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Teaching machines about everyday life

P Singh, B Barry, and H Liu

In order to build software that can deeply understand people and our problems, we require computational tools that give machines the 
capacity to learn and reason about everyday life. We describe three commonsense knowledge bases that take unconventional 
approaches to representing, acquiring, and reasoning with large quantities of commonsense knowledge. Each adopts a different 
approach — ConceptNet is a large-scale semantic network, LifeNet is a probabilistic graphical model, and StoryNet is a database of 
story-scripts. We describe the evolution, architecture and operation of these three systems, and conclude with a discussion of how we 
might combine them into an integrated commonsense reasoning system. 

1. Introduction
Can we build a new breed of software with enough 
‘commonsense’ to reason in useful ways about ordinary 
human life? Imagine if your cell-phone were smart enough to 
switch to silent mode when you entered a movie theatre but 
alerted you during the film if a relative were to call from the 
hospital, but not when your friend called from the pub. 
Imagine if when you complained: ‘I can’t get a good night’s 
sleep’, your search engine suggested a mattress sale at a 
nearby store. Imagine if, when you entered a child’s birthday 
party into your electronic calendar, it asked: ‘Do you think a 
kite would be a good birthday gift?’

Such abilities are beyond today’s machines largely because 
they lack even the most rudimentary understanding of people 
and the structure of ordinary human life. They do not know 
anything about, for example:

• the kinds of things we typically do,

• the objects we interact with and why,

• the consequences of actions in different situations,

• the kinds of relationships we have with one another,

• the things we like and things we do not like,

• the places we find familiar and the things we do there,

• the feelings and emotions that motivate us.

Instead, our machines today are mindless tools that possess 
no understanding of why a typical person would need to use 
them. As a result they are inflexible, unfriendly, and often 

unnecessarily complicated — they have no ability to adapt to 
new circumstances, understand the context of their use, or 
make good guesses at what we wish for them to do, regardless 
of how obvious it may seem to us.

Can we build machines that can actually understand people, 
and especially, that can understand our goals and help us 
achieve them? Our research at the Media Lab is focused on 
giving machines this kind of understanding. We are interested 
in the large-scale structure of the human conceptual system, 
and are working on embodying such structures within our 
machines, in order to make them more understanding, help-
ful, and to make our interactions with them more seamless.

We are developing at the Media Lab a suite of computational 
tools to give machines the capacity to learn and reason about 
ordinary human life. We are building several large-scale 
commonsense knowledge bases that model broad aspects of 
the ordinary human world, including descriptions of the kinds 
of goal people have, the actions we can take and their effects, 
the kinds of object that we encounter every day, and so forth, 
as well as the relationships between such entities.

This paper describes three systems we have built — 
ConceptNet, LifeNet, and StoryNet — that take 

can we build machines that 
can understand our goals and 
help us to achieve them?
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unconventional approaches to representing, acquiring, and 
reasoning with large quantities of commonsense knowledge. 
Each adopts a different approach —  ConceptNet is a large-
scale semantic network, LifeNet is a probabilistic graphical 
model, and StoryNet is a database of story-scripts. We 
describe the evolution of these three systems, the techniques 
that underlie their construction and their operation, and 
conclude with a discussion of how we might combine them 
into an integrated commonsense reasoning system that uses 
multiple representations and reasoning methods. 

1.1 Why is commonsense hard?
Compared to other areas of AI, there has been relatively little 
work on building machines capable of commonsense 
reasoning about many aspects of human life; in fact, the 
commonsense reasoning problem is widely regarded as one of 
the most challenging in the field. There are three major 
problems that we must face to build a commonsense 
reasoning system.

• Representing diverse varieties of knowledge

Firstly, we need to find ways to represent in machines the 
kinds of commonsense knowledge that people possess. 
What are the kinds of data structures and vocabulary 
elements that are needed to represent the vast span of 
things that people can think about, for example, social, 
economic, political, psychological, mathematical, and 
other types of matters? Expressing these kinds of ideas 
within our machines in a way that makes commonsense 
reasoning possible has been a challenge. Davis reviews 
some of the known knowledge representation techniques 
[1], and the Cyc project [2] has built a vast ontology of 
logical terms that can be used to describe a variety of 
commonsense situations, but there is still a long way to 
go to build effective commonsense knowledge 
representations for machines.

• Acquiring sufficiently large knowledge bases

Secondly, we need to find ways to acquire enough 
commonsense knowledge about the way the world works 
to approximate what a typical person knows. It has been 
estimated that by adulthood people possess tens of 
millions of fragments of knowledge [3], but no technique 
of machine learning or knowledge acquisition has been 
able to acquire this much knowledge. While people learn 
many things by living in the world, computers do not 
really ‘live’ in the world in the sense that they cannot see 
or manipulate things in the world nearly as well as people 
can, and even the best algorithms for machine learning 
remain very weak when compared to the ability of a 
young child to rapidly acquire information about the 
world. At the same time, simply programming these 
pieces of knowledge is a slow and tedious process, and 
this ‘knowledge bottle-neck’ is one of the major factors 
that has prevented AI technologies from seeing practical 
use.

• Reasoning flexibly with commonsense knowledge

Thirdly, we need to find ways to reason with 
commonsense knowledge, so that we can flexibly apply it 
to new situations. It is only in narrow, circumscribed 

areas (for example, in chess playing) that today’s 
reasoning technologies compare to people because it is 
possible to state precisely what knowledge is needed and 
how to use it to perform effectively. But when it comes to 
more general commonsense reasoning, such as the kind 
needed to understand a simple children’s story, it has 
been very difficult to write programs that can use 
knowledge as flexibly as people do — people can work 
with knowledge that is ambiguous, that has bugs of 
various sorts, and are amazingly good at jumping to 
conclusions based on partial information and revising our 
beliefs when presented with new information.

