
Managing Ambiguity in Programming
by Finding Unambiguous Examples

Kenneth C. Arnold Henry Lieberman
MIT Media Lab, MIT Mind Machine Project
20 Ames Street, Cambridge, MA 02139 USA

{kcarnold, lieber}@media.mit.edu

Abstract
We propose a new way to raise the level of discourse in the
programming process: permit ambiguity, but manage it by
linking it to unambiguous examples. This allows program-
ming environments to work with informal descriptions that
lack precise semantics, such as natural language descriptions
or conceptual diagrams, without requiring programmers to
formulate their ideas in a formal language first. As an ex-
ample of this idea, we present Zones, a code search and
reuse interface that connects code with ambiguous natural
language statements about its purpose. The backend, called
ProcedureSpace, relates purpose statements, static code anal-
ysis features, and natural language background knowledge.
ProcedureSpace can search for code given statements of pur-
pose or vice versa, and can find code that was never annotated
or commented. Since completed Zones searches become an-
notations, system coverage grows with user interaction. Users
in a preliminary study found that reasoning jointly over natu-
ral language and programming language helped them reuse
code.

Categories and Subject Descriptors H.5.2 [Information In-
terfaces and Presentation]: User Interfaces—Natural lan-
guage; D.2.3 [Software Engineering]: Coding Tools and
Techniques

General Terms Design, Human Factors

Keywords ambiguity, Blending, common sense, informal
representation, natural language, reuse

1. Introduction
The process of authoring a program can be described as going
from ambiguous and informal representations about purpose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward! 2010, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0236-4/10/10. . . $10.00

and approach (mostly contained in the minds of program-
mers) to unambiguous, highly structured representations of
instructions (mostly contained in computers). Code reading
involves the reverse process: relating structured representa-
tions to general ideas about what the program does and how.
Current development environments provide great assistance
when working with formal representations, through intelli-
gent completion, refactoring, and debuggers, for example. But
relating formal representations that computers can use with
informal representations that programmers can use remains,
for the most part, the sole responsibility of the programmer.

Perhaps the scarcity of tools for working with informal
representations is in part because informal representations are
ambiguous. Since the end products of programming should be
as unambiguous as possible, many programming researchers
have been understandably averse to allowing ambiguity even
in high-level specifications. However, we suggest that this
aversion may be unhelpful because it tends to force program-
mers to prematurely commit to some particular and precise
way of thinking before they can dialogue with computers
about their programs [Green 1989]. Instead, we suggest that
programming environments could permit programmers to
describe the desired program in more natural and informal
terms, even if the terms themselves or the relations between
them are ambiguous, then assist the programmer in the task
of concretizing the structure and content of the program into
an unambiguous executable form.

2. Frontend: Zones
In this paper, we present one initial example of a system that
can work with informal representations of software. Our in-
terface, called Zones, uses informal statements of the general
purpose of code fragments to help programmers find and
share reusable code. A Zone is an active association between
a code fragment and a brief natural language statement of its
purpose—“What’s this for?”—not unlike a comment. Pro-
grammers can describe the purpose however they think about
it; the statement need not be precise, comprehensive, or even
grammatical. By only giving one line, the Zones interface
encourages purpose statements to be short. Figure 1 shows

Figure 1. A Zone (black rectangle with flag) associates a
fragment of Scratch code with a statement of its purpose. The
top-left button invokes the search sidebar.

Figure 2. Given a purpose statement, the Zone sidebar (left)
shows code that might fulfill it. Selecting an implementation
from the list on the left shows its code on the right. As a
simulation of future functionality, red boxes surround values
that vary among otherwise similar code, highlighting what
might need to be changed.

Figure 3. The Zone sidebar can suggest possible purpose
statements for a code fragment (simulated for this illustra-
tion).

an example where a programmer has used a Zone to annotate
a short fragment of Scratch code. Other purpose statements
from our users, who were developing video games, include
“stay on path” and “Bounce ball around room.”

