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Abstract. The concept of “common sense” (“commonsense”) has had a visi-
ble role in the history of artificial intelligence (AI), primarily in the context of
reasoning and what’s been referred to as “symbolic knowledge representation.”
Much of the research on this topic has claimed to target general knowledge of
the kind needed to ‘understand’ the world, stories, complex tasks, and so on. The
same cannot be said about the concept of “understanding”; although the term does
make an appearance in the discourse in various sub-fields (primarily “language
understanding” and “image/scene understanding”), no major schools of thought,
theories or undertakings can be discerned for understanding in the same way as
for common sense. It’s no surprise, therefore, that the relation between these two
concepts is an unclear one. In this review paper we discuss their relationship and
examine some of the literature on the topic, as well as the systems built to ex-
plore them. We agree with the majority of the authors addressing common sense
on its importance for artificial general intelligence. However, we claim that while
in principle the phenomena of understanding and common sense manifested in
natural intelligence may possibly share a common mechanism, a large majority
of efforts to implement common sense in machines has taken an orthogonal ap-
proach to understanding proper, with different aims, goals and outcomes from
what could be said to be required for an ‘understanding machine.’

1 Introduction
Common sense (“commonsense knowledge”, “common sense reasoning”) has been
deemed an important topic in AI by many authors since the field’s inception (Lenat
et al. 1990, Liu and Singh 2004, McCarthy 1959, 1963, Minsky 2006, Panton et al.
2006). Following its use in our everyday language, the term has typically been used
broadly in the AI literature, incorporating a large portion of human experience relat-
ing to the spatial, physical, social, temporal, and psychological aspects of everyday life
(Liu and Singh 2004). Used in this way, the term refers to a vast body of knowledge
assumed to be common to most humans. It is also used to refer to modes of reasoning
and argumentation, as much of everyday planning involves the usage of standard forms
of deduction, induction and abduction (e.g. “strong winds may blow rain through an
open window so don’t leave your books on the windowsill”).
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The relation of common-sense and understanding is an unclear one. What can be
said with some certainty is that in the AI literature, common sense has almost always
been aligned with human common sense – that is, the knowledge that defines human
common sense, with numerous attempts having been made to imbue machines with this
same knowledge (Cambria et al. 2012, Lenat et al. 1990, Liu and Singh 2004, McCarthy
1959, Panton et al. 2006, Poria et al. 2014). The best known example is the Cyc project
of Lenat’s Cycorp Inc. (Lenat 1995), whose database currently consists of seven million
axioms, 630,000 concepts and 38,000 relations between those concepts. 1

Common sense may intuitively seem closely related to the concept of understand-
ing. This seems to have been the opinion of Minsky and Papert, among others, who in
1970 wrote, when discussing one of Aesops fables: “The usual test of understanding
is the ability of the child to answer questions like Did the Fox think the crow had a
lovely voice? The topic is sometimes classified as natural language manipulation or as
deductive logic, etc. These descriptions are badly chosen. For the real problem is not to
understand English; it is to understand at all.” (Minsky and Papert 1970:38). This text
appeared in the section with the heading ‘Narrative, Microworlds, and “Understanding”
’ (quotes by the authors), throughout which the terms understanding and meaning are
always in quotes when referred to in the context of machines, indicating a certain dis-
trust towards the possibility of infusing them into machines in any real sense; why the
authors did not aim for “real” understanding and “real” meaning may be because these
concepts were not—at that time—very well understood (no pun intended). The authors
conclude that a good body of knowledge is equally necessary for common sense as are
reasoning rules to understand stories such as that of Aesop’s crow, and predicting that
“less than a million statements” (Minsky and Papert 1970:40) would be needed for such
a knowledge base to work for that purpose. In the 40 years since this text was written,
this heavy emphasis on background knowledge - which in their case at least seems syn-
onymous with common sense - has only grown, and the terms have been used largely
interchangeably (Lenat et al. 1990, Liu and Singh 2004, Panton et al. 2006).