1.2 What is different about our approach?
We are developing three commonsense reasoning systems — 
ConceptNet, LifeNet, and StoryNet — that address each of 
these problems in new and unconventional ways.

• They use natural language as an essential part of their 
knowledge representation

To represent knowledge in our systems, we have been 
using fragments of natural language as fundamental 
ingredients of the knowledge representation. Each of our 
systems uses an ontology based largely on ordinary 
English words, phrases, and sentences. In other words, 
rather than using a precisely defined symbol such as 
DomesticFelineAnimal, we simply use the word ‘cat’ by 
itself. The advantage of this approach is that our 
knowledge bases are especially easy for people to add to 
and inspect, and in addition, they are easy for application 
developers to interface to. People do not have to learn 
enormous and intricate new languages to use our 
systems, and instead can rely on the knowledge of 
English that they already possess. The challenge for this 
approach is that unconstrained natural language is 
terribly vague and ambiguous when compared to 
computer languages. However, we have found that this is 
not a fatal flaw. We can always make a natural language 
expression more precise by adding more words, for 
example ‘cat’ can be replaced by ‘house cat’ or ‘jungle 
cat’, and it is often possible to use surrounding context to 
help disambiguate these terms. The use of English as a 
knowledge representation has also been demonstrated 
recently in the field of computational linguistics in a 
system that used a logical theorem prover on 
disambiguated WordNet glosses to enhance question-
answering [4]. 

• They take advantage of the World Wide Web and its 
citizens

To build sufficiently large commonsense knowledge 
bases, we have turned to the World Wide Web, both to 
its hundreds of terabytes of content and its hundreds of 
millions of citizens. We have built a series of knowledge 
acquisition interfaces that are designed for non-expert 
computer users from a wide range of ages and 
backgrounds, and our first such interface collected over 
700 000 fragments of information from over 14 000 
people across the Web. Our interfaces are designed for 
uncluttered simplicity: the activities guide the 
contribution and association of knowledge elements built 
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from fragments of English. We have avoided the need for 
users to learn a complicated representation language and 
have developed interface designs that strike a balance 
between maximum expression for the user and beneficial 
knowledge acquisition. The idea is that our interfaces 
should be simple enough for a person to begin using 
almost immediately and with ease over an extended 
period of time. And most recently, we have begun to 
supplement these knowledge acquisition efforts by 
automatically mining the Web for commonsense 
information. 

• They employ alternative methods of reasoning and 
knowledge representation

Most recent work on commonsense reasoning has 
assumed that reasoning is done by logical theorem 
proving over knowledge expressed in logic [5]. The power 
of logic is that it is an extremely expressive language, 
comparable to natural language, yet it has a precise 
semantics and there are well-understood reasoning 
procedures for making logical inferences. But in our view, 
the great precision with which one must specify concepts 
in the logical approach is precisely the reason why there 
are so few practical commonsense reasoning systems in 
the world today. In recent years there has been increasing 
interest in other methods of reasoning that are less 
sensitive to errors and ambiguities in the underlying 
knowledge base, such as reasoning with probabilistic 
models. However, there have been almost no attempts to 
apply these techniques to the problem of commonsense 
reasoning with large knowledge bases. Our 
commonsense reasoning systems are based not on 
logically sound inferencing techniques, but instead on 
several unsound but practically useful techniques such as 
spreading activation in semantic networks, probabilistic 
inferencing in graphical models, and case-based 
reasoning using story-scripts. We are also working to 
combine these techniques into an integrated 
commonsense reasoning system that uses multiple 
representations.

In the following sections we will describe ConceptNet, LifeNet, 
and StoryNet in more detail. But firstly we will briefly describe 
the Open Mind Common Sense project, the predecessor to 
these systems and the project that launched our efforts in the 
area of building practical commonsense reasoning systems.

2. Open Mind Common Sense
Our efforts to build machines with commonsense began in 
earnest four years ago with the launch of the Open Mind 
Common Sense Web site. At the time there was only one 
large-scale commonsense knowledge base, the well-known 
Cyc knowledge base [2]. Marvin Minsky was a great supporter 
of the Cyc project, but at the same time had been encouraging 

us and the rest of the world to start alternative projects to Cyc. 
He has long argued that giving computers commonsense was 
the central problem of artificial intelligence, and that a 
problem of such importance could not be left to just one 
group. In any case, Cyc still had a long way to go — even 
though they had collected over a million units, they were 
predicting that they would need in the order of 100 million to 
engage in commonsense reasoning at the human level [6].

We were interested in the question of whether it was possible 
to distribute the problem of building a commonsense 
knowledge base across thousands of people on the Web, and 
especially, people with little or no special training in computer 
science or artificial intelligence. We were interested in whether 
the ‘average person’ could participate in the process of 
building a commonsense knowledge base. After all, every 
ordinary person possesses the kind of commonsense we wish 
to give our machines! The conditions seemed ripe to pursue 
such an effort. The success of distributed knowledge 
engineering projects, such as the Open Directory, was clear, 
and it seemed to us the only question was whether an 
interface could be built that the general public would find 
engaging enough to teach commonsense, for at the time, it 
was not clear whether any practical applications and other 
benefits would ensue from such an effort.