Omitting either the purpose statement or the code turns
annotation into search. If you provide an English statement of
purpose and click the search button, the system searches
for code that accomplishes that purpose (see Figure 2).
Alternatively, you can mark some code and then search, which
means: find how other people have generally described the
purpose of code like this (see Figure 3). The search results
are presented as a floating sidebar. The code for selected
results appears within the Zone. You can then immediately
try running the program with the transplanted code, make
modifications first, or simply scroll through the results to
get a general sense of different approaches to your task.
Selecting the zeroth result returns to whatever code was
in the Zone before, if any. A second click on the search

button collapses the sidebar, leaving behind only the code
and the search query, which then functions as an annotation,
using exactly the language you chose when looking for the
code to begin with. In this way, search queries seamlessly
become annotations; though the code may require further
tweaking, the annotation remains unless the programmer
explicitly removes it. When the project is shared, that pair
of annotation and code fragment is added to the database,
either as new information or as a new explanation for existing
code. Or, if in fact none of the search results were relevant
(likely because the corpus of annotations is still small), code
built within the bounds of that annotation becomes the first
example of how to do that. The next programmer to look
for related code fragments or purposes will benefit from the
added annotated code. It could be said that by capturing both
successful and unsuccessful search interactions, Zones learns
how programmers describe purpose.

2.1 Scratch Programming Envorinment
While informal software representations are applicable to a
broad variety of programming scenarios, we focus in this
paper on novice programmers. Our environment for these
experiments is Scratch, a graphical programming language
and development environment designed for use primarily
by children and teens, ages 8 to 16 [Resnick et al. 2003].
Scratch programming language components are represented
by blocks that fit together like puzzle pieces to form expres-
sions; stacking code blocks vertically causes them to execute
in sequence. Scratch code is mostly comprised of concrete
instructions that cause sprites to move around a stage, change
their appearance, play sounds, or manipulate a pen, in re-
sponse to various events, including user input and named
messages from other sprites. The language includes control
flow statements, Boolean and mathematical expressions, and
sprite- or project-scoped variables. Though the detailed tech-
niques of this paper are somewhat tailored to Scratch, the
general approach should be adaptable to other languages.

One main reason we chose to use Scratch for these initial
experiments is the ready availability of a large quantity of
potentially reusable code fragments. Scratch projects all have
the same general structure, and project context has a limited
effect on the behavior of individual lines of code, so Scratch
code tends to be more reusable a priori, despite the general
lack of software engineering discipline in the programmer
community. Also, while the language lacks procedures or
functions in the traditional sense, the event handler design
makes concurrent modularity idiomatic and greatly simplifies
task coordination, which tends to make a large amount of
code reusable without significant modification. The Scratch
website [Monroy-Hernández and Resnick 2008] hosts over
300,000 projects, many already reusing code from other
projects, all shared under a free software license. A quality-
filtered sample of 6376 projects was used as the corpus for
these experiments. Many of these projects are simple video
games, so that domain will figure strongly in our examples.

2.2 Other Types of Interactions with Informal
Software Representations

The purpose-driven code reuse of Zones is one of many ways
that a development environment capable of working with
informal software representations could help programmers.
For example, a subgoal may be inferred from a higher-level
goal and the code written so far by making analogies to the
subgoals of other similar projects. Similar techniques could
apply to other artifacts as well: for example, a goal could map
both to code and to behavioral tests that partially evaluate
whether code accomplishes that purpose. Each represent part
of the concrete specification of what it means for the code to
satisfy the given goal.

Second, insomuch as failed test cases or other bugs indi-
cate a failure of the concrete code to satisfy the programmer’s
goal, we can also think of debugging in the context of infor-
mal representations. For instance, we could collect examples
of solutions to particular problems in particular situations,
then analyze and generalize them to learn what problems
might come up in a certain situation and what types of code
changes tend to fix them. The result would enable debug-
ging by making analogies to problem-solving strategies or
concrete fixes that were helpful in similar situations.