We see the relationship between understanding and common sense as being far from
settled, especially in light of the seemingly long road still ahead for reaching “true AI”
(artificial general intelligence) and ask,

– Can common sense exist without understanding?

Are they perhaps two sides of the same coin? If so, what coin is that? Put another
way, for any subject X , can a state of knowledge exist, and be held by an agent, that
is deemed “common sense” with respect to X while the knowledge cannot be said to
contain “understanding” of X? The question can of course be turned around, and this
brings out the second question,

– What is the relationship between ‘common sense’ and ‘understanding’?

To answer these questions one must look more deeply at the concepts themselves, and
perhaps consider their usage and relation to some real-world examples. We look at the
relevant literature and examine systems built to implement common-sense reasoning.
The rest of this review paper is organized as follows: a discussion of common sense
as it has been treated and previous attempts to implement it in systems along with

1 http://www.cyc.com/platform/, accessed Apr. 29 2017.



a review of how this relates to our theory of understanding, the limitations seen in
systems which have attempted to implement common sense, followed by a discussion
contrasting understanding and common sense, and followed finally by our conclusions.

2 Common Sense & Understanding
To date, common sense has been viewed in a narrow way within the AI literature, gener-
ally being conceptualized as consisting of a body of facts or information. Accordingly,
systems intended to demonstrate common-sense reasoning have generally tried to im-
bue common sense through pre-programming of vast amounts of knowledge. Few if any
definitions of the term can be found, forcing us to rely on our general common sense of
commonsense.

Broad, consistent knowledge about everyday things allows us humans to “flexibly
understand and react to novel situations” (Panton et al. 2006). Analogously, if we could
imbue machines with such broad and consistent knowledge the same should hold for
machines. In 1990 the authors of Cyc argued that vast amounts of common sense knowl-
edge would be required to produce an AI (Lenat et al. 1990). The argument goes that a
large, general knowledge base enables consistent, efficient, and correct reasoning about
everyday things with relatively simple and few rules (Minsky and Papert 1970), and a
system with broad knowledge about facts and relations could thus be successful in com-
pleting tasks that require common sense (Panton et al. 2006). Without such knowledge
and reasoning ability, however, systems will remain idiots savants (Panton et al. 2006).

Liu and Singh (2004) discuss ConceptNet, a commonsense knowledge base and
natural language processing toolkit whose knowledge representation is semi-structured
English. The commonsense knowledge contained within their database include spatial,
physical, social, temporal, and psychological aspects of everyday life. The authors ar-
gue, however, that while some success has been found when using keyword-based and
statistical approaches with respect to areas such as information retrieval, data mining,
and natural language processing, it appears that these approaches provide too shallow of
an understanding for all practical purposes, and that larger amounts of semantic knowl-
edge are required in order to allow software to have a deeper understanding of text,
echoing other authors’ call for larger, more extensive knowledgebases.

These “common-sense” systems have numerous aspects in common: A knowledge-
base (database + rules for how to use the data + metadata + network of relationships
between the data) built on the same rules as typical databases in computer science,
using hand-written rules authored along the same way as regular software is written.
Relations between data are somewhat different from regular business rules in e.g. a
bank or IT company, the principles for running such systems are very close to those
governing operating systems and IT networks.

Understanding, which on the face of it seems highly related to common sense, takes
up much less space than the concept of common sense in the AI literature, at least as
an independent phenomenon or process, and when discussed seems to be considered
largely synonymous with it, or even a less precise way of talking about common sense.
Discussions of understanding proper have been mainly limited to the field of philoso-
phy, which has been somewhat dominated by a language-centric viewpoint that aligns
well with the symbolic approach to common sense, where knowledge is defined as
“true, justified belief” (cf. Grimm 2014, Potter 1994, Grimm 1988).



