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Abstract. In the quest for artificial general intelligence (AGI), ques-
tions remain about what kinds of representations are needed for the kind
of flexibility called for by complex environments like the physical world.
A capacity for continued learning of many domains has yet to be real-
ized, and proposals for how to achieve general performance improvement
through continuous cumulative learning—while seemingly a necessary
feature of any AGI—remain scarce. In this paper we describe a cumula-
tive learning mechanism that produces causal-relational models of its en-
vironment, to predict events and achieve goals. We show how such mod-
els, coupled with an appropriate modeling process, result in knowledge
whose accuracy increases over time and can run continuously throughout
the lifetime of an agent. The methods have been implemented, demon-
strating learning of complex tasks and situated grammatically-correct
natural language by observation. Here we focus on key theoretical princi-
ples of the modeling method and explain how effective cumulative learn-
ing is achieved.
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1 Introduction

We see the existence of intelligence in nature as a practical solution for limited
time and resources [17], and our efforts target practically viable methods for
building artificial general intelligence (AGI) systems. While in this paper the
primary focus is on theoretical aspects of cumulative modeling, which itself is a
subset of cumulative learning, the larger context for this work is AGI systems
that can handle the complexities of the physical world.

An environment E into which a goal-oriented agent is introduced can be
seen to consist of a (potentially large) set of variables V =

{
v1, v2, . . . , v‖V ‖

}
that

represent all the things in the world that may hold a particular value and change
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over time, along with relations < (causal, mereological, etc.) between (some) of
these variables, and dynamics functions F , that together determine how those
changes happen. Subsets {e1 . . . en ⊂ E = 〈V,F ,<〉} can be identified,4 where
relations, dynamic functions, values and value ranges, are of a special kind or of
particular interest, representing what we collectively call domains, D ⊂ E.5

As proven by Conant and Ashby’s Good Regulator Theorem [1], to be an
efficient survivor in a complex world, a learning mind must necessarily proceed
by modeling its task environment. This means that any AGI system, being a
learning controller of the most capable kind, will need a significant amount
of models to operate effectively in the physical world. A model set MD of D
contains models of (parts of) the environment – information structures that
together describe D, to some level of accuracy.

A cumulative modeler CM in our conceptualization is a controller6 that,
guided by one or more top-level (internalized) goals Gtop, implements a process
whereby regularities are recursively extracted from E to construct models MD

of it [14] for the purposes of (a) making predictions about D, and (b) achieving
goals with respect to D. In our approach models are explicit, and this is done
via forward and backward chaining, respectively.

The kind of models we are talking about the agent creating are bi-directional
in that a single model serves both purposes of prediction and goal achievement,
and whenever a model is triggered (considered relevant for a situation) its use-
fulness for both purposes may be tested and evaluated. The ability of models
to be used for predicting events from particular conditions, and planning ac-
tive intervention, is a key feature of significant importance for the nature of the
knowledge thus accumulated, as discussed below. In our approach, models can
refer to other models to form hierarchies, so that compound phenomena can be
represented, and equally importantly, so that the system can model itself (to im-
plement reflection [14]). Knowledge is non-axiomatic and defeasible [13], so any
old knowledge—even that which has repeatedly been shown to be useful—may
be defeated by new knowledge that is more useful (better predictions and/or
better goal achievement) and consistent with other models. New knowledge is
automatically reconciled with old knowledge, and learning tends to be sped up
due to prior knowledge (transfer learning [7, 8]), without catastrophic interfer-
ence/forgetting [2, 4, 6].

A good cumulative modeler is one which does not build its models haphaz-
ardly or randomly but in a way that achieves goals and predictions efficiently

4 We mean any sub-division of E, en ⊂ E, including sub-structures, component pro-
cesses, whole-part relations, causal relations, etc.

5 In any complex environment such as the physical world there will be innumerable
ways of domain sub-divisions. The range of domains created from human-centric per-
spectives (e.g. transportation, electronics, home, commerce, clothing, etc.) demon-
strate the utility of such sub-division.