Finally, the programming environment could help the
programmer document and distribute the result in a way that
permits others to understand and utilize it. An informal survey
of open-source code repositories suggests that a large amount
of code has similar goals and subgoals, but it was not reused,
due perhaps to differences in environment, constraints, or
libraries, or simply being unable or unwilling to find and
incorporate that other code. A development environment that
can recognize the similarity of the programmer’s intent to
code already written, especially before the programmer has
committed to a structured encoding of the task at hand, might
encourage and facilitate code reuse. And by additionally
capturing the process of refinement of high-level goals and
maintaining links between the subgoal tree and the code,
the development environment would be better equipped to
help the programmer adapt that code to different scenarios or
environments, even those that may come up at runtime.

3. Backend: ProcedureSpace
The Zones interface presents a unique set of requirements
for its backend, called ProcedureSpace. Purpose statements
could be treated as code search queries, but they would in-
clude abstract characteristics that would not match a keyword
in an identifier, type, or comment (if present). And though
we assume that some code fragments in the corpus have been
annotated with one or more purpose statements, those annota-
tions often differ in word choice and level of detail from the
purpose statement that is queried for, and few code fragments
are annotated. Finally, Zones searches may also go in reverse:
from code to possible purpose statements.

These challenges preclude a straightforward or even multi-
stage information retrieval approach. And since we allow
purpose statements to be informal and ambiguous, formal rea-
soning techniques are particularly ill-suited. ProcedureSpace
approaches this challenge with an unconventional technique:
it uses the sparse and imprecise relationships between sev-
eral different kinds of information to place them all in the
same vector space (hence the name), where search queries be-
come simple vector operations. This technique, called Blend-
ing [Havasi et al. 2009], is similar to standard information
retrieval techniques, but uniquely illustrates a simple way of
using multiple types of imprecise data together. The result
is a representation that unifies syntactic knowledge about
programs with semantic knowledge about goals.

Broadly speaking, ProcedureSpace aims to relate incom-
plete knowledge about two types of entities: purpose state-
ments and code fragments. Purpose statements are handled
with simple natural language processing techniques; code
fragments are represented by characteristics from static anal-
ysis. The knowledge about purpose statements is incomplete
both because they are themselves ambiguous and because
the system’s understanding of natural language is limited.
And knowledge about code fragments is incomplete in that it
is generally not known what characteristics of the code are
relevant to accomplishing the goal and what parts are merely
implementation details. However, associations between code
fragments and purpose statements disambiguate each other:
ProcedureSpace, in effect, learns about purpose statements
from the code they describe, and learns about code by study-
ing how people describe its purpose. ProcedureSpace addi-
tionally uses semantic background knowledge about English
words and phrases to help understand the natural language
statements.

Figure 4 shows an overview of ProcedureSpace’s reason-
ing: it understands words like “follow” and “chase” by re-
lating them to commonsense background knowledge (such
as “follow is a kind of movement”), examples of code that
people have said causes something to chase something else,
and characteristics of the structure of that code. This paper
does not seek to establish that these particular kinds of data
are necessary and sufficient for a natural language code reuse
system, but rather to show how to relate these disparate kinds
of data.

4. ProcedureSpace Implementation
ProcedureSpace uses the Blending technique of [Havasi et al.
2009] to relate English words and phrases, English purpose
statements, code, structural characteristics of that code, and
background knowledge (“features”) about words. Blending
works by constructing a matrix containing aligned data of
several types, then using an approximate matrix factorization
to represent each element (e.g., a code fragment or a purpose
statement) as a vector. Relating elements to each other then
reduces to simple vector operations, even for elements of

chase

(forever

 (pointTowards: "mouse")
 (forward: 10))

forever > pointTowards:

forever > forward:
pointTowards: ~ forward:

follow kind of movement

opposite of lead

natural language
descriptions

background knowledge

code fragments static analysis

Figure 4. ProcedureSpace relates informal representations
of purpose, such as the words “follow” or “chase”, with code
fragments and their characteristics.

English featurescode fragments

English
concepts

code
structural

features

Static
Analysis

Purpose
Annotations

ConceptNet

domain-specific
knowledge

Figure 5. A simplified diagram of the ProcedureSpace anal-
ysis matrix, illustrating how purpose annotations bridge code
static analysis with natural language background knowledge.

different types. Figure 5 shows a simplified diagram of the
matrix, illustrating how purpose annotations bridge code
static analysis with natural-language background knowledge.
This section describes how each sub-matrix is constructed,
then shows how to combine them to enable the queries that
the Zones front-end requires.