In prior work we proposed a theory of understanding that rests on the idea that
a learner that acquires understanding is in fact building a model that captures causal
and other relations in the phenomenon being thus understood (Thórisson et al. 2016).
Isolating causal relations is necessary in order to commit intervening actions that will
produce predictable results. Modeled causal relations can be manipulated through the
application of ampliative reasoning (cf. Wang 2012) due to the hypothetico-deductive
nature embedded in macro-scale causality. Without causality, in fact, not much can be
done – committing to a behavior with the aim to achieve a certain outcome for thing Y
by manipulating X is not successful when the two are only correlated but not causally
related.

In our approach, causal-relational models must be micro-malleable: to take into ac-
count any new fact or piece of knowledge that changes some of the assumptions already
incorporated, however large or small, without having to re-structure all of the knowl-
edge from scratch.2 “Common sense” is generally thought to be common among hu-
mans (hence the name), while commonalities relating to experience should generalize
more broadly, in such a way that if the system experienced an environment vastly differ-
ent from a human environment it should still have common sense. Such a system as we
describe must be able to produce models, on its own, in which rules are induced through
observation and experience. Given an agent A with models M of a phenomenon Φ—
MΦ—we have proposed the following definition of understanding:3 A’s understanding
of phenomenon Φ made up of sub-parts ϕ ∈ Φ, depends on the accuracy of its models
MΦ with respect to Φ. Understanding is a (multidimensional) gradient from low to high
levels, determined by the quality (correctness) of two main aspects in MΦ relative to Φ:

U1 The completeness of the set of elements ϕ ∈ Φ represented by MΦ.
U2 The accuracy of the relevant elements ϕ represented by MΦ.

We also suggest that understanding can be tested for in the following ways:

(1) To predict Φ; (2) To achieve goals with respect to Φ;
(3) To explain Φ; and (4) To (re)create Φ.

This approach has been implemented in a system called AERA/S1, which demon-
strates cognitive mechanisms very different from both classical symbolic systems such
as Cyc and ConceptNet, reinforcement learners, and artificial neural net systems such
as deep and recurrent neural nets (ANNs) (Nivel et al. 2014). S1 has been shown to be
able to learn very complex spatio-temporal tasks from observation when given only a
tiny amount of information up front, including a few top-level goals it should achieve.
It does not require enormous hand-coding like (most) symbolic approaches, and nei-
ther does it require the tens of thousands of data and training iterations of ANNs. It
can handle a vastly greater number of variables than the most sophisticated reinforce-
ment learners to date, and it can handle inconsistencies and contradictions. It also learns
cumulatively and continuously – on the job (Nivel et al. 2013, Nivel et al. 2014).

2 This bears a relation to McCarthy’s (1998) concept of “elaboration tolerance”: Micro-
malleability is a way to imbue causal-relational models with elaboration tolerance.

3 For a thorough overview of this theory see Thórisson et al. (2016).



3 Some Limitations Observed in Commonsense Systems To Date
When looking at the performance, capabilities and state of commonsense/expert sys-
tems to date, three things jump out. First, no system so far has demonstrated automatic
acquisition of commonsense knowledge. Second, very few have been provided with
more than a few thousand axioms/rules/knowledge-nodes/facts – the main exception
being Cyc, which contains over seven million axioms.4 And thirdly, they all demon-
strate a level of brittleness evident in frequent and unexpected errors and failures whose
source, while not too difficult to trace in each case, is virtually impossible to foresee.

With respect to systems focusing on common-sense reasoning, while little has been
written explicitly addressing their brittleness, this is a common concern that has been
raised not only by critics of the approach but also by the authors of such systems (cf.
Panton et al. 2006:22). However, when brittleness has been addressed by the develop-
ers of such systems it is often in the context of arguing that more rules are needed,
hypothesizing that while programs lacking commonsense reasoning are brittle, those
with sufficiently large databases will not be (Panton et al. 2006; Lenat et al. 1990).
Examples of brittleness have been provided in the way of expert systems which break
down in the face of contradictions and in areas outside their domain (Lenat et al. 1990).
Pratt (1994) provides one of the more illuminating analyses of brittleness—in his case
with Cyc—where numerous failures of an actual demonstration of the system were ex-
posed in routine interaction.5 Other publications do not present very strong evidence
to anything contrary, with Lenat et al. stating in 2006 that Cyc fails to produce correct
facts more often than 50 percent of the time, when searching the World Wide Web was
used as a resource (Panton et al. 2006:22). All in all, “common-sense” systems seem
still to fall short of their main goal when it comes to real-world performance.