6 A controller is the process that dynamically couples knowledge and goals to obtain
actions (or inaction) in an environment [14].
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and effectively. Elsewhere we have argued that to do so the models must by
necessity capture causal relations.7 Here we show why this must be the case.

Two forces are at work when improving knowledge represented as bi-directional
models: (a) Improving the precision of the atomic models and, (b) increasing its
scope by covering as many variables as possible with the models. The mechanisms
we present show that the models created by a good cumulative modeler will, over
time, increase their usefulness in guiding the system’s behavior – the cumulative
nature of the modeling means that while it is ongoing the system continues to im-
prove its knowledge of the environment [15]. A cumulative learner’s capabilities,
as a result, grow incrementally over time, in relatively small but frequent steps,
to ultimately cover a wide range of tasks.8 This is important because when the
modeler makes itself the subject of the modeling, it can potentially also improve
itself—implementing what has been called bounded recursive self-improvement
[9]—in a safe, incremental fashion.

2 Agent & Task-Environment

Fig. 1: An agent situated in an
environment (E) consists of
a controller (c) that hosts a
modeling process (PM ) capable
of generating causal-relational
models of the environment
through experience.

In the physical world, some of the environ-
ment’s variables are observable, Vo ⊂ V, some
are manipulatable, Vm ⊂ V, and some are re-
lated via causal links such that changing one
variable will affect another.

An agent situated in an environment (fig-
ure 1) consists of a controller (c) that hosts
a modeling process (PM ) capable of gener-
ating causal-relational models M of the en-
vironment through experience, testing their
validity through observation and direct inter-
vention in the environment. The agent has a
perception cone through which it can receive
input from observable variables (Vo) and ac-
tuators through which it can affect the state
of manipulatable variables (Vm). At any point
in time these will be limited to a subset of the total set of observable and manip-
ulatable variables due to I/O bandwidth and its specific location. If the world is
highly asymmetric—that is, features of any of its part in one area are highly
dissimilar to features in other areas—make any acquired knowledge heavily
dependent on an agent’s localization; highly self-similar worlds will not make
knowledge generation dependent on agent position.

7 Any reliable and repeatable regularity in a world is considered a causal relation,
irrespective of whether it is observable or not, or truly deterministic or not [3].

8 The speed of accurate model building is of course of critical importance for any
real world implementation, determined in part by the details of the implementation
methods and the nature of the task-environment; in this paper, however, the primary
focus is on theoretical aspects of the modeling process.
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In our conceptualization, a cumulative learner will proceed to create models
of the relations between observed variables. If V1 and V2 are both variables of the
world, linked by the relation V1RV2, with R ∈ <, what the model “claims” is a
causal link between O1 and O2, the observable parts of V1 and V2. For instance,
if A is the result of the observation of O1 and B is the result of the (subsequent)
observation of O2, then the model represents a (hypothesized) causal relation
between A and B, i.e. A⇒ B (and indirectly, that V1 caused V2).

Of the set of variables V in any complex environment such as the physical
world, only a fraction are observable, and even a smaller fraction of those are
observable in any given time interval. An event involving an observed relationship
between any two or more variables, where for that time interval some relevant
variables are unobservable, will make it indistinguishable from a partially random
relationship, even if it is fully deterministic “under the hood”. Same goes with
the manipulatable variables Vm: they only represent a fraction of the variables
of the world, and may not be a strict subset of Vo, as actions of the agent may
have unobservable effects.

This means that for any world with a very small ratio of Vo/V, a large
number of relations between observable variables will seem “probabilistic” to
an agent—even if that world is fully deterministic (i.e. all related variables are
truly deterministically coupled). Therefore, an agent in such environments will
neither be able to model its task-environment perfectly nor fully, and a number
of its models will be incorrect some of the time.9

3 Models & Modeler

Before even beginning to model, our cumulative modeler must be given a well-
defined seed, composed of (at least) one top-level goal Gtop, one model connecting
this goal to an observable variable, one model acting on a manipulative variable,
and one primitive action to take. This is really the theoretical minimum – prac-
tical implementations will contain quite a bit more; the more complete and
thorough the seed is the easier it will be for the system to bootstrap and start
learning. If the seed does not reference anything that the system can measure
the system won’t be able to evaluate the results of its actions, and thus cannot
grow its model set. The same goes for goals (the seed must contain at least one
concrete objective to attain) and executable actions (there must be at least one
action the system can perform). The smaller the seed, other things being equal,
the longer the system will take to bootstrap its knowledge.