4.1 Code Static Analysis
While many advanced techniques have been developed for
static source code analysis, ProcedureSpace uses a deliber-
ately simplified approach, focusing instead on combining
static code analysis with natural language. The result will be
akin to a quick glance at the code, rather than an in-depth
study. The basic goal of the code analysis is similarity detec-
tion: two annotations might be similar if the code fragments
they apply to are similar. For example, many different exam-
ples of code that handles gravity (or “falling”) all include
a movement command conditioned on touching a color in
the sky (or not touching a color on the ground). In other lan-
guages, such features could also include constraints about
types (e.g., “returns an integer”) or interactions (e.g., “uses
synchronization primitives”).

In extracting structural features, ProcedureSpace treats
the code as a simplified syntax tree. For each code fragment,
ProcedureSpace extracts various types of simple structural

(a) as presented in the
Scratch UI

(FlagHat
(doForever
(pointTowards: ”hero”)
(forward: 1)))

(b) internal S-expression for-
mat

Figure 6. Example “chase” code fragment, taken from the
Scratch project “Enemy AI tutorial: Chase.”

Child doForever > pointTowards_

Containment FlagHat doForever

Containment FlagHat pointTowards_

Sibling forward_ ~ pointTowards_

Clump [forward_ pointTowards_]

Presence pointTowards_

Table 1. Selected structural features for the example code
fragment

features about what kinds of code elements are present and
how they are related:

Presence A particular code element is present somewhere in
the fragment

Child A code element is the direct child of another code ele-
ment, either as a parameter or as the body of a conditional
or looping construct

Containment A code element is contained within another
code element (generalizes “Child”)

Clump A clump of code elements occur in sequence

Sibling A particular code element is the sibling (ignoring
order) of another code element

Within these feature types, it is not necessary to enumerate
all possible features beforehand. Rather, for each feature type,
an extraction routine generates all the features of its type that
apply to a particular code fragment.

Consider the code fragment in Figure 6, which makes a
sprite chase or follow another sprite. Table 1 shows examples
of the code structural features extracted for the example code.
We construct a matrix CS that relates code fragments to
the structural features they contain. The rows of CS are the
14145 distinct code structure features that were extracted;
the columns are the 127473 analyzed code fragments. (The
order of the rows and columns does not matter for this kind of
analysis.) An entryCS(feature, fragment) is 1 if fragment has
feature, 0 otherwise. To keep long code fragments with large
numbers of features from having a disproportionate effect,
we normalize all code fragments to have unit Euclidean norm.
Figure 7 shows a sample of the final matrix CS.

CS = · · ·
Clump [forward_ pointTowards_] 0.27 0.27 · · ·

Presence EventHatMorph 0.11 0 · · ·
...

...
...

. . .

Figure 7. A sample of the code static analysis matrix CS

4.2 Annotations
Each Zone is an annotation that links a code fragment with a
statement of purpose. These annotations are collected into a
matrix: AD(purpose, fragment) counts the number of times
that fragment was annotated with purpose. The purposes are
actually stored as (Purpose, purpose) tuples to distinguish
complete annotations from words that will later be extracted
from them.

The initial annotations were entered by one of the authors.
In various types of interactions with users, including the user
study, other annotations were contributed, for a total of 100
annotations at the time of these experiments.

The matrix AD only accounts for purpose statements that
are equivalent with respect to string equality. To allow inexact
matches of annotations and search queries, we construct a ma-
trix AW that relates code fragments with words and phrases
extracted from their purpose statements using standard natu-
ral language processing techniques (e.g., lemmatization and
stopword removal). Since similar annotations yield similar
words and phrases, they will be counted as more associated.

To account for the sparsity of annotations and comments,
ProcedureSpace also extracts tokens from identifiers: names
of variables and events (analogous to function or method
names). Token extraction additionally includings splitting
underscore joined and camelCased strings. Each element of
the resulting word-code matrix,WC(token, fragment), counts
the number of occurrences of token in fragment..

