expanding 
the area of control (D11). 

Scenario S3: Personalization 
We need to figure out each ATCO’s individual inverted U curve. 

... 

Decisions in Workload Optimization 

Decision D1: Workload estimation 
Estimate the workload of an ATCO. 

Input: aircraft info, weather info 
Output: scalar value estimating absolute workload 
Method: TBD 
Evaluation: TBD 

Decision D2: Physiological state estimation 
Estimate the physiological state of an ATCO. 

Input: GSR / computer vision / EEG? 
Output: scalar value estimating physiological state of boredom/stress/confusion 
Method: GSR / computer vision / EEG / TBD  
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Evaluation: TBD 

Decision D3: Performance estimation 
Estimate the current performance of an ATCO. 

Input: Possibly performance measure (as used in CR / AC), e.g. number of aircraft that violated 
separation / TBD 
Output: scalar value estimating current performance 
Method: TBD 
Evaluation: TBD 

Decision D4: Mental state estimation 
Estimate the mental state of an ATCO in terms of boredom/stress/confusion. 

Input: output of D1, D2 and D3 
Output: scalar value estimating mental state of boredom/stress/confusion 
Method: TBD 
Evaluation: TBD 

Decision D5: Mental state evaluation 
Evaluate the position of mental state of an ATCO’s mental state compared to the ideal one on the 
inverted U curve for that ATCO. 

Input: output of D4, ATCO’s inverted U curve 
Output: value indicating whether the workload is too low/high 
Method: TBD 
Evaluation: TBD 

Decision D6: Displaying current ATCO state 
Outputs of D1-5 could be displayed in the ATCO’s interface. 

Input: output of D1-5 
Output: TBD 
Method: TBD 
Evaluation: TBD 

Decision D7: Manager warning 
Outputs of D1-5 could be communicated to the ATCO’s manager. 

Input: output of D1-5 
Output: message to manager 
Method: TBD 
Evaluation: TBD 

Decision D8: Workload takeover 
Taking over part of the ATCO’s workload 

Input: TBD (everything the ATCO sees) 
Output: CR/AC, removal of task parts for ATCO 
Method: CR/AC  
Evaluation: TBD 

Decision D9: Workload relinquishment 
Relinquish part of the workload that had been taken over back to the ATCO. 
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Input: TBD (everything the ATCO sees) 
Output: addition of task parts for ATCO 
Method: TBD 
Evaluation: TBD 

Decision D10: Workload increase through arbitrary distractors 
Add some kind of distractor / challenge to prevent boredom. 

Input: TBD 
Output: TBD (distractors...) 
Method: TBD 
Evaluation: TBD 

Decision D11: Workload increase through task expansion 
Expand the ATCO’s area of control and/or tasks. 

Input: TBD 
Output: TBD (A plan for how to do this, probably communicated to manager) 
Method: TBD 
Evaluation: TBD 

Decomposition of Workload Optimization 

TBD 

Evaluation of Workload Optimization 

 

Achievability Grade: 

3 

Conf: 

5 

This project seems difficult to accomplish with just one AI researcher within the desired time frame, 
since it likely requires large amounts of data collection which may even be physiological and 
psychological in nature.  

Learnability Grade: 

7 

Conf: 

5 

It seems like with the right data, this should be somewhat learnable. However, that data availability 
will be a problem. 

Teachability Grade: 

3 

Conf: 

5 

This seems difficult, because it’s not really clear how well the task can be decomposed or simplified, 
and it will be difficult to give intermediate rewards (for what?).  
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Decomposability Grade: 

4 

Conf: 

5 

We can decompose the task into “estimating work pressure”, “predicting performance, given 
pressure”, and “predicting how pressure is affected by several coping methods”, but each of those 
seem rather monolithic.  

Scalable complexity Grade: 

2 

Conf: 

7 

This task is very hard to simplify, because we can’t simplify the human element (which is very 
important for this task). We cannot consider less tasks for instance, or much simpler ones, because 
then we would automatically be on everybody’s left side of the inverted U.  