9 It should be noted that causal relations cannot be replaced by probabilities. Pearl [12]
(p. 36) states: “...causality deals with how probability functions change in response
to influences (e.g., new conditions or interventions) that originate from outside the
probability space, while probability theory, even when given a fully specified joint
density function on all (temporally-indexed) variables in the space, cannot tell us
how that function would change under such external influences. Thus, ‘doing’ is not
reducible to ‘seeing’, and there is no point trying to fuse the two together.”
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When the agent is inserted into the environment its modeling process starts
generating models using information in the seed. This proceeds by noting corre-
lations in the stimuli coming in through the senses (including sensations related
to the agent’s own end-effectors), and for any A⇒ B pair, where A precedes B
in time, creating a model that predicts what may happen when you see an A,
and suggesting that when you want a B you may want to make A happen.

The modeler must have the ability to round up the relevant models at any
point in time. This is done by the agent’s scheduling process. If there are too
many models models for the controller to sort through, the threshold for any
model to be considered relevant to the present moment could be increased, thus
decreasing the total number of models the system must work with at any point in
time. The speed at which this can be done directly affects a controller’s ability to
bring the right knowledge to bear on any situation, as it determines how many
models the controller can consider during forward (deduction) and backward
chaining (abduction). This is important because it specifies, respectively: the
controller’s capacity to consider (a) alternative futures (by triggering various
different models that look promising for predicting next events based on e.g. the
current state) and (b) alternative ways of achieving goals (by searching through
models abductively to find plausible paths through which any state may have
been formed). While these do not bear directly on our arguments in this paper,
they are of great importance when considering practical implementation of these
mechanisms.

3.1 Structure of Causal-Relational Models

Our concept of a causal-relational model is used here in a specific way; prior
work provides detailed examples of how such models may be implemented [9,
11], while here we are more concerned with the theory of such models.

Models are executable information structures encoding procedural knowl-
edge and are either provided up front (by the designer) in a seed or created by
the modeler – with the latter set becoming much larger than the former over
time. The models our cumulative modeler creates are composed of a left-hand
term (LT) and a right-hand term (RT). The LT (the “input”) refers to a pre-
conditional pattern, composed of values, variables, ranges, etc., that make the
model relevant10 for a particular situation (via pattern matching); the RT repre-
sent the post-conditions of the terms the model refers to. When the LT pattern
is observed, a prediction based on the RT pattern is produced. In this forward-
chaining process a set of models compute predictions on given LT inputs via
deduction. For instance, if a model takes two consecutive {x,y} coordinates of
the path of a Pong ball and computes its next position using a linear transfor-
mation formula, this is a prediction of a future state of a particular entity (the
ball) in particular circumstances (moving along a path, i.e. correct until the ball

10 Relevance is determined at “the top” by top-level goals, and at the “bottom” by
incoming stimuli through sensors; in between the pattern matching on the models’
LT and RT determines their relevance.
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hits something). A good model will thus produce a true prediction using valid
deduction.

Reciprocally, when an instance of a model’s RT pattern is observed that
is a goal, a sub-goal patterned after its LT pattern is produced. In this case
backward-chaining answers the question “how could RT be achieved?”. Models
produce sub-goals when super-goals match their RT pattern, these sub-goals in
turn match other models’ RT pattern until – unless the chaining is halted for
some reason – a sub-goal produces a command for execution by I/O devices.

When an input other than a goal or a prediction matches its RT, an assump-
tion is produced, based on the LT. In either case the task of the scheduler is
to find the model(s) whose RT matches the state, and reading the model “in
reverse” by looking at its LT. This constitutes generating abduction hypotheses,
answering the question “how might the RT have come about?”.