To dissect this a bit further, one of the failures of expert systems in particular, and
the classical symbolic approach in general, is the often-referenced mistake by a medi-
cal diagnosis system to diagnose a rusty car as “having measles”. Such errors are due
to lack of contextual knowledge. Another source of brittleness stems from the human
ability to handle alternative background assumptions - a popular example being this
exchange between father and child: Child: Do knights slay fire-breathing dragons? Fa-
ther: Yes. Child: Do fire-breathing dragons exist? Father: No. The ability to humans to
seemingly freely alter the assumptions on which reasoning is done, without losing track
of the context, allow us to talk about imaginary things, hypothetical things, uncertainty,
and numerous other things that are difficult to program in an automatic reasoning en-
gine based on augmented first-order logic. Other sources of difficulty in commonsense
reasoning are, for instance, unusual usage of the rich experience-based knowledge that
humans have about the world (e.g. a rock being used as a table – a table with no legs),
and when we use analogies (e.g. “The woods are his home away from home”). An-
other source of brittleness relates to a lack of contextual flexibility. While humans have
many domains and resources to draw from, programs fail when situations exceed their
limitations (Lenat et al. 1990).

4 http://www.cyc.com/platform/, accessed Apr. 29 2017.
5 In a demo given of Cyc to one of the authors of this paper (Thórisson) in 1998 (around 200

images instead of 20), unexplained inconsistencies surfaced, albeit different ones from those
reported by Pratt (1994).



Some have argued that overcoming brittleness requires broad knowledge, and that
a certain breadth is necessary and sufficient to begin to integrate new knowledge auto-
matically (Lenat et al. 1990). The Cyc database is one of a few serious efforts to test this
hypothesis. The original number predicted as necessary and sufficient for the system to
start learning more or less on its own was 1 million rules (Lenat 1995).6

4 Why Understanding is Not Common Sense
Judging from the preceding literature review, it would seem that an overemphasis on
the concept of commonsense in AI has resulted in the relegation of the broader concept
of machine understanding to the sidelines. In the example of Cyc, the creators hypoth-
esized that with respect to common-sense knowledge acquisition, one million axioms
relating to basic (human experience) facts would be foundationally sufficient for the
system to begin reading text authored by humans and acquiring the embedded knowl-
edge mostly automatically, with one million axioms being an “inflection point” of sorts.
When one million axioms did not produce adequate performance, the minimum was in-
creased to two million; still, Cyc continued to display similar issues in performance
- unexpected brittleness and failures. Interestingly, the Cyc project continued and is
now at seven million axioms. This expected minimum might be sufficient, finally, but
we have not seen any evidence thereof. We suspect that other factors are at play than
simply the size of the knowledge base.

This raises important questions. For example: Is the representation method chosen
in symbolic expert systems a good one for supporting automatic knowledge acquisition?
Is first- (or second-) order logic a proper foundation for achieving robust results for the
purposes these systems are built? Is a database with hand-written rules and relations a
good foundation for machines to acquire and reach “common sense”?

A related question relates to the very definition of common sense – and also one
that directs our attention to the anthropocentrism of the data these systems have been
based on. Is the fact that “the third president of country X was Y really what we
mean by the term “common sense”? Perhaps there are more fundamental aspects of
the physical world that must be represented correctly and acquired autonomously by
the correct mechanisms that must be present such that the system can learn such facts
autonomously. Most importantly, are there other things, besides or instead of the reason-
ing methods employed, that enable such systems to acquire knowledge autonomously?

In our approach, the ability to understand—or more precisely to deepen/broaden
one’s understanding—must involve a capacity for automatic knowledge acquisition,
as opposed to axioms hand-coded by humans. The conceptualization of common sense
embodied in symbolic approaches relying on human-authored knowledge seem too sim-
ple and too human-centric, lacking the generalizability needed to achieve human-like
understanding. Our own approach involves a representation of concepts that is built up
of peewee-size models, that when brought together to model a particular phenomenon
will predict its behavior under various conditions. These models can be shared between
concepts – in fact, rather than being “made up of” such models, concepts in our ap-

6 This number may have originated from the MIT AI lab (Minsky and Papert 1970), however,
its origin or argumentation for why this number and not some other is not provided in the
respective publications.



proach are dynamically constituted by the system on the fly, based on experience, by
assembling appropriate models for a particular computation that must be done. General
or “common sense concepts” are then dynamic model assemblies that have happened
to be useful a number of times for the system that generated them (i.e. the machine,
not a human). Understanding in our conception, then, is the application of such model
assemblies for modeling causal and other relations between sensed phenomena, and for
guiding goal-driven planning in realtime.

We have experimented with systems built in this way and compared them with
other cognitive architectures (Thórisson and Helgason 2012). The results, which are ex-
plained in some detail in Nivel et al. (2013) and Nivel et al. (2014), have demonstrated
robust sequence learning - robust in the sense of acquiring complex patterns correctly
in a very short period of time, as well as having a potential to model its own limitations
and thus learn to avoid situations in which it will not perform above a certain threshold,
which can be either given to the system beforehand or any time during its learning.

With respect to classical symbolic systems, the application of our definition of the
process acquiring understanding produces at best a set of questions or at worst a void:
neither understanding nor the capacity to acquire it appears to be obviously present
within these types of systems. While it could be argued that such a system may be able
to create largely complete and accurate models of phenomena, fitting our definition of
understanding, this would fall apart when this understanding was then tested for. Such a
knowledge database type of system has not, and would not be expected to, perform well
with regard to predicting a phenomenon, achieving goals, explanations, or recreating a
phenomenon (Bieger et al. 2017).

A critical piece missing from symbolic systems is some foundational grounding:
essentially, they are simply more sophisticated versions of “good old-fashioned” AI -
“symbol” manipulators, where the “symbols” are simply augmented tokens7. A (human-
like) concept cannot be adequately represented by token(s), or even by extended to-
ken(s). This lack of a foundation or basic framework precludes these types of systems
from building understanding, as we have defined it.

Additionally, systems taking the classical symbolic approach have difficulties search-
ing for the reasons behind inconsistencies in their knowledge; limitations arise by be-
ing unable to go below a certain level. This, along with its simple pipeline reasoning
method, the choice of a single ontology, and inability to choose between reasoning
methods, may be factors behind the brittleness found in Cyc and similar systems. In
other systems, such as AERA and NARS, levels of plausibility exist, while there is
never absolute certainty. Additionally, the level of granularity of one symbol or token
per idea does not allow for concepts to be represented at lower levels of granularity; this
reification of concepts may preclude the flexibility required for understanding as well
as deepening and broadening understanding.

All of the above leads us to field the following hypotheses:
Hypothesis 1: Fine-grained representation of concepts, and fine-grained (and am-

pliative) methods to reason over these, is necessary to realize mechanisms for under-
standing acquisition. To robustly understand, for instance, that something can be pulled

7 The “symbols” in such systems have no meaning for its manipulator, and can thus only be
considered a token in a simulator whose meaning can only be discerned by its human author.



by a string but not pushed by a string (Minsky 2006), one needs a reasonably good
representation of how matter behaves under various conditions. A classical symbolic
approach, as some of those reviewed above, might represent the concept of “string” as
a node in a knowledge network whose neighbor nodes are pretty much at that same
level. It is not clear how one would infuse such systems with information of the type
that could model how strings woven in various manners might behave differently, and
that for instance a string made of extra stiff (yet bendable) plastic might be used to push
something if the stub is short enough. Or how one would represent the knowledge that
should you dip a string into superglue it may harden enough to become stick-like, in
which case you can push something with it. (Is it still a “string” in this case? If not, how
would this be represented? If yes, is it a different kind of string?). This kind of lower-
level knowledge can be found for virtually any example of human-level knowledge.