The main question was whether there was a method for these 
contributors to express knowledge in a way that a machine 
could use. Unless we could find a way for people to contribute 
knowledge that a machine could use, then it would be a moot 
point whether people on the Web wanted to participate but 
found the knowledge acquisition interface too difficult to use. 
We began to explore the idea of using English itself as a 
knowledge representation language. Could people teach 
machines knowledge in the form of simple English 
statements? If so this would tremendously accelerate any 
effort to build a commonsense knowledge base. There would 
be no special knowledge representation language to learn, 
and so the knowledge could be contributed much more 
naturally. While there were clearly problems with this idea — 
natural languages do not have a precise formal semantics, the 
words in natural languages are ambiguous, and natural 
languages may lack words for many important commonsense 
ideas — we decided to forge ahead since the cost of trying 
seemed so low. It was just a matter of putting up a Web site 
and seeing what happened.

We built the Open Mind Common Sense (OMCS) Web site to 
explore these ideas. OMCS was built in the first half of the year 
2000, and launched in September 2000. We quickly gained an 
audience and as of March 2004 about 14 000 people have 
entered nearly 700 000 items of knowledge. The contributed 
knowledge consists largely of the kinds of simple English 
assertions shown in Fig 1, a screenshot of the OMCS 
knowledge browser.

The knowledge gathered by OMCS is not a well-defined 
knowledge base in the sense of Cyc, which consists of clearly 
defined knowledge elements and an associated inference 
procedure. Rather, it is a kind of English corpus — printed out, 
it would exceed 25 000 pages! Perhaps the best way to think 
about it is an encyclopedia of ordinary things, with thousands 

there has been little work on 
practical commonsense 
reasoning in over a 
generation
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of facts about common concepts like ‘money’ (7500 facts), 
‘car’ (12 000 facts), ‘hair’ (3500 facts), and so forth. Many of 
these facts are expressed in sentences that have a simple 
syntax or are otherwise highly structured due to use of 
template-based acquisition activities.

We will not go into further detail about the content of the 
OMCS corpus here, but encourage the reader to visit the 
Open Mind site (at http://openmind. media.mit.edu) to 
browse the knowledge people have contributed. What has 
surprised us most of all is the high quality of this knowledge. 
An early analysis [7, 8] showed that 90% of the contributed 
statements were rated 3 or higher (on a 5 point scale) along 
the dimensions of truth and objectivity, and about 85% of the 
statements were rated as things anyone with a high school 
education or more would be expected to know. Thus the data, 
while noisy, was not entirely overwhelmed by noise, as we had 
originally feared it might be, and also it consisted largely of 
knowledge one might consider shared in our culture. Even 
though we were encouraged by quality ratings of the OMCS 
corpus, in subsequent work we developed strategies for 
filtering poor quality contributions using statistical methods 
and user assessment of contributions. The main lesson to 
draw from OMCS is that the project, along with other related 

projects including 20Q.net, Mindpixel.com, and most recently 
ESPgame.org, have been successful for collecting millions of 
units of knowledge from members of the general public, and 
have proved that there is an audience for distributed AI efforts 
of this sort. However, there is a difference between building a 
large corpus of commonsense facts and building a useful 
commonsense knowledge base. How could we use the 
collected OMCS knowledge? In the next sections we describe 
the OMCS corpus as a resource for our commonsense 
reasoning systems and as a support for some of our other 
knowledge acquisition projects. 

3. ConceptNet
The statements from OMCS that have proved the most useful 
are the ones that people contribute via simple templates like 
‘flashlights can be used to ...’, or ‘the effect of drinking coffee 
is ...’. A substantial portion of the OMCS corpus consists of 
these kinds of semi-structured sentences, and from these we 
have been able to extract more usable knowledge bases.

The first knowledge base we extracted this way was 
ConceptNet, a large-scale semantic network mined from the 
OMCS corpus using a library of lexico-syntactic pattern 
matching rules. A fragment of ConceptNet is shown in Fig 2.

The present version of ConceptNet consists of 1.6 million links 
interrelating 300 000 concepts. The links are drawn from the 
ontology of links shown in Table 1, and the concepts consist of 
simple English expressions of objects, events, properties, and 
places, as shown in Table 2.

ConceptNet is mined from 
OMCS using lexico-syntactic 
rules

Fig 1 A few things Open Mind Common Sense knows about water.
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Table 1 ConceptNet’s relational ontology of 20 link types.

Table 2 Ontology of concept types.

Structurally, the closest analogue to ConceptNet is the widely 
used WordNet semantic network [9]. ConceptNet and 
WordNet are both large-scale semantic networks with natural 
language expressions at the nodes, related by a small 
collection of link types. However, there are several important 
differences between the two systems. Whereas WordNet 
contains only explicit knowledge of the sort you would see in a 
dictionary, ConceptNet contains a much wider range of the 
more implicit, between-the-lines, knowledge of the sort you 
cannot find in any existing linguistic resource. For example, 
WordNet states that a cat is a type of mammal, but it says 
nothing about a cat being a common pet — simply because 
the latter statement cannot be said to be part of what 
‘defines’ a cat. All cats are mammals, but only many cats are 
pets — and despite the obvious utility of the latter piece of 
knowledge it is excluded from WordNet on the basis that it is 
not always true. This points to a substantial difference 
between the goals of the two systems — the goal of 
ConceptNet is not so much to precisely define words, as it is in 

WordNet, but rather to provide the kind of additional context 
and ‘usually true’ relations that exist between concepts.