After a model is used we check to see whether the predicted outcome was
correct or not; each model stores the number of correct uses over the total
number of uses, whose ratio is used to determine the preference for which model
should be chosen when an input matches the LT (when forward chaining, RT
when backward chaining) of two or more models. Models further contain two
sets of functions that compute values for variables featured in the RT, from the
values held by variables in the LT (one set for forward and another for backward
execution).

4 Modeling Process for Cumulative Learning

Now we describe the basic operations of a canonical cumulative learner, and
show that by generating small modifications to existing models and testing these
through observation and manipulation, the modeling process implements cumu-
lative learning.

The modeling process consists of two sets of modelsM andMhyp, and their
interactions with the environment E (Fig. 2). The first set,M, is used to compute
and predict the state of the system. This set of models interacts directly with
the environment: it receives informations from some observable variables in the
world and can act on some variables (the manipulatable ones), as explained in
the preceding section.

M

M
hyp

E

Generates

Injects

Interacts

Tests

Tests Deletes

Fig. 2: Interactions between the different sets of the system (see text).
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The second set, Mhyp, is the “experimentation lab” of the modeler, whose
purpose is to test new models without interfering with the environment. Models
of this set are variations of those fromM. These variations are based on alterna-
tive contextualization, hypothesized generalization, and proposed compression of
existing models. Models inMhyp are tested as the environment andM interact.
When a model M1 ∈ M is triggered, we will test what would have happened if
it would have been replaced by its variation, M ′1 ∈ Mhyp. A comparison of the
model set using the new model versus the original one determines whether the
new model is deleted (if it produces no improvement or is simply wrong), or is
added in M (if a performance improvement over the original set is detected).
The original model M1 may then be deleted from the sandbox or kept (if, for
some contexts not addressed by the new model, the original one is still useful).

The initiation to generate a new model M ′0 is the triggering of a model M0 in
M (i.e. it is considered relevant for the present state). Depending on the actual
usefulness of M0 in the present situation (for prediction and/or intervention),
the modeler will create (at least one) variation of M0 inMhyp. If M0’s prediction
is correct, the modeler will try to make it more general by removing some of the
constraints in its LT, in an attempt to make it more general. If M0’s prediction is
incorrect, models will be created with the observed outcome as output (targeting
the same observation) and more specific input than M0, making it less general.
In this case M0 may still be relevant and is not deleted.

When several models are used in series they may be compressed into a single
model with a more detailed or specific input. While not improvingM’s coverage
(scope), reducing model count may increase the modeler’s runtime efficiency.

4.1 Description of Modifications

The key to the idea of proving that our cumulative modeler is a good one is
to show that each of the small modifications will result in a small improvement
of the system. To do so, we will detail each of the modifications and explain
why—should the modification be shown to be a good one—injecting it in M
will improve the ability of the system to predict and achieve goals in D ⊂ E due
to the models inM matching more closely actual relationships between variables
in D.

Contextualization New models will be created when a triggered model M0 ∈
M produces incorrect predictions (they could be incomplete, partially correct,
or totally wrong). What we want in this case is, if I is the set of all inputs that
M0 was triggered on, to partition it into two sets I0 and I1. Then the original
model M0 will be transformed in M0

0 . It will be the same as M0 with a LT that
will only match inputs in I0. A new model M1

0 will also be created, with a LT
that match I1, and the RT that was just witnessed.

Whether these new models are effective or not becomes known when a state
arises where they are considered relevant. Two properties must be verified to say
that this results is an improvement.
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– If i ∈ I1, (M0 correct on i) ⇒ (M1
0 correct on i)

– ∃i ∈ I1,(M
1
0 is correct on i and M0 is wrong on i)

– We already have that if i ∈ I0, (M0 correct on i) ⇒ (M0
0 correct on i)

If one can find a couple of models (M0
0 ,M

1
0 ) such that the above properties are

verified, then one has found a couple of models that are strictly better than the
original one M0.

Generalization / Induction Another case of new model creation is when a
model M0 from M is triggered, and its prediction is correct. New models that
are more generic will then be created, with the same RT output as M0, but with
LT inputs that are less specific (suppression/deletion of input variables, greater
range of values, variables replacing values, etc.). To be injected intoM a model
thus created should be as efficient on the LT input where M0 is correct, and
work well on other inputs not specified in M0’s LT. The new model should be
verified to not interfere with existing models in M. If that’s the case, and the
model is failing on inputs that are caught by other models, it should be modified
to prevent it form competing with such existing models.