4.3 Background Knowledge
When people choose entirely different words to describe their
goals (and in user studies we found they often do), most
search systems would be left with no relevant results. But
ProcedureSpace incorporates background knowledge about
how words relate.

One kind of knowledge is knowledge specific to the target
domain. For Scratch, many projects are games, so helpful
domain-specific knowledge includes facts such as “arrow
keys are used for moving” and “moving changes position.”
Such knowledge would enable us to relate an annotation
about “arrow keys” with an annotation about “position,” for
example. The matrix DS encodes a small, manually entered
knowledgebase about simple games.

Another kind of knowledge is general world knowledge,
such as “balls can bounce” and “stories have a beginning.”
Without such knowledge, the system may be entirely un-

aware that an annotation of “bounce” may be relevant to
find code for “moving the ball.” ConceptNet [Speer et al.
2008] provides a large database of broad intuitive world
knowledge, expressed in a semantic network representation
(e.g., ball\CapableOf/bounce). Rarely is a single Concept-
Net relation a critical link in connecting two concepts; rather,
the broad patterns in ConceptNet, such as which features
typically apply to things that people desire or can do, help
to indicate how English concepts are similar to each other.
Though many other lexical resources are available, Concept-
Net uniquely provides a broad coverage of goals and actions,
in a plain-language form that is amenable to imprecise rea-
soning and usage in a user interface.

4.3.1 Matrix Encoding
Both ConceptNet and the domain-specific knowledge base
are expressed as triples: concept1\relation/concept2. To
form a matrix out of these triple representations, we use
the approach of [Speer et al. 2008]: for each triple, incre-
ment both (concept1, \relation/concept2) and (con-
cept2, concept1\relation/) The columns of this matrix
are called features. The double-encoding means that arrow
keys\UsedFor/moving, for example, contributes knowledge
about both “arrow keys” and “move.” For ConceptNet, con-
nections that the community rated more highly are given
greater weight; for the domain-specific knowledge, all entries
are weighted equally.

4.4 Blending
Given the six matrices of relationships, we then combine
them using Blending. To apply the Blending technique to a
set of matricesDi, align the labels (filling in zeros for missing
entries), then add the matrices together:

A =
∑
i

αiDi

where αi is a weighting factor that is adjusted to maximize
the interaction between the datasets. (For these experiments
the weighting factors were set manually, though [Havasi
et al. 2009] presents an automated technique.) Then compute
the Singular Value Decomposition (SVD), truncating to k
singular values:

A ≈ UkΣkV
T
k

The matrices Uk and Vk represent each row and column of A
as a vector giving its position along the k axes that represent
the highest-variance dimensions of the data. The entries along
the diagonal of Σ weight each axis, roughly indicating its
importance in describing the patterns of relationships among
the items of the matrix.

An important parameter for the Blending technique is
the layout of the data matrices, since that determines which
elements overlap and thus how they can be related.CS relates
code fragments to code structural features, while background
knowledge relates English concepts to English features. The

ConceptNet

WC (Words in Code)

CS (Code Structure)

AD (Annotations)

AW (Annotations as Concepts)

E
n

g
li

sh
co

n
ce

p
ts

co
d

e
st

ru
ct

u
re

s

E
n

g
li

sh
co

n
ce

p
ts

(i
n

 C
o
n

ce
p
tN

et
 b

u
t

n
o
t

co
d

e)

code fragments

AW (Annotations
as Concepts)

DS (Domain Specific)

English features

E
n

g
li

sh
p
u

rp
o
se

d
es

cr
ip

ti
o
n

s

Figure 8. Layout of the ProcedureSpace matrix in detail,
showing the origin of each element

annotations link the two disparate domains by relating code
fragments to English concepts. Figure 8 details the layout
of the ProcedureSpace matrix, showing where each entry in
the matrix comes from. Effectively, the purpose annotations
bridge the structural features derived from static analysis with
the natural language background knowledge in ConceptNet.

