
1

Road and Building Classification on Satellite Images
Using Superpixels and Semi-Supervised Learning

Eric Chu, MIT Media Lab

Abstract—In order to scale segmentation of aerial satellite
images, I took a semi-supervised approach to handle the scarcity
of labeled data. Previous work first used SVM’s to predict labels
at the superpixel level, followed by label propagation between
superpixels. For our research, we are interested in segmentation
at the pixel level. We thus attemped different methods to perform
label propagation and labeling at the pixel level.

I. INTRODUCTION

With the increased availability in the past decade of high
resolution satellite imagery, we now have the ability to use
machine learning techniques to automatically segment satellite
images into roads, buildings, and more. This can in turn be
used for map creation and rural development planning.

My group Social Machines in the Media Lab is working
on a project to increase literacy and create more responsive
communities in rural villages. We aim to estimate the social
structure of these communities in part through satellite im-
agery of villages in India and Sub-Saharan Africa. With our
inferred network, our goal is to enable targeted intervention and
optimized distribution of information, education, technologies,
goods, and medical aid.

A. Related Work, Motivation, and Approach
Mnih and Hinton have a series of papers that use twenty-layer
deep convolutional neural nets (CNNs) to classify each pixel
of a satellite image as belonging to a road, building, or other
[7]. Using the architecture and dataset released by Mnih, my
group has successfully replicated their classifier in Caffe. It
takes about two days to train on ∼ 130 1500 x1500 pixel
images using 3-4 GPUs.

There are two negatives with this approach. First, the pro-
vided dataset of Massachusetts roads and buildings has been
meticulously labeled. This quantity and quality might not scale.
Second, the time to train is longer than we would prefer. This
would not be a problem if we could simply train a model
once and be done. However, the variance in building and town
shapes, sizes, and colors dictates we will need to train a model
per region.

The scarcity of labeled data suggests exploring a semi-
supervised approach. Sethi et. al uses such an approach to
classify neighborhoods from satellite images [8]. They first seg-
ment the image into superpixels. They then calculate computer
vision features for each superpixel. After labeling ∼1% of the
superpixels, they use a SVM trained on the superpixel features
to create preliminary labels. Next, they create a neighborhood
graph of superpixels. They then use this graph, the ground-
truth 1% of labels, and the preliminary labels produced by the
SVMs for label propagation to produce the final labels.

I aimed to replicate the majority of the above paper’s pipeline
to classify pixels as Roads, Buildings, and Other. The big
difference is that my problem requires labels at the pixel level
instead of simply at the superpixel level. I hoped that the initial
labels at the superpixel level would be correct enough that I
could then do label propagation at the pixel level.

II. DATA PRE-PROCESSING

My dataset consisted of 151 1500 x 1500 pixel satellite
images of Massachusetts. Per image, there was another RGB
image map that provided the ground truth labels of Road,
Building, or Other. See a) in figure 2. I had to remove some
images that were corrupted with stray white marks.

To segment the satellite images into mutually exclusive sets
of pixels called superpixels, I used the Ultrametric Contour
Mapping (UCM) technique, with code from the Berkeley
research group. UCM segments an image into superpixels by
hierarchically combining contours, which are calculated using
brightness, color, and texture gradients. Like other techniques,
UCM first creates a neighborhood pixel graph as an input
into spectral clustering. However, it differs in its handling
of the resulting eigenvectors; by taking Gaussian directional
derivative filters, it can properly segment larger sections of the
image that are smooth, such as a blue sky. UCM also has
a parameter k that controls the granularity of segmentation.
Smaller k’s results in smaller superpixels. As UCM is hierar-
chical, decreasing k will subdivide a superpixel into smaller
superpixels [2].

The provided MATLAB code has a function that breaks large
images into smaller pieces, calculates the contours, and then
stitches the pieces back together. Even so, this was intractable
for my images. After I parallelized this code, UCM took 9.66
minutes per image on an Nvidia DIGITS machine with 64GB
of RAM.

III.SUPERPIXEL FEATURES

After vectorizing all matrix accesses, saving maps from
superpixels to pixels, and saving maps from superpixels to
labels, creating the features for superpixels at k = 0.001 took
20 seconds to run on a 2.5 GHz Macbook Pro with 16 GB of
RAM.

A. Computer Vision (CV) Features
I used the scikit-image library to get three categories of CV
features. First, I took the average RGB values of the pixels
within the superpixel. Second, I computed the binned greyscale
histogram, with each bin being one feature that counts the
number of pixels within that intensity range. I hoped this could
help capture fine differences, such as shadows in between
roads and buildings. Finally, I computed the Harris corner
density. Harris corners are found by calculating gradients. If
two gradients meet orthogonally, then the point is likely a
corner [5]. I tweaked two parameters: the σ for the Gaussian
filter first applied to the image, and the minDistance between
corners. Both serve to avoid classifying noise as corners. The
eventual choice was selected after visually inspection showed
that it appeared to be catching building corners.

B. Parent Superpixel Features
Because UCM is hierarchical, superpixels at k = 0.1 will
be divided into a set of smaller superpixels at k = 0.001.
My models were ran on the small k = 0.001 superpixels.