ConceptNet and WordNet also differ in the details of their 
node and link types. ConceptNet includes not just words but 
also larger compound expressions such as ‘buy ticket’ or ‘at 
movie theatre’, which lets it express more specific types of 
action, object, place, and property. In addition, its link types 
go beyond WordNet’s largely taxonomic ontology to include 
functional, temporal, spatial, affective and several other types 
of relation shown in Table 1. WordNet, however, has the 
advantage of being sense-disambiguated, and we and others 
are seeking to disambiguate ConceptNet as well [10].

Semantically, the closest analogue to ConceptNet is the Cyc 
system. However, unlike Cyc, ConceptNet is very restricted in 
its vocabulary of predicates, and while this makes the 
knowledge in ConceptNet more ambiguous than the 
knowledge in Cyc, we have found that as a result it is very easy 
for people to use. Our experience with Cyc is that it takes 
many months to get up to speed on its ontology, and even 
then it is difficult to keep track of how to express complex 
ideas — it is very much like learning a new natural language 
with a comparably sized vocabulary. Perhaps the best example 
of the ease of use of ConceptNet was a course that Henry 
Lieberman taught at the Media Lab, where the students for 
their final projects built a variety of systems using an early 
version of ConceptNet. These students largely had little 
background in AI besides the introductory course, but 
nonetheless managed to build a variety of interesting systems 
in only a matter of weeks.

We reason with ConceptNet using various methods of 
traversing links or ‘spreading activation’ to retrieve related 
concepts. For example, given a concept like ‘drink coffee’, we 
can retrieve related concepts like ‘pour coffee’, ‘make coffee’, 
‘feel awake’, and so forth. So given a set of starting concepts, 

ConceptuallyRelatedTo IsA FirstSubeventOf DesirousEffectOf

ThematicKLine MadeOf SubeventOf UsedFor

SuperThematicKLine DefinedAs LastSubeventOf LocationOf

CapableOfReceivingAction CapableOf PrerequisiteEventOf MotivationOf

PropertyOf PartOf EffectOf DesireOf

Events Things Places Properties

Eat sandwich Orange juice At zoo Furry

Sell car Morning coffee On table Very expensive

Tell story Policeman Near school Dark

Go to zoo Leaf blower Inside oven Quickly

Type letter Laptop computer In closet Dark

Fig 2 A subset of ConceptNet.
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we can begin to traverse the network to find related fragments 
of information. Using such methods we can:

• infer what events might come next,

• infer what might have happened earlier,

• infer what objects might be required to perform an 
action,

• infer what the properties of objects are,

• infer where an object might be found,

• infer what sorts of goals people might have.

More information about ConceptNet and the kind of reasoning 
it supports is given in Liu and Singh [11]. Generally, this sort of 
reasoning can be used to elaborate search queries, recognise 
situations and events from their elements, find the semantic 
similarity between passages of text, and many other 
applications. We have built a variety of applications using 
ConceptNet such as a photo retrieval agent, an affective text 
classifier and a topic spotter for conversations. Details of these 
and other applications that use ConceptNet can be found in 
Lieberman et al [12, 13]. 

4. LifeNet
While ConceptNet was a very successful system, as measured 
by the many applications that used it, two problems remained 
difficult to solve. Firstly, the meanings of its nodes and links 
are ambiguous, and it is unclear how to take that ambiguity 
into account during reasoning. Secondly, there are a number 
of erroneous links, and it seems highly unlikely that we will 
ever be able to get rid of all the errors if we are collecting 
knowledge from a wide range of users. Is there a method of 
reasoning that can tolerate such ambiguities and errors?

We began to explore probabilistic methods for representing 
and reasoning with commonsense knowledge. Probabilistic 
methods for reasoning are more tolerant than rule-based 
reasoning methods to the uncertainty in our knowledge of the 
situation, as well as to the uncertainty in the reliability of the 
rules themselves. Also there are simple and well-understood 
inference procedures that can run fairly fast if you are willing 
to accept approximate solutions.

However, probabilistic approaches have a major disadvantage 
when it comes to commonsense reasoning. To date, there are 
only a handful of poorly understood techniques for reasoning 
with the kinds of expressive representations that are needed to 
describe a wide range of commonsense situations and events, 
for example, using frames, scripts, or first-order logic. Is it 
possible to build a commonsense knowledge base using less 
expressive, propositional representations?

We developed the LifeNet system to explore these issues. 
LifeNet is a large-scale temporal graphical model expressed in 
terms of egocentric propositions of the form:

• I am at a restaurant,

• I eat a sandwich,

• it is 3 pm,

• it is raining outside,

• I feel frightened,

• I am drinking coffee.

Each of these propositions is a statement that a person could 
say was true or not true of their situation, perhaps with some 
probability. In LifeNet these propositions are arranged into 
two columns representing the state at two consecutive 
moments in time, and these propositions are linked by joint 
probability tables representing both the probability that one 
proposition follows another in time, and also the probability of 
two propositions being true at the same time. A small sample 
of LifeNet is shown in Fig 3.

LifeNet can be regarded as an approximate, first-person 
model of the course of everyday human experience. Presently 
it consists of a total of 80 000 propositional nodes linked by 
415 000 joint probability tables between pairs of nodes. These 
nodes and links are generated by transforming a subset of 
ConceptNet, a process described in more detail in Singh and 
Williams [14]. Unlike ConceptNet, the semantics of the nodes 
and links in LifeNet are quite clear. The links represent 
probabilistic constraints, both temporal and atemporal, 
between propositional fluents each representing one 
measurable aspect of the world. LifeNet is a Markov network, 
an undirected graphical model where the nodes represent 
random variables and the edges joint probability constraints 
relating those variables. We reason with LifeNet using local 
belief updating techniques, in particular, ‘loopy’ belief 
propagation as described by Pearl [15]. Using these 
techniques, we can use LifeNet to engage in several types of 
temporal reasoning:

• prediction — guess what might be true in the next 
moment,

• elaboration — guess what else might be true now,

• explanation — guess at what happened prior to the 
current event,

• projection — guess what series of events might follow,

• filtering — filter unlikely current states or events,

• fixed-lag smoothing — filter unlikely past states or 
events.