4.5 Goal-Oriented Search
Once we have used Blending to construct ProcedureSpace,
the search tasks required to power the Zones interface become
straightforward vector operations. Each entity is a vector in
the k-dimensional vector space: the U matrix gives the posi-
tion of each English word, purpose phrase, code feature; the
V matrix locates code fragments and English features. Since
that all entities are in the same vector space, search operations
can be expressed as finding vectors with high inner products.
To find the vector ~p of a purpose statement composed of En-
glish words wi, you simply sum the corresponding vectors:

~p =

n∑
i=0

U [wi, :]

where the : notation indicates a slice of an entire row. Then
to find how well that statement may apply to a particular
code fragment, you take the dot product of ~p and that code
fragment’s vector (given by its row in V). In general, the
weights for all code fragments are given by V ~p, considering
only rows of V that correspond to code fragments. The
code fragments with the highest values are returned as the
annotation search results, after filtering to remove code
fragments that differ only in the values of constants.

Likewise, to find possible annotations for a code fragment,
you extract its structural features fi, form a vector ~q =

(a) “gravity” (b) “follow player”

Figure 9. Sample search results

∑n
i=0 U [fi, :], and find the words or annotations whose

vectors have the highest dot product with ~q. Or, to find
which part of a given project performs a certain function, you
compare the ProcedureSpace vector for the purpose statement
with the code fragments in that project.

4.6 Search Results
Users of our system searched for a variety of goals and ex-
pressed them in a variety of ways. Figure 9 shows selected
results for some queries that users performed. The first search,
“gravity,” exactly matched the annotation of a code fragment,
so it was returned as a search result. This result illustrates
that indirect reasoning through code structure and natural lan-
guage background knowledge rarely disturbs exact matches.
For “follow player,” neither of the two results were exact
annotation matches. The example code from Figure 6 was an-
notated “follow”, but the first result is one that matches both
those code features and the word “follow.” The second match
is very interesting because it inexactly matches at least two
different kinds of data. The only common code structure is
the presence of pointTowards:, which evidently Procedure-
Space found to be associated with the behavior of follow-
ing. But many code fragments contain pointTowards:; ev-
idently this one was chosen because it also contained the
word chase. Using a combination of common annotation data
and background knowledge, ProcedureSpace related “follow”
(the query word) and “chase,” and used this relationship to
find a code fragment that is very different than what was
annotated but nonetheless relevant.

5. Preliminary User Experience
“Searching by goal is a really different way of programming,”
said one participant in our preliminary user study. We sought
to understand whether the Zones interface (both concept and
implementation) helps programmers make and use connec-
tions between natural language and programming language.
All participants in our two-task user study successfully used
the Zones interface to find code that they could use in their
project, and annotated both new and existing code in a variety
of ways. We were surprised by the number of different ways
that people learned from their interactions with Zones.

After a sample task to familiarize the users with inter-
acting with the Zones interface, they were presented with a
project containing many sprites, each exhibiting some read-

ily observable behavior, and were instructed to duplicate the
behavior of one or two sprites, using Zones if they wanted.
They were not given cues for how to describe that behavior so
that their queries would be as natural as possible. All partici-
pants were able to successfully imitate at least one behavior
with the help of reused code from Zones. Finally, all partici-
pants left Zone searches as new annotations, validating our
search-as-annotation paradigm.

Though participants reused some code exactly, much more
frequently the code fragments would guide their thinking
or point out Scratch functionality that they could use. One
participant saw a glide (timed movement) command in a
search result, and exclaimed: “Oh, it could be gliding. . . I
forgot [about] the glide function.”

We were surprised by the number of different ways that
people learned from their interactions with Zones. One novice
programmer corrected a flaw in his understanding of code
while studying the search results for the annotation he was
about to give it. A more experienced participant reported
that the Zones interface encouraged her to think from a
higher-level perspective. Frequently, participants appreciated
learning something from seeing another person’s code, even if
their goals were different or their understanding incomplete.

6. Related Work
6.1 Code Search Systems
Code search systems can be distinguished by how program-
mers can query them. [Reiss 2009] includes a good survey of
code search techniques, including formal specifications, type
systems, design patterns, keywords, ontologies, tagging, and
test cases. However, these code search systems have limited
ability to reason about purposes that can be accomplished
in a variety of ways, and their understanding of natural lan-
guage is limited at best. ProcedureSpace uses annotations
to reason about purposes and leverages both general and
domain-specific natural language background knowledge.

A task switch away from development to even a good
search engine can be distracting. [Fry 1997] and [Ye 2001]
introduce the paradigm of reuse within development, linking
code search into the IDE based on both comment keywords
and function signatures. Many systems are now integrated; a
state-of-the-art example is Blueprint [Brandt et al. 2009].

Search-oriented systems like CodeBroker and Blueprint
only directly benefit consumers of reusable software; users
still have to publish their completed code manually. Zones
makes it natural to share adapted or newly written code.

6.2 Programming in Natural Language
Natural language has often been seen as desirable as a high-
level specification or programming language because it is
a natural medium for communicating goals and ideas with
a human collaborator. Various attempts have been made to
interpret natural language as computer instructions directly,
from COBOL to SQL to several modern attempts, including

Pegasus [Knöll and Mezini 2006]. However, since programs
must execute unambiguously, many previous attempts at nat-
ural language programming have required the use of unnat-
urally precise wording. Natural language representations of
program present many challenges, but we think that manag-
ing ambiguity is a core challenge that has not yet received
sufficient attention.

Several projects have informed our thinking in this regard.
Keyword Programming [Little and Miller 2007] matches key-
words to commands and types in a function library. It is a
useful tool for managing ambiguity on a low level: when a
programmer knows what keywords should appear in a line of
code but not exactly how to form that line of code, the Key-
word Programming system can use search and type chaining
techniques to disambiguate the keyword representation of that
line of code. However, the programmer’s thinking must al-
ready be precise enough to know almost exactly what should
happen at each line. Metafor [Liu and Lieberman 2005] and
its successor MOOIDE [Lieberman and Ahmad 2010] use
sentence structure and mixed-initiative discourse to under-
stand compound descriptions. MOOIDE further showed that
general background world knowledge helps to understand
natural language input. ProcedureSpace opens the possibil-
ity for these natural-language programming systems to scale
by learning both statically from a corpus of code and dy-
namically through the Zones user interface. While Zones
currently does not use a natural language dialog paradigm, it
could be very helpful for interactions where relating informal
representations to code requires more than a single step.

6.3 Formal Specifications
There has been a lot of work in software engineering on the
idea of formal specifications of code [Diller 1990; Hierons
et al. 2009]. This body of work shares with us the idea
of having some representation of the purpose of code at
a higher, declarative level, that is independent from the
code itself. It also has the ambition to provide algorithmic
help to the programmer in assuring that the code meets the
specification, or at least drawing the programmer’s attention
to discrepancies between the two representations. But formal
specifications are expressed in a mathematical language that
most programmers find difficult to write. Such languages are
also entirely unsuitable for beginning programmers, which
are our target user community here.

Our aim is not to assure the code does what the specifi-
cations say, but to give the programmer access to a body of
alternative implementations of the specifications, and also
the novel capability of reasoning backward from the code
to specifications. By allowing programmers to express what
may indeed be informal specifications in natural language,
we hope to improve the accessibility of specifications as a
programming methodology.

Logical reasoning systems used by formal specification
tools have the advantage that they provide mathematical
assurance of the validity of implementations. The downside

is that their reasoning is not applicable to many practical
programming problems. The approximate inference used by
our system trades guarantees of correctness for the ability to
make plausible inferences efficiently across a wide variety of
programming situations.

7. Conclusion
We suggest that programming environments should be able to
help programmers work with the informal representations
that are a natural part of the programming process. One
particular difficulty in working with informal representations
of software is that they can be ambiguous. We suggest that
given today’s large-scale code repositories, programming
environments can, instead of shunning ambiguity, manage it
by relating ambiguous statements to concrete examples.