2

(a) Satellite Image

(b) UCM segmentation

Fig. 1. Sample satellite image and its UCM superpixel segmentation at
threshold k=0.5. Note: other images are less urban.

I first computed the size of the parent superpixel (number
of pixels), with the intuition that larger, open areas such as
a body of water should have a larger size than a road or
building. Next, I computed the density of the parent (number
of child superpixels), with the idea that parents that contain
many buildings would have the highest density.

IV.LABELING SUPERPIXELS

The ground truth labels are at the pixel level, but my
models would be trained and tested at the superpixel level.
As many superpixels were composed of pixels from different
classes, I tried several different labeling methods to address
this ambiguity. I refer to these superpixels as ambiguous
superpixels. Note that the Unanmioius and Min-Ratio methods
do not label every superpixel.

1) Unanimous: The model was trained and tested only
on superpixels in which all pixels have the same label. The
superpixel received the same label.

2) Min-Ratio-n: The model was trained and tested only on
superpixels in which at least n% of the pixels shared the same
label. The superpixel received this label.

3) Majority: All superpixels would be labeled, with each
receiving the label that the majority of its pixels had.

4) Confidence-n: Each road, building, and other was split
into 3 classes, for a total of 9 classes. For instance, superpixels
in which all pixels were Roads would be class 0. Superpixels
in which at least n% (but not all) of the pixels were Roads
would be class 1. Superpixels in which the majority of pixels
were Roads would be class 2.

V. MODELS ON SUPERPIXELS

The SVM we coded for HW2 used the CVXOPT quadratic
programming solver. This is only tractable for smaller datasets
in which the kernel matrix can stored in memory. Thus, I
implemented the SMO algorithm and tested on the HW2
datasets. While its run-time of Ω(n2d) is faster than QP
(inversion of the kernel matrix is O(n3)), where n is the number
of training points and d is the dimensionality of the points, it
was still intractable for my large dataset. Therefore, I finally
used the scikit-learn library of linear classifiers that are solved
using stochastic gradient descent (SGD). As SGD was used, I
made sure to use feature scaling.

A. Support Vector Machines (SVM)
1) Sequential Minimal Optimization (SMO)
SMO is a coordinate descent approach for optimizing the

dual form of the SVM [9]. Recall that the dual formulation of
Hard SVM is as follows:

maxα

m∑
i=1

αi −
1

2

m∑
i,j=1

y(i)y(j)αiαj〈x(i)y((i)〉

s.t. 0 ≤ αi ≤ C, i = 1, ...,m
m∑
i=1

αiy
(i) = 0

(1)

At each iteration of SMO, we select two α’s and test if the
KTT conditions are satisfied.

αi = 0⇒ y(i)(wTx(i) + b) ≥ 1

αi = C ⇒ y(i)(wTx(i) + b) ≤ 1

0 ≤ αi ≤ C ⇒ y(i)(wTx(i) + b) = 1

(2)

We cannot optimize one α at a time; from the last constraint
in (1), holding all other α’s constant determines the last α.
Therefore, we instead optimize two α’s at a time.

α1y
(1) + α2y

(2) = −
m∑
i=3

αiy
(i) = ζ (3)

Our problem now becomes a two variable optimization
problem. By using (3) to write α1 as a function of α2, we
can plug the value back in to get a problem quadratic in α2.
Then we can take the derivative and set to zero. The update
steps for α are given by the following equation (update step
for b omitted for brevity’s sake):

αj := αj −
y(j)(Ei − Ej)

η

where Ek = (wT (x(k)) + b)− y(k)

η = 2〈x(i), x(j)〉 − 〈x(i), x(i)〉 − 〈x(j), x(j)〉

(4)

Note that because α1 and α2 must lie in the box [0,C] x
[0,C] and the relationship between the two is linear, there is
a further constraint that L ≤ α2 ≤ H . We use L and H to
clip the optimized values of α2 if it lies outside the bounds.
Some geometric intuition and algebraic manipulation give the
following values for L and H:

If y(i) 6= y(j), L = max(0, αj − αi), H = min(C,C + αj − αi)
If y(i) = y(j), L = max(0, αi + αj − C), H = min(C,αi + αj)

(5)
I implemented a modified version of SMO that terminates

when k iterations pass without any α’s being updated. This
means we are no longer guaranteed to find the optimal solution

3

[9]. In my tests, however, results were comparable to the
QP-solver method.

2) Stochastic Gradient Descent (SGD)
SVM’s are commonly solved in the dual form, in which

the reformulation frames the objective function as a sum of
inner products between training examples. These inner products
can then be computed as kernels that implicitly map points to
a higher-dimensional feature space, in which the points then
become linearly separable. However, because we use a linear
kernel, we can use SGD to optimize the primal form objective.
The primal form (with L2 regularization) is as follows:

Rhinge(w) =
1

N

N∑
i=1

max
(
0, 1− y(i)wTφ(xi)

)
+
λ

2
||w||2

(6)
3) Multiclass SVM
Unlike logistic regression, SVM’s do not naturally generalize

to multi-class. Under the one-vs-rest approach, K SVM’s are
trained (one per class). In the one-versus-one approach, K(K-
1)/2 different binary SVM’s are trained (one for each pair); the
points are then classified by counting the number of ’votes’
across all classifiers. However, note that in both cases, a point
may be assigned multiple labels. Following empirical results
of different normalization methods found in [10], the scikit-
learn implementation of the SGD classifiers uses one-versus-
rest with simple normalization, in which the probabilities are
simply normalized to sum to one.