When it is verified that the new model is more general than M0, it will then
simply replace it in M. When evaluating this change in M, what we want to
verify is simply that the new model works “better” than the old one. Here,
working “better” has three implications:

– M0 is correct on input i ⇒M ′0 is correct on input i. This is ensured by the
fact that M ′0 LT is simply a less specific version of the one on M0.

– M ′0 is correct on input i, and i did not trigger M0. This is ensured by the
fact that if M ′0 was moved fromMhyp toM it has been tested to be correct
on such inputs.

– There is no input i on which M ′0 will make incorrect predictions that would
have been caught correctly by other models inM. This is ensured by check-
ing that M ′0 does not interfere with existing adjacent models (that have
variables in common).

Compression The last case of creating new model(s) is when several small
models (Mi)i∈[|0,n|] are compressed into a single bigger one, and when a model
sequence (M0, then M1, etc.) is replaced with a new model that has as its input
a mix of the input variables from M0, . . . ,Mn−1, and the same output as Mn.
Models should be added inM only if they are at least as correct as the original
ones. The objective of such compression is not to achieve a better model than
the original ones but rather to reduce computational requirements.

This modification category is somewhat less important than those above and
should only be used if it is desired to have a greater number of more specific mod-
els, rather than a lower number of more generic ones. This represents, however,
a general way to tune resource usage [5] and can be done when faster results are
desired. The original models can of course in all cases be kept and strategically
retrieved, e.g. should more precision be needed or more computational resources
become available.
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4.2 Producing Causal-Relational Models

Due to the bi-directionality of the models they will tend towards capturing true
causal relations between variables of the environment. To see why, consider the
situation where a cause A has two effects, B and C (figure 3). We assume that
to the modeler A appears before B and C, but B and C appear together. Four
models could be used to describe what is observed every time we see an A:

1. Model M1: B ⇒ C
2. Model M2: C ⇒ B
3. Model M3: A⇒ B
4. Model M4: A⇒ C

A

C

B
Causes

Causes

Concomitant

Fig. 3: Example causal relations between
A, B and C.

Any of these models will predict
correctly: If you see B you will see C,
and vice versa; if you see A you will
see B and C. However, not all of them
can be used to achieve goals in the
domain of A, B and C: If you want to stop seeing C it does not help to remove
B, or vice versa – due to the causal structure of this task-environment, only
model M4 will help. Thus, when each of these models is used for both prediction
and goal achievement models M1 and M2 will be deleted due to their incorrect
predictions. What remains are M3 and M4, the only models that capture actual
causal relations in the domain, to the extent that this can be represented as
relationships between observable variables.

Each modification of the model set in M, using the methods above, makes
them more reliable within a given sub-domain MD. Repeated usage and test-
ing of the models increases the overall reliability in small steps, as they capture
the target phenomena. The system is continuously trying to improve each of
its models, hypothetically reaching the maximum precision allowed by the envi-
ronment and the alloted time and resources. When this point is reached, every
phenomenon is modeled as well as possible.

5 Conclusion

We have presented a modeling process that implements a good cumulative mod-
eler, improving continuously to eventually be able to operate in a wide range
of task-environments. Based on combined abduction and deduction over causal-
relational models, the methods described have been implemented and tested [10,
16, 11, 9], producing notable results not demonstrated by other learning systems.
While important questions about practical issues remain to be investigated, e.g.
the extent of its generality and scaling, this paper demonstrates that the basic
principles are relatively clear and concise and meet the criteria for cumulative
learning. Our results so far indicate that these ideas are significantly different
from most other approaches, and potentially a promising approach to achieving
AGI.
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9. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez,
M., Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P.,
Chella, A., Jonsson, G.K.: Bounded Recursive Self-Improvement. Technical RUTR-
SCS13006, Reykjavik University Department of Computer Science, Reykjavik, Ice-
land (2013)
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