Definability Grade: 

7 

Conf: 

4 

The task itself seems reasonably well defined, but in practice each instance of the task will depend 
heavily on hard to measure human factors. 

Performance Evaluation Grade: 

5 

Conf: 

7 

ATCO performance evaluation seems tricky but possible. Even more trickier would be to evaluate 
subtasks.  

Data availability Grade: 

3 

Conf: 

5 

Estimations could either be made based on (statistics about) the inputs an ATCO receives, or based on 
physiological and behavioral measurements. Data for that latter option is almost certainly not 
available, and difficult to get. We may have input data for ATCOs, but it’s not clear that we also have 
an idea of how well they performed on it. 

Benefit from ML Grade: 

9 

Conf: 

6 

Probably impossible to do without ML. 

Desirability for Isavia Grade: 

6 

Conf: 

2 
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Our impression is that this would be nice to have, but mostly a curiosity. It is not part of the essential 
workflow. 

Overall Grade: 

4 

Conf: 

5 

Overall this Task seems unsuitable for our approach. 
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4. Candidate Task: Directive Adaptation Assistance 
 

The Directive Adaptation Assistance (DAA) Task would help ATCOs take all (new) directives into 
account in their work. The System might get some kind of description of the directive (likely in some 
machine readable format, but eventually perhaps in natural language), and help in recognizing 
situations where it applies or is violated, at which point the ATCO could be notified. This may require 
that the AI already "understands" the main task, so we may need to leave this until later. It is worth 
noting that most current AI systems would need to be retrained (likely from scratch) to take a 
change in directives / task parameters into account, whereas AERA and NARS should be able to 
incorporate (and later forget) them relatively easily.  

Scenarios in Directive Adaptation Assistance 

Scenario S1: Separation Constraints 
A new directive is added that changes separation constraints. Somehow, this directive is fed into the 
System. The System then interprets the directive (D1), and relays it to the ATCO through some kind 
of message (D2). The System also tries to keep track of what the ATCO does (D3), and predicts when 
actions are not in line with the directive (D4), so that additional warnings can be shown (D5). 

Scenario S2: another directive... 
TBD 

Decisions in Directive Adaptation Assistanceh 

TBD 

Decomposition of Directive Adaptation Assistance 

TBD 

Evaluation of Directive Adaptation Assistance 

TBD 

 

Achievability Grade: 

1 

Conf: 

5 

Learning to deal with all possible directives would require a near-general AI, which cannot be 
developed within the envisioned time frame. (More limited systems may be doable, but may not need 
machine learning.) 

Learnability Grade: 

2 

Conf: 

5 

If we accept all possible directives, that’s basically a Turing complete language, and we would need to 
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have the right response for everything, which is virtually impossible. 

Teachability Grade: 

2 

Conf: 

5 

Each directive would pose a new “task”, which would need to be taught automatically, and we don’t 
know how to do that.  

Decomposability Grade: 

2 

Conf: 

3 

Each directive would pose a new “task”, which would need to be decomposed automatically, and we 
don’t know how to do that.  

Scalable complexity Grade: 

4 

Conf: 

5 

I suppose it’s possible to work with only certain kinds of directives, but it’s not clear how this scales. 

Definability Grade: 

2 

Conf: 

5 

Each directive would essentially pose a new “task”, which makes this task a bit ill-defined. 

Performance Evaluation Grade: 

4 

Conf: 

6 

Each directive might have a different (doable) evaluation method attached. As a whole, the Task 
would be almost impossible to evaluate. 

Data availability Grade: 

4 

Conf: 

2 

Directives are likely available, but probably not in machine-readable form.  

Benefit from ML Grade: 

5 

Conf: 

3 

Depends on the directive, but the Task as a whole is probably very difficult to learn. 
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Desirability for Isavia Grade: 

6 

Conf: 

2 

Isavia briefly mentioned this as a possible Task. 

Overall Grade:2 Conf: 

5 

Overall this Task does not seem suitable for our approach.  
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