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Say what you know, 
and not more.
By forcing us to use precise 

vocabulary, software development 
makes us say too much.

the world is complex, so



Proposal In Brief

• Development tools should let us talk about 
our programs in many ways.

• Different degrees of formality

• Different degrees of ambiguity

• Interactively develop rich mappings: an 
ecosystem of different representations

“You don't understand anything until you learn it more than one way.”
Marvin Minsky 



When we can be informal 
and ambiguous, software will:

• Be easier to develop

• Adapt to new situations

• Behave reasonably when things go wrong



Clarifying Terms...

• Specs and tests are formal but ambiguous.

• Formal = controlled semantics; incl. 
programming languages.

• Managed, intentional ambiguity



Developing Software
is Easier

• Computer helps earlier in design

• Formality forces premature commitment

• Can communicate in more natural language
  (not just write code that looks like English)

• Let computer help evaluate multiple ways 
of solving a problem

When we can be informal,



How?

• Understand the informal representations

• Map to increasingly formal specs, code, and 
tests

• Learn by reading existing code (just like 
good programmers do today)

• Semi-automatic, example-driven iterative 
refinement



Searching for and integrating other code

Annotating code purpose
Explaining unfamiliar code

Integrated Purpose Annotation and Search in



Software will adapt to 
new situations

• Software in the complex and rich real world

• Real life is more nuanced than any 
programmer can plan (or just wait, it’ll change)

• User considerations impact even backend

• Software must act appropriately in a variety 
of situations

When we can be informal,



How?

• Software that knows about everyday life

• crowdsourcing (ConceptNet)

• hand-coding (Cyc)

• learn from sensors, social media, etc.

• Context-appropriate behavior: continuously 
evaluate against informal representations



Software will fail 
intelligently

• If software always failed in expected ways, 
explicit failure handling would be merely 
tedious

• Enumerating failure scenarios impossible in 
complex systems.

• A system that only works one way can fail 
in many ways

When we can be informal,



Failing Intelligently

• try alternative approaches

• central problem-solving knowledgebase

• informed defaults for unspecified details

• suggest possible failure scenarios and 
reasonable courses of action



Discuss...

• When we can be informal and ambiguous, 
software will
‣ Be easier to develop
‣ Adapt to new situations
‣ Behave reasonably when things go wrong

• Development tools should permit artifacts at 
different degrees of formality and ambiguity, and  
interactively develop rich mappings among them