We illustrate our suggestions with a prototype purpose-
oriented code reuse system. Its frontend, called Zones, demon-
strates an integrated interface for connecting natural language
with Scratch code fragments to make comments that help pro-
grammers find and share code. The ProcedureSpace backend
demonstrates important concepts in how to relate ambigu-
ous and unambiguous representations as it reasons jointly
over static code analysis, Zones annotations, and background
knowledge to find relationships between code and the words
people use to describe what it does.

Marvin Minsky said, “If you understand something in
only one way, you don’t understand it at all.” We believe
that when computers can work with programs both in natural
language descriptions and in code, they can come closer to
really understanding what we want them to do.

Acknowledgments
We thank Andrés Monroy-Hernández and Rita Chen for pro-
viding the parsed Scratch projects, Rob Speer and Catherine
Havasi for helping with the Blending technique, and all our
user study participants for their valuable input.

References
J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer.

Example-centric programming: Integrating web search into the
development environment. Technical report, CSTR-2009-01,
2009.

A. Diller. Z: An Introduction to Formal Methods. John Wiley &
Sons, Inc., New York, NY, USA, 1990. ISBN 047192489X.

C. Fry. Programming on an already full brain. Com-
mun. ACM, 40(4):55–64, 1997. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/248448.248459.

T. R. G. Green. Cognitive dimensions of notations. In Proceedings
of the fifth conference of the British Computer Society, Human-
Computer Interaction Specialist Group on People and computers
V, pages 443–460, New York, NY, USA, 1989. Cambridge
University Press. ISBN 0-521-38430-3.

C. Havasi, R. Speer, J. Pustejovsky, and H. Lieberman. Digital Intu-
ition: Applying common sense using dimensionality reduction.
IEEE Intelligent Systems, July 2009.

R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Der-
rick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause,
G. Lüttgen, A. J. H. Simons, S. Vilkomir, M. R. Woodward,
and H. Zedan. Using formal specifications to support testing.
ACM Comput. Surv., 41(2):1–76, 2009. ISSN 0360-0300. doi:
http://doi.acm.org/10.1145/1459352.1459354.

R. Knöll and M. Mezini. Pegasus: first steps toward a naturalistic
programming language. In OOPSLA ’06: Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 542–559, New
York, NY, USA, 2006. ACM. ISBN 1-59593-491-X. doi:
http://doi.acm.org/10.1145/1176617.1176628.

H. Lieberman and M. Ahmad. Knowing what you’re talking about:
Natural language programming of a multi-player online game.
In M. Dontcheva, T. Lau, A. Cypher, and J. Nichols, editors,
No Code Required: Giving Users Tools to Transform the Web.
Morgan Kaufmann, 2010.

G. Little and R. C. Miller. Keyword programming in Java. In ASE
’07: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 84–93,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4.
doi: http://doi.acm.org/10.1145/1321631.1321646.

H. Liu and H. Lieberman. Programmatic semantics for natural
language interfaces. In CHI ’05: CHI ’05 extended abstracts
on Human factors in computing systems, pages 1597–1600,
New York, NY, USA, 2005. ACM. ISBN 1-59593-002-7. doi:
http://doi.acm.org/10.1145/1056808.1056975.

A. Monroy-Hernández and M. Resnick. Empowering
kids to create and share programmable media. inter-
actions, 15(2):50–53, 2008. ISSN 1072-5520. doi:
http://doi.acm.org/10.1145/1340961.1340974.

S. P. Reiss. Semantics-based code search. In ICSE ’09: Pro-
ceedings of the 2009 IEEE 31st International Conference on
Software Engineering, pages 243–253, Washington, DC, USA,
2009. IEEE Computer Society. ISBN 978-1-4244-3453-4. doi:
http://dx.doi.org/10.1109/ICSE.2009.5070525.

M. Resnick, Y. Kafai, and J. Maeda. A networked, media-rich
programming environment to enhance technological fluency at
after-school centers in economically-disadvantaged communities.
Proposal to National Science Foundation, 2003.

R. Speer, C. Havasi, and H. Lieberman. AnalogySpace: Reducing
the dimensionality of common sense knowledge. Proceedings of
AAAI 2008, October 2008.

Y. Ye. Supporting Component-Based Software Development with
Active Component Repository Systems. PhD thesis, University of
Colorado, 2001.