LifeNet is less expressive than ConceptNet in the sense that it 
focuses exclusively on the details of situations and transitions 
between situations. But in exchange for this loss in 
expressivity, LifeNet provides a way to tolerate errors in the 
knowledge base, and provides a knowledge representation 
with a clear semantics and inference procedure for reasoning 
with the collected knowledge.

LifeNet is an approximate 
first-person model of every 
day life
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Fig 3 A sample of LifeNet. The before column shows t1 and the 
after column shows t2. ‘It is 8 am’ occurs before ‘It is 11 am’. ‘It is 

8 am’ occurs at the same time as ‘I am brushing my teeth’.

We are using LifeNet to help build more context-aware 
systems. Traditionally there has been much emphasis on 
building systems that can sense various features of the world, 
ranging from faces to sounds to emotions, and react to these 

sensations in useful ways. But all such projects have been 
limited in the quality of the systems’ responses because 
interpretation requires more commonsense. Bridging 
commonsense and sensing requires finding ways to connect 
the typically probabilistic representations used by perceptual 
systems and the typically non-probabilistic representations 
used by commonsense reasoning systems. Because LifeNet is 
based on probabilistic representations, it is straightforward to 
connect to lower level sensory systems. Eagle [16] describes 
an initial foray into this area of enhancing sensory systems 
with commonsense, and we hope to do more work in this area. 

4.1 LifeNet interface
LifeNet was built using knowledge from ConceptNet, but, as 
with OMCS, we have built an easy-to-use Web site that allows 
an untrained person to quickly add more knowledge to 
LifeNet. The interface is shown in Fig 4. At present the 
interface allows the user to supply knowledge about both 
temporal and atemporal links by dragging and dropping 
propositions into boxes denoting truth and falsity over a series 
of time steps.

The interface is divided into three areas. The ‘Add List’ allows 
the users to directly search for propositions in the knowledge 
base. The ‘True/False’ boxes are the composition areas that 
delineate a series of time steps. Users can add or delete 
propositions when building a situation for submission. The 
third area is the ‘Suggestions’ area, which displays plausible 
propositions for each time step generated by the LifeNet 
inference engine. Essentially the system is guessing what else 
might be true at the same time as the selected propositions. 

it is 8 am

I am at home

it is 11 am

I am at work

I am brushing my teeth

I am in front of my laptop

I am drinking coffee

I feel sleepy

I feel awake

it is cloudy

it is raining

before after

Fig 4 Interacting with the LifeNet inference engine.
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Suggestions can then be added to any ‘True/False’ box or 
ignored.

The goal of the user is to complete a game by building a 
situation comprised of true and false propositions. Games can 
be initiated by the system by display of a few starting 
propositions or the user can clear the board and begin a game 
by searching the add list for any proposition or concept they 
like.

We discovered the major challenges in building such an 
interface are supplying reasonable suggestions, providing 
flexibility in composition and promoting long-term 
engagement. Many of the generated suggestions are 
reasonable new candidates because the existing inferences are 
only partly reliable. As the system is used we expect the 
suggestions to become even more robust. We are addressing 
the need for more compositional flexibility, as requested by 
users, by adding the ability to extend the number of time steps 
and contribute new propositions, guided by templates. There 
is great potential for long-term participation since LifeNet 
engages the natural human ability to recall and order our life 
experiences. 

The advantage of LifeNet is that its representation scheme is 
very simple and we believe that such systems will prove very 
useful in building richer models of human behaviour. However, 
ultimately the impoverished nature of this representation 
makes it difficult to capture higher level and longer term ideas 
about ordinary human life, and especially, about the complex 
types of relationship that occur in stories.

5. Representing commonsense using stories
ConceptNet and LifeNet represent commonsense in small 
units of knowledge linked by binary relations and joint 
probability tables. However, using such small units of 
knowledge forces one to ignore many complex and subtle 
aspects of how the real world works.

What knowledge representation can we use to approach the 
complexity of the real world? Stories are a type of 
representation people use to organise their lives and make 
sense of the world. A story can be thought of as a pattern 
within which events or series of events can be ordered, 
understood and communicated [17]. Richard Kearney reminds 
us of the long-standing recognition in philosophy of the cycle 
of action and narrative [18]. As we live we create life-stories in 
order to remember our past and project our future, a process 
first named ‘poesis’ by Aristotle. The creation of life-stories 
involves the structural plotting of information [19]. Aristotle 
regarded a successful plot as one in which the episodes 
followed each other in probable and necessary sequence. The 
relations between elements are as important as the elements 
themselves. Here we take our cue for creating complex 
commonsense knowledge representations. While it is the job 
of poets and artists to reinvent and test the limits of plotting 
life, it is our job to find a story representation that will support 
machine understanding of everyday life. We define a story as a 
set of representational elements and their relations. 
Representational elements include actors, events, states, 
settings and objects. Relationships between elements can 

express goals of the actors, problems to be solved, plans that 
are successful or unsuccessful and, at their most complex, 
themes. 