B. Logistic Regression (LR)
For a feature vector φ, binary LR is given by:

p(C1|φ) = σ(wTφ) =
1

1 + e−wTφ
(7)

This generalizes to multi-class through the soft-max func-
tion:

p(Ck|φ) = σ(wTφ) =
exp(wTk φ)∑

j w
T
j φ

(8)

By formulating LR as (6) but with log loss instead of hinge
loss, LR can also be solved using SGD.

C. Weighted Classes
In SGD, classes can be weighted by treating the weight as a
multiplier for the update step. In the dual SVM, class weights
correspond to the penalty C’s. If we have two separate groups
of points, and we care twice as much about classifying group
one correctly, then we can simply penalize errors for group
one twice as much. The Soft SVM thus becomes (with the
appropriate slack constraints not shown):

minw,ζ,ξ
1

2
||w||2 + 2C

N∑
i=1

ζi + C

M∑
j=1

ξj (9)

Alternatively, we can just duplicate the points in the first group.
In the context of weighted classes, the groups are simply the
classes. Ultimately, using different weights didn’t improve the
results much. I ended up using scikit-learn’s balanced weight
for my models, in which the weight is inversely proportional
to the number of occurrences of the class.

VI.SEMI-SUPERVISED LEARNING AND LABEL
REFINEMENT

Semi-supervised learning (SSL) utilizes both labeled and
unlabeled data to train a model. In order for SSL to work, one

of the three following assumptions must hold. The smoothness
assumption states that points close to each other should have
similar labels. The cluster assumption expands on the previous
by stating that points form clusters, and points within the
same cluster tend to have the same label. Finally, the manifold
assumption states that the data lies on a lower-dimensional
manifold [3].

Learning algorithms can be split into transductive and induc-
tive methods. In transduction, we try only to predict the labels
y for unknown x’s. In induction, however, we try to learn the
general rule that maps X to Y [3]. Label propagation (LP) is
one example of a transductive method. In LP, a neighborhood
graph of points is created, and unlabeled points inherit their
neighbors’ label. Label refinement follows the same approach
as LP, except all the points have preliminary labels.

A. Label Refinement Formulation
Weights between neighbors are given as Wij =

exp(− ||fi−fj ||
2

2τ2), in which fi is the feature vector for
point i. For preliminary labels Y and final labels X , the
objective function is given by:

C(X) =

N∑
i,j=1

Wij

∣∣∣∣∣ Xi√
Dii

− Xj√
Dii

∣∣∣∣∣
2

+

N∑
i=1

λ|Xi − Yi|2

where Dii =

N∑
j=1

Wij .

(10)

Weights are large if two points have very different features. As
the X’s are divided by a function of the weight, differences in
final labels will not incur a great cost. This makes sense as the
difference in feature space suggests that they do in fact belong
to different classes. We can also see λ controls a regularization
term.

B. Solving the Objective Function
The analytic solution is given by [8]:

X = α

(
I −

(
1− λ

1 + λ

)
S

)−1
Y (11)

where S = D−1/2WD−1/2, and α = λ
1+λ . In practice, I solved

it using both the analytic method (if the number of points was
small enough) and SGD. Label refinement at the pixel level
would require a 15002 x 15002 matrix. Thus, for larger sets, I
did refinement block by block on the neighborhood graph.

VII.EVALUATION

A. Superpixel and Pixel Level Classification using Superpixel
Model

1) Grid Search
The data was split into training, validation, and test sets.

The best model was found through grid search by training
on the training set and finding the lowest error rate on the
validation set. I grid searched over L1, L2, and Elastic Net for
regularization method, and 10−6 to 10−1 on a log scale for
λ. The grid search results for best parameters for a SVM are
found in Table I. LR has only minor differences in the λ for
Min-Ratio and Majority labeling schemes.

There are a few points of interest. First, Elastic Net was
selected for Majority labeling. Elastic Net is a weighted sum
of L1 and L2: α ∗ L1 + (1 − α) ∗ L2. I used 0.15 for α.
Geometrically, the contour of Elastic Net lies within the square
contour of L1 and the circle contour of L2. Elastic net is usually

4

compared to L1 in terms of its sparsity enforcement and tends
to do well when features are correlated. Unlike L1, which will
pick only one out of a group of similar features, Elastic Net
will select the whole group [11]. This makes sense for the
Majority labeling, as there is a large number of ambiguous
superpixels. Because ambiguous superpixels may be labeled
as Road, Building, or Other, this means the three classes are
likely to have an overlap of similar features. I believe these
overlapping features are the groups of correlated features.

Next, I believe that a relatively large value of 0.1 for λ
is selