
How do you naturally
express your

programming ideas?

Embracing Informality
and Ambiguity

Kenneth C. Arnold and Henry Lieberman
Software Agents ‧ Commonsense Computing Initiative

MIT Media Lab ‧ Mind Machine Project

Say what you know,
and not more.
By forcing us to use precise

vocabulary, software development
makes us say too much.

the world is complex, so

Proposal In Brief

• Development tools should let us talk about
our programs in many ways.

• Different degrees of formality

• Different degrees of ambiguity

• Interactively develop rich mappings: an
ecosystem of different representations

“You don't understand anything until you learn it more than one way.”
Marvin Minsky

When we can be informal
and ambiguous, software will:

• Be easier to develop

• Adapt to new situations

• Behave reasonably when things go wrong

Clarifying Terms...

• Specs and tests are formal but ambiguous.

• Formal = controlled semantics; incl.
programming languages.

• Managed, intentional ambiguity

Developing Software
is Easier

• Computer helps earlier in design

• Formality forces premature commitment

• Can communicate in more natural language
 (not just write code that looks like English)

• Let computer help evaluate multiple ways
of solving a problem

When we can be informal,

How?

• Understand the informal representations

• Map to increasingly formal specs, code, and
tests

• Learn by reading existing code (just like
good programmers do today)

• Semi-automatic, example-driven iterative
refinement

Searching for and integrating other code

Annotating code purpose
Explaining unfamiliar code

Integrated Purpose Annotation and Search in

Software will adapt to
new situations

• Software in the complex and rich real world

• Real life is more nuanced than any
programmer can plan (or just wait, it’ll change)

• User considerations impact even backend

• Software must act appropriately in a variety
of situations

When we can be informal,

How?

• Software that knows about everyday life

• crowdsourcing (ConceptNet)

• hand-coding (Cyc)

• learn from sensors, social media, etc.

• Context-appropriate behavior: continuously
evaluate against informal representations

Software will fail
intelligently

• If software always failed in expected ways,
explicit failure handling would be merely
tedious

• Enumerating failure scenarios impossible in
complex systems.

• A system that only works one way can fail
in many ways

When we can be informal,

Failing Intelligently

• try alternative approaches

• central problem-solving knowledgebase

• informed defaults for unspecified details

• suggest possible failure scenarios and
reasonable courses of action

Discuss...

• When we can be informal and ambiguous,
software will
‣ Be easier to develop
‣ Adapt to new situations
‣ Behave reasonably when things go wrong

• Development tools should permit artifacts at
different degrees of formality and ambiguity, and
interactively develop rich mappings among them