As a representation, stories have other advantages besides 
their capacity to depict complexity. Stories are ‘implicit 
contexts’ for knowledge, which have many of the advantages 
of solely explicit contexts. Consider this example scenario —  
Jack cannot find his keys. A story about the situation might 
look like this:

• It was 11 pm (when would you need a flashlight?)

• Jack couldn’t find his car keys (what problem might a 
flashlight help with?)

• Jack looked in the yard (where would you use a 
flashlight?)

• It was too dark to see anything (why would you need a 
flashlight?)

• He got a flashlight from a drawer (where would you find a 
flashlight?)

• Now he could see the yard (what does a flashlight do?)

• He found his car keys in the grass (problem solution).

 While ConceptNet can be used to generate knowledge such 
as ‘keys are used for opening something’ and ‘yards are 
located near houses’ and LifeNet can offer that ‘in a yard’ 
often occurs in the same situation as ‘see the sky’, neither can 
directly provide inference to help solve the problem of lost 
keys. Stories supply more detail, keep related knowledge 
together, and by connecting knowledge about objects, events, 
places, functions, goals, etc, they can help direct inference. 
Another strength of stories is the capacity for generalisation. 
Using case-based reasoning a story about finding keys can be 
generalised to a story about finding.

Just as semantic networks and probabilistic graphical models 
have been little applied to large-scale commonsense 
reasoning problems, so has the use of story-like structures. 
While in the early days of AI there was much interest in 
expressing commonsense knowledge in terms of large, story-
like units [20, 21], recently such approaches have rarely been 
used for commonsense reasoning. Mueller is a notable 
exception [22]. No present large-scale semantic knowledge 
bases contain a substantial amount of story knowledge. 
Mueller compared several systems (Cyc [2], FrameNet [23], 
Gordon’s Expectation Packages [24], ThoughtTreasure [25], 
and WordNet 1.6 [9]) and found that these systems consisted 
largely of facts and rules, and not cases and stories against 
which case-based reasoning could be performed [26]. A large-
scale story knowledge base would be a fundamentally new 
kind of resource. 

people use stories to 
organise their lives and 
make sense of the world
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In addition, from the perspective of turning to the general 
public to build knowledge bases, we suspect that the average 
person may be better at telling and explaining simple stories 
than generating more direct forms of knowledge engineering 
such as formulating and encoding logical rules. Since people 
are by nature experts at using story structures to organise and 
manage the complexity of life, it may be easier to tell and 
explain a specific story, which focuses the user on a specific set 
of characters, objects, and events, and their relationships, 
than to make a general rule-based theory in the abstract of 
some domain.

In the next sections we describe two of our first approaches to 
the problem of building a large semi-structured story 
knowledge base. As our acquisition systems are released and 
tested we anticipate that our representations will be revised 
and enhanced as we learn from the human storytelling impulse 
and the success and limitations of the inferences mechanisms 
we develop.

5.1 Open Mind Experiences
During the development of Open Mind Commonsense we had 
the notion that useful stories could perhaps be generated 
automatically from the temporally ordered and causally 
connected knowledge in the OMCS corpus. We built a system 
called MAKEBELIEVE [27] that generated simple first-person 
storylines collaboratively with a person by alternating turns. 
The stories generated by MAKEBELIEVE were often quirky and 
silly because while the system had a notion of causal-
connectedness, it did not know how to assemble story pieces 
to satisfy a global story context, which requires notions like 

relevance, and hiding versus highlighting. People are much 
better at building coherent and meaningful stories.

ConceptNet and LifeNet both approached the idea of a story-
like representation for commonsense reasoning. ConceptNet 
includes the temporal relations such as ‘the-first-thing-you-
do’ and ‘the-last-thing-you-do’ that suggest the beginning 
and end of a story. LifeNet can predict simultaneous, 
preceding or following events in a situation. However, this 
knowledge is fairly sparse in ConceptNet and LifeNet, and so 
we decided to try to build a Web site that explicitly collected 
knowledge in the form of stories.

Open Mind Experiences (OMEX) (see Fig 5) was a first attempt 
to gather structured story knowledge from the general public 
[28]. In many ways, OMEX improved upon and fixed several 
problems with the original OMCS Web site. OMEX focused 
exclusively on knowledge entry through template activities, so 
all the collected knowledge was guaranteed to be at the very 
least semi-structured. The story contribution templates were 
hand-built and are a thematic representation based on 
Lehnert’s plot units [29]. Plot units are a convenient way to 
represent a wide range of story types as linked positive events, 
negative events and mental states. Lehnert used this 
representation as a way of identifying central concepts of a 
story plot during text summarisation. We created templates 
based on plot units to prompt acquisition of multi-character 
stories across broad subject domains. Plot unit 
representations also have the advantage of being 
compositional. Simple plot units can be combined to create 
even more complex story representations. The development of 
OMEX was especially valuable because it addressed the need 
for social commonsense. Contributors to OMEX entered 
knowledge into simple (one character) and complex (multi-
character) entry templates. The design prompted users to 
enter stories that expressed themes such as competition and 
co-operation.

OMEX was an attempt to 
gather structured story 
knowledge from the public

Fig 5 Browsing the Open Mind Experiences Web site.
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OMEX also introduced the idea of explanation, judgement and 
repair of knowledge by contributors, so that erroneous or 
controversial facts could be marked as dubious, corrected, 
contextualised, or further commented upon. Users could 
explain a story by answering some questions that solicited the 
background knowledge needed to understand an experience. 
Users could also classify stories along various dimensions, 
such as plausibility or typicality, and correct grammatical 
errors.

The goal of the OMEX site was essentially to collect two 
general classes of story information — the story content and 
the story meta-information.

5.1.1 Story content
Studies of human and computer memory and understanding 
have yielded many different story content theories, from 
simple sets of events to very complex configurations. There 
are a variety of concepts that must be addressed in designing 
a story representation. One must make a commitment to a set 
of symbols and a method for combining them to enable robust 
inference. This is particularly difficult if one does not have a 
target story in mind that the resulting system will need to 
understand. Since our target is to understand the broadest 
range of stories we looked to previous work in story 
understanding as the basis for our representations. Mueller 
provides a helpful general overview of symbolic knowledge 
structures for story understanding that we recap here  [30]:

• script — temporal list of causally linked events,

• plan — steps executed to achieve a goal,

• goals — specifications of a desired state,

• theme — a pattern of linked goals, states and events,

• grid — locations of objects and characters in two 
dimensions,

• time — absolute or relative descriptions of time. 

Currently we focus on gathering content in the form of simple 
scripts, goals, themes and relative descriptions of time. As we 
add to the activities in our acquisition sites we are addressing 
the remaining historical structures and developing other new 
representations to aid commonsense reasoning.

5.1.2 Story meta-information
While story content expresses what happens in a story, meta-
information addresses some subtleties of how a story is used. 
Lenat [31] argues that it is important to encode not just facts 
and rules about domains, but also meta-assertions that 
describe precisely in what situations those facts and rules 
apply, what other knowledge may be relevant, what problem-
types those facts and rules may help solve, and so forth. 
Consider this list of story attributes to direct commonsense 
reasoning. 

• Author information
Age, ethnicity, class, gender, occupation and residence.

• Expectation information
Does it happen every day?

Is this a story that everyone has experienced at some 
time or another?
Is this an unusual story? 

• Story topic
What is the story about?
What are the most important terms, goals, expressions, 
and themes?

• Story conditions
What are the prerequisites of this story?
What conditions will initiate this story?
What conditions in a situation would make this story 
impossible? 

• Story uses
Does this story teach you how to solve a problem?
Does it tell you to avoid a situation?
Does it present a model of a person who you could 
emulate?

• Story realms
What realms of commonsense are expressed in this 
story?
Does it have information about the physical world, the 
social world or both?

OMEX had an activity where people could teach some of this 
story meta-information, but we are still looking into good ways 
to represent and collect this type of knowledge. We also 
anticipate that the collection of this information will not only 
help our commonsense reasoning efforts but also provide a 
resource for psychologists who are studying how people make 
inferences in order to comprehend texts, films and the 
everyday world [32].

5.2 StoryNet
While OMEX was in many ways a substantial improvement 
over the original OMCS site, launching a test version of the 
OMEX site revealed that the knowledge entry templates were 
too abstract to engage the typical user and lacked the 
constraints necessary to support successful knowledge 
extraction. Ultimately, these shortcomings convinced us to 
design a new type of interface based on suggestions, sorting 
and constrained text entry. Recognising these problems 
helped us rethink the OMEX interface, and ultimately led us to 
the StoryNet system, which is currently under development.

Just as LifeNet built on ConceptNet, StoryNet builds on 
LifeNet and ConceptNet, using them as resources. While 
ConceptNet lays out the possibilities for ordering elements, 
not all combinations will make sense. If you start at a random 
node in ConceptNet and follow it to generate a story, you 
might get something like this:

I want to drive a car.
I need gasoline.
Gasoline can be found in a plane.
A plane can be found in the sky.

Links between concepts are inherently local in time, do not 
factor in more constraints, and are not organised into larger 
units. The chaining of ConceptNet events is not directed by 
the goal of driving a car. In very few steps the inference goes 
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off on a tangent that, however amusing, unnecessarily and 
nonsensically complicates the action. 

StoryNet uses the same ontology of concepts as LifeNet but 
captures knowledge in the form of scripts, lists of temporally 
ordered events. Generally, our work with both OMEX and 
StoryNet inherits strongly from the early work in story 
understanding by Schank and his colleagues [21]. Schank 
introduced scripts as memory structures for reasoning about 
story texts. In Schank’s representation there was a canonical 
script for each activity, for example the classic restaurant 
script. StoryNet scripts are not intended to be general; rather 
they are instances, example descriptions of activities. Thus, 
there can be many ‘restaurant scripts’ in the StoryNet 
knowledge base. The scripts in StoryNet contain only 
sequences and we rely on our other commonsense resources, 
ConceptNet and LifeNet, to generate other information of the 
type found in Schankian scripts — elements such as actors, 
emotions, objects and the conditions necessary for the script 
to be instantiated. 

Consider this simple example:

I am hungry.

I want to go to a restaurant.

I see a car.

I get into a car.

I start the car.

I drive to a restaurant.

I enter the restaurant.

I order a sandwich.

StoryNet can offer multiple scenarios of people travelling to a 
restaurant — riding a bicycle, walking, running, taking a bus, 
etc. The improved representation allows us to tell a story — a 
set of descriptions, relationships, and events concerned with a 
specific set of characters, objects, places, etc. Event 
relationships are very complex. Events might be dependent or 
independent. ‘Getting into a car’ is necessary to ‘drive a car’. 
‘Turn on the car radio’ is not necessary. In some circumstances 
one event might subsume another or thwart the goal of a 
character in the story. We use the script representation as a 
basis for collecting more relational knowledge of this kind. 