Hypothesis 2: To ground knowledge acquisition and understanding, a system must
be able to do experiments in the domain that is the target of its learning. A system that
builds models of its own experience over time will produce a wealth of data about how
the world works. Add to that an ability to do induction and the system can begin to
generalize its data and create meta-rules about its experience. Such models will at any
and all points in time have inconsistencies and incomplete knowledge - and this is not
only something that any such system must be able to live with, it must be able to use it to
improve its knowledge. However, without the ability to test knowledge against the real
world this may be difficult; it is difficult to imagine how a machine that can only access
human-level tokens can ever grow to properly validate or invalidate its knowledge.

Hypothesis 3: Understanding is necessary for common sense. In our conceptualiza-
tion, understanding is the process by which one can acquire reliable, useful knowledge
that can be used to predict, intervene, achieve goals, and explain. This seems to us to be
the proper foundation for common sense, much more so than the human-centric one that
most approaches have taken to common sense so far. Insofar as many of these do not
aim for general intelligence but rather some practical tools or other ends, this criticism
is of course not justified. Yet even on that end results seem to be slow in coming.

Hypothesis 4: Symbolic approaches are brittle because they lack proper mecha-
nisms to acquire understanding. If concepts exist as a set of dozens or hundreds finer-
grained pee-wee models, as we hypothesize, then using a symbolic approach in order to
capture common-sense will not be successful, as a) it prevents the ability for the system
to automatically select viewpoints on the knowledge that are relevant to each goal, and
b) it removes the ability of the system to be truly grounded, and that type of experiential
grounding cannot reasonably be manually written or programmed.

Hypothesis 5: Symbolic approaches are brittle because they lack mechanisms to
resolve logical inconsistencies in their own knowledge introduced by their human pro-
grammers. Because their knowledge is human-centric and human-generated, inconsis-
tencies must be resolved at this level. But their knowledge is fixed at this level, and
deeper, more fundamental knowledge and experience does not exist in their knowl-
edgebase to dig into underlying causes. Moreover, their reasoning ability is limited by
targeting this kind of knowledge only; a more integrative ampliative reasoning—which
unifies deduction, induction, and abduction—in a flexible manner (Wang 2006) seems



necessary, preferably in part learned by the system through experience. However, since
this is missing in such systems, this requirement falls flat.

Taken together, if all five hypotheses are valid, this should place rather particular
and notable constraints on AGI research. Whether they hold up to scrutiny, presenting
promising paths for further experimentation, calls for deeper investigation. We can only
hope that we are honing in on something worthwhile, rather than having come to one
junction out of a thousand or a million. On that question, our interesting result with
peewee-granularity knowledge representation so far (Nivel et al. 2014) should certainly
not be a deterrent.

5 Conclusion
While classical symbolic systems capture some aspects that are needed for common-
sense reasoning, the approaches taken to date seem to a) put an undue emphasis on
common-sense reasoning when it should be emphasizing understanding, b) place the
machine within a human-centric framework by grounding the concept of common sense
in human experience, and c) attempt to teach the system about common sense in a
way that is practically impossible, i.e. pre-programming facts. If such systems can be
said to understand, then why is their performance so brittle? We argue that a certain
minimum level of performance is required in order to show understanding. With respect
to approaches to AGI, we have argued that the classical symbolic approaches reviewed
(and similar ones) cannot produce understanding or common sense due to their inability
to represent concepts at finer granularity, their inability to automatically resolve logical
inconsistencies, and that the approach prevents the ability for a system to automatically
select viewpoints on the knowledge that are relevant to each goal, and removes the
ability of the system to be truly grounded. Brittle systems cannot cope with new ideas,
new experiences, new sights and sounds: without this ability, systems can hardly hope
to go beyond their current state in any meaningful way.
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Thórisson, K. R. & Helgason, H. P. (2012). Cognitive architectures and autonomy: A
comparative review. Journal of Artificial General Intelligence, 3(2): 1-30.
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