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Abstract
One major challenge of implementing a metacognitive archi-
tecture lies in its scalability and flexibility. We postulate that
the difference between a reasoner and a metareasoner need
not extend beyond what inputs they take, and we envision a
network made of many instances of a few types of simple but
powerful reasoning units to serve both roles. In this paper, we
present a vision and motivation for such a framework with
reusable, robust, and scalable components.
This framework, called Scruffy Metacognition, is built on a
symbolic representation that lends itself to processing using
dimensionality reduction and principal component analysis.
We discuss the components of such as system and how they
work together for metacognitive reasoning. Additionally, we
discuss evaluative tasks for our system focusing on social
agent role-playing and object classification.

Introduction
One major challenge of implementing a metacognitive archi-
tecture lies in its scalability: most metareasoners seem to be
hand-crafted to serve a specific role in a specific implementa-
tion or solve a specific problem. Without a low-cost means to
deploy arbitrary architectures, the consideration of complex
architectures, like Marvin Minsky’s Model-6 (Minsky 2006),
will be prohibitively expensive.

In this paper, we postulate that the difference between a
reasoner and a metareasoner need not extend beyond what
inputs they take, and we envision a network made of many
instances of a few types of simple but powerful reasoning
units to serve both roles. To let these units be reusable in
our model, they communicate using very simple symbols,
whose specific semantics are generally opaque. Additionally,
by choosing iterative machine learning algorithms, these
reasoning units act in real-time, allowing the system to adapt
to changing circumstances.

If an intelligent metareasoning system is to be built from
largely homogeneous components, what function should each
component perform? The connectionist answer—switches,
or neurons—may be theoretically satisfying to some, but it is
practically less than enlightening. We consider instead that
one basic process of an intelligent system is to identify useful
patterns in its input and its output; a symbol in such a system
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can represent the presence of one such pattern. Since the sys-
tem summarizes a large number of inputs and outputs using
a smaller number of symbols, we notice that this operation is,
in essence, dimensionality reduction. We claim that a simple
but effective form of planning can be accomplished by treat-
ing planning as a pattern completion problem that leverages
dimensionality reduction. We also claim that metacognitive
functions can be built on these principles.

Vantage Point in AI
We were led to this way of thinking by our experiments with
dimensionality reduction on natural-language commonsense
knowledge. Our work with common sense computing began
in 1999 with the Open Mind Common Sense project (Singh
et al. 2002). From there, we have developed a representation
of common sense knowledge in the form of a semantic net-
work we call ConceptNet (Havasi, Speer, and Alonso 2007),
which we have found to have compelling latent semantics in
a dimensionality-reduced form called AnalogySpace (Speer,
Havasi, and Lieberman 2008). We have found that Analogy-
Space and its underlying methods allow common sense to
combine effectively with many textual data sets to reveal
connections that only common sense can make (Havasi et al.
2009). These results have demonstrated to us the utility of
thinking of a variety of processes as dimensionality reduction,
which then informed our approach in this work.

Scruffy Metacognition
Scruffy Metacognition is our ongoing effort to bring narra-
tive understanding, planning, and metacognition into a space
that can benefit directly from our common sense corpora
and techniques. Our approach to planning might be best
described as “narrative completion,” wherein an incomplete
symbolic narrative is made whole using ideas borrowed from
AnalogySpace, a process notably similar to those used in
recommender systems. This imprecise and loosely statistical
handling of symbolic representations distinguishes our ap-
proach from contemporary planning systems much the way
that “scruffies” are distinct in the classic “neats vs. scruffies”
philosophical dichotomy in artificial intelligence. Thus, we
call such a narrative completion unit a “Scruffy Planner.” As
we will motivate, metacognition can be accomplished by a
network of planners operating on the sequences of observa-
tions and actions in other planners. Scruffy Planners, other



processing units, and the network of interconnections be-
tween them form the building blocks of the Scruffy Metacog-
nition framework.

Dimensionality Reduction
The concept of dimensionality reduction originates in linear
algebra: a set of samples with a large number of observable
values is approximated by a set of samples with a smaller
number of components that can be mapped back to the origi-
nal set. We employ the concept more broadly: in our usage,
dimensionality reduction is the construction of compact rep-
resentations from redundant unstructured inputs. A useful
representation makes important facts explicit while suppress-
ing irrelevant detail (Winston 1979). By seeking to construct
a small set of “symbols” that summarize a large amount of
observations, a dimensionality reduction process must nec-
essarily find dimensions that are useful in some sense while
truncating dimensions that are less relevant.

We have found that AnalogySpace, a dimensionality-
reduced form of ConceptNet, gives useful a posteriori rep-
resentations of commonsense concepts (Speer, Havasi, and
Lieberman 2008). It enables discovering patterns in and
drawing conclusions from semantic data. But observations
about the world also tend to be redundant. In one robotics
example, the observables “the object-in-hand is soft” and
“the object-in-hand is fluffy” are likely very related. Such
relationships can also be discovered by dimensionality re-
duction, and may suggest underlying semantics of the world,
as we have seen in AnalogySpace. To process streams of
data, such as continuous observations, various incremental
analysis techniques have been developed. We have had most
success recently with a variant on candid covariance-free
incremental principal component analysis (CCIPCA) (Weng,
Zhang, and Hwang 2003). It updates the dimensionality-
reduced model as new data arrives, either because the model
has not yet seen a complete set of examples, or because the
state of the world that the data describes is itself changing.
In the Scruffy Metacognition framework, we call a streaming
dimensionality-reduction element a Reducer, represented in
this paper by the symbol in Figure 1.

Mixed inputs
Dimensionality-reduced
outputs

Figure 1: A basic reducer element

Dimensionality Reduction as Planning
In our model of planning, we represent sequences of actions
and observations as timelines. These timelines are divided
into discrete time windows that we call “timeframes,” which
can be host to any number of concurrent actions and obser-
vations. A timeline tracks the evolution of multiple actions
and observations, which are both measured as real-valued
weights on symbols in our implementations. We only loosely
couple our notion of timeframes to real time measurements,
which permits a dynamic variation of their relationship to real

time, permitting a metacognitive architecture to “hurry” if
necessary. We apply dimensionality reduction over multiple
examples of these timelines to accomplish planning.

By using dimensionality-reduced representations of time-
lines, we hope to extract salient descriptions of the activities
underlying each timeline, such that each timeline may be
described as a combination of several fundamental activities,
which we call “eigentimelines.” This design choice serves a
dual purpose: we wish to make such summarizations of time-
lines available for subsequent analysis in other components
(metacognition), and we wish to interpolate missing timeline
elements (planning) in a manner akin to some methods in
recommender systems.

In our implementations, we expect the number of obser-
vations tracked by a timeline to be significantly greater than
the number of timeframes in the timeline. This construction
should lend itself well to dimensionality reduction. Also,
though otherwise similar to the well-studied discipline of
time series prediction, the shape of the problem (largely mul-
tivariate across a small number of time steps) appears to be
uncommon for our understanding of time series prediction.

Actions are Observations
In Scruffy Metacognition, actions are treated the same way as
observations, at least mathematically. In our ongoing imple-
mentations, this means that actions must be represented, like
observations, as real-valued weights assigned to symbolic
statements, and the inner semantics of those statements are
generally opaque to the computation elements. By conflating
observations with actions, dimensionality reduction methods
can then interpolate actions as well as observations in an
incomplete timeline, thus accomplishing planning.

The Scruffy Planner
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Figure 2: (a) A planner, in abbreviated form, showing ob-
servables (input-only, open dots), actions (output, filled dots),
component lines, and bus lines. (b) Planner showing its in-
ternal timeline, with observables in its past and present, a
goal in its future wired to an observable, and an action it can
control in its present.

The basic operation of the planner, and the basis for Scruffy
Planning altogether, is to take an incomplete timeline and
provide its completion. An incomplete timeline may have its
future unspecified, and thus the operation would be predictive
in nature: the completed timeline will have a forecast of
future observations. If an incomplete timeline has its present



unspecified, and its future is populated with a desirable goal
state, then the operation will be planning: the completed
timeline will have an estimation of necessary actions and
observations in the present that would be expected to result in
the future occurrence of goal state. An action is thus asserted
through the belief that the action must happen in the present
in order for the desired future to occur. Feedback on whether
an action manages to occur can be considered an observation,
and the timeline reflecting the actual consequences can be
used as further training data for the planner.

This proposed planning component is the core unit for
Scruffy Metacognition, which we illustrate it in Figure 2.

Scruffy Metacognition
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Figure 3: A basic metacognitive architecture with two plan-
ners managed by one metaplanner, which monitors their
convergence (CONV) and can enable or disable them (EN)

Connecting Components
Though individually interesting, the planner and reducer on
their own cannot realize a complex metacognitive architec-
ture. However, components can be connected and chained
to produce more complicated networks. The dimensionality-
reduced output of one element can very easily be used as a
collection of observations for another element.

Figure 4: A planner provides its reduced timeline as a bus
of observables to another planner—because this is a time-
line bus, the receiving planner sees observables for every
eigentimeline in each time frame

Given how singular value decomposition over ConceptNet
reveals the latent semantics in AnalogySpace, we expect
a computation element in Scruffy Metacognition to yield
similarly compelling semantics, enabling other elements to

reason comfortably over generalities. In Figure 4, we show
a planner whose dimensionality reduction output is fed as a
bus of observables to another planner. An alternative strategy
would be to use a reducer across the inputs and outputs of
one or more planners (from the present time frame only), and
submit the result for analysis by another planner. This is the
strategy used in the basic metacognitive architecture shown
in Figure 3.

Repeated levels of dimensionality reduction is not new.
In fact, the CCIPCA algorithm that drives the reducer was
also used in a cascading network of dimensionality reducers
in a computer vision application (Zhang, Weng, and Zhang
2002). As such, that work could largely be reproduced using
a Scruffy Metacognition network made entirely of reducers.

Additionally, in situations where a substantial amount of
bidirectional communication between planners would be
helpful, an easy way to accomplish this is to allow them
to see the same observations and each other’s actions.

Planners and Goals

Figure 5: A planner with its goal state controlled as an action
of another planner—also an example of an action in one
planner controlling an observable in another

For a planner whose function is to give high-level instruc-
tions to one or more other planners, a simple and powerful
control mechanism is to control the goal state of the subor-
dinate planners by asserting some or all of the observations
that populate the desired future in the subordinate planner’s
incomplete timeline.

One way for a planner to have feedback in a supervisory
role over another planner is to take as an observation the
actions that the subordinate planner asserts as actions. If the
supervising planner has a goal that specifies a desired state
for the feedback observable, then the supervisor will aim to
induce behavior in the subordinate that causes the feedback
observations to assume the desired state.

Evaluation through Examples
Once we have implemented a machine learning algorithm that
satisfies our criteria for the Scruffy Planner, we have a handful
of straightforward experiments we plan to attempt. First, we
would like to model a few human-human interaction corpora
that have been collected using crowd-sourcing methods, as
this would allow us to look into developing artificial agents
modeled on human behavior. Second, we would like to
extend the cognitive architecture of our Mobile, Dexterous,
Social (MDS) robot (Breazeal et al. 2008) to enable run-time
learning of simple tasks.

The Restaurant Game and Mars Explorer
We plan to analyze the data collected through Jeff Orkin’s
The Restaurant Game (Orkin and Roy 2007) and Sonia Cher-



nova’s Mars Escape (Chernova and Breazeal 2010), the latter
system being built on the same framework and principles as
the first. These both involve a first-person online game played
by pairs of people matched arbitrarily by a hosting server—
the players, working in different roles, then work together
to accomplish a task, while the system records a replayable
log of their activities and changes in the environment. In
the case of The Restaurant Game, the participants role-play
the common narrative of a customer visiting a restaurant
and being served by wait staff. In the case of Mars Escape,
the participants role-play characters of markedly different
capabilities (one is a human while the other is a robot) work
together to gather scientific specimens from a lab on Mars
before time runs out.

Each of these games aim to capture some aspect of either
social common sense (as in The Restaurant Game) or col-
laborative activity (as in Mars Escape). Each game role’s
typical activity sequences can be extracted from the game’s
logs (Orkin and Roy 2007). We hope to use these sequences
to train Scruffy Planners to drive artificial agent behaviors
that mimic humans playing these role. In The Restaurant
Game, we expect that multiple planners will be helpful or
required in order to master the various stages of the restaurant
experience, while metacognitive facilities will be required
to manage the transitions between them and to detect and
manage failures or exceptions for atypical behavior.

The Sheep Games
It is our belief that a Scruffy Planner could be used in an MDS
robot to learn how to play simple games that use many of the
basic functions of the robot (voice recognition, object identi-
fication and tracking, and rudimentary object manipulation).
The successful integration of a metacognitive architecture
could be evaluated by its ability to enable the robot to learn
to play two different games.

A simple demonstration of the major components of the
MDS robot, which has been accomplished, involves two
voice recognition commands, object tracking, object grasping
and dropping, a bucket, and a stuffed sheep. A human holds
out the stuffed sheep and says, “Nexi, come take the sheep.”
The robot responds by rolling over to the human, reaching
up, and taking the sheep from the person’s hand. The human
then says, “Nexi, put it in the bucket,” whereupon the robot
rolls over to a bucket, positions the sheep over the bucket,
and drops it. If enhanced with Scruffy Planning, the MDS
robot should be able to learn to execute many steps without
instruction.

If we introduced a second game that involved, say, a pen
and a pasture, we could create a game where the MDS
robot must sort various animals to their appropriate loca-
tions. Learning to play this game uses the capabilities of
a Scruffy Planner, and is made easier with metacognitive
elements as in Figure 3.

Contributions and Future Steps
In a large sense, the “scruffiness” that we believe is key to
our approach is that we do not design compact representa-
tions for reasoning a priori—instead, we turn to dimension-
ality reduction to derive compact representations that expose

salient semantics. It is our hypothesis this low-effort choice
of representation enables the use of the same mechanism for
reasoning at multiple levels of perception, cognition, and
metacognition.

Perhaps a distinguishing feature of our approach is that we
envision the larger framework before focusing on its compo-
nents. We claim that we are therefore envisioning a frame-
work for metacognition that is scalable, by virtue of using
reasoning components that do not need to be deeply tailored
to their precise uses and of using a vector representation that,
though unorthodox, encapsulates semantics usable to the rea-
soning components with little or no engineering intervention.
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