Each event in this script can be expanded to include details of 
the situation. In order to create a sensible story, people know 
that driving a car involves travelling a distance. On arrival at 
the restaurant, the driver is at a different place than when 
entering the car. Other details might be necessary in different 
contexts. If the point of the story is safety while driving, then 
we might need to answer questions like: ‘What was the 
weather?’ ‘How much gas is in the car?’ ‘Does the driver have 
good vision?’ A goal of StoryNet is to create a representation 
that is flexible. ConceptNet and LifeNet can be used to 
address some of these questions by expanding the context, 
inserting additional steps or determining the likelihood of 
event-order in a story. LifeNet could provide the likelihood of a 
person driving to a restaurant after starting a car. ConceptNet 
could provide a list of objects that might be found in a 
restaurant.

5.2.1 StoryNet acquisition
The StoryNet interface is designed to be as harmonious as 
possible with the human storytelling activity so that the 
average person can use it. StoryNet is also designed to be 
general-purpose so that people could use it to enter both 
personal information, as well as information that is more 
obvious, common, and shared between people. This can 
ultimately be useful when StoryNet is used in applications that 
require both general information about the world and specific 
information about users.

How do people interact with the system to teach it new 
knowledge? We are looking into several methods of 
acquisition. The first method of acquisition is to have people 
who register with the Web site to describe their own life 
experiences. This approach could be thought of as a simple 
diary of everyday events. Information about the contributor is 
kept as a way to further evaluate these stories with respect to 
authorship.

We can analyse the contributions and search for similarities 
and differences. Do people under the age of 18 submit stories 
of a different quality than people over the age of 60? Who tells 
more problem-solving stories about objects? Engineers or 
social workers? The background of the contributor helps to 
determine the context of the stories that are being told. 
Ultimately, one person’s life experiences can be used to 
understand another’s. This could be helpful in disciplines 
which rely on stories for effective communication such as 
education, narrative psychology, politics, law, and 
entertainment. 

We have built an initial StoryNet (see Fig 6) interface based 
upon the LifeNet interface model. It is a simple drag and drop 
interface for sorting and ordering propositions. A user can 
search for a statement to begin a story or be prompted by the 
system. As each proposition is added to the story construction 
box, suggestions of possible next events are provided. 

Currently, we are developing constrained methods for 
entering new propositions that adhere to our model of four 
proposition types — actions, objects, locations and 
properties. This will be accomplished by a pull-down menu in 
each proposition type that will provide alternative suggestions 
and ability for user entry of text. For example, the proposition 
‘I see a cloud’ might be altered to ‘I see a bird’.

Note that this is the first version of the interface built with the 
primary activity of script gathering. We are developing other 
activities that allow the user to interact with the story knowl-
edge base by elaborating on a story, answering questions 
about it or altering it by substituting one element. We are also 
creating a version that puts users in competition in a story 
creation game. We anticipate this will be entertaining and 
might also improve user commitment to the system.

StoryNet is designed to be 
harmonious with human 
storytelling



Teaching machines about everyday life

BT Technology Journal • Vol 22 No 4 • October 2004238

We are presently working on incorporating case-based 
reasoning into the StoryNet Web site so that users can tell 
stories interactively, merge two stories together, chain stories 
to generate new stories, substitute elements for more sensible 
or interesting elements, and other manipulations of story 
structures.

6. Integrating these systems
The approaches taken by ConceptNet, LifeNet, and StoryNet 
each have their own focus. One way to conceptualise their 
interrelations is as follows:

• StoryNet scripts give you a longer-term model of the flow 
of events, and relate elements like the situation, goals, 
and other ingredients as they are connected in a 
particular sequence of events,

• LifeNet drills down into the details and captures much 
more detail about individual situations and transitions 
between pairs of situations than we would find in 
StoryNet,

• ConceptNet abstracts away from any given situation or 
story and instead expresses the broad collection of 
related concepts that would appear in a host of related 
stories.

These three systems are thus quite complementary. 
ConceptNet can express a wide range of relationships between 
objects and events, but lacks the ability to tie such elements 

together into a larger-scale situation as StoryNet does. 
StoryNet, however, requires that one express a sequence of 
events and inhibits detailed descriptions of the situation in 
which the sequence occurs. Those details, however, are 
exactly what LifeNet expresses.

Can we build a reasoning system that combines the 
advantages of these three commonsense reasoning systems? 
What is the relationship between these systems? We are 
beginning work on a system that combines their different 
reasoning techniques. Figure 7  shows how these three 
different representations might be related in a unified system. 
We are working on a visual interface that lets us view and 
switch between each of these representations, in order to 
build an integrated browser for the three knowledge bases.

7. Future work
To get an update on current commonsense work at the MIT 
Media Lab, please visit our Commonsense Computing Web 
site (http://csc.media.mit.edu).

8. Conclusions
There has been little new work on the practical commonsense 
reasoning problem in over a generation; many in the AI 
community still consider the commonsense problem too 
difficult.

At the Media Lab we have been taking a fresh look at the 
problem of building practical commonsense reasoning 

Fig 6 Assembling a simple story using StoryNet.
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systems using unconventional techniques — representing 
knowledge in natural language, distributing knowledge 
acquisition to non-experts via the World Wide Web, and 
developing reasoning techniques that work successfully with 
large and imperfect knowledge bases.  We believe the 
progress we have made in the last few years is a sign that the 
commonsense reasoning problem — long regarded as one of 
the most fundamental and challenging problems in the field — 
may be tractable after all, and that commonsense-enabled 
systems may become, far sooner than expected, indispensable 
elements of our technological society.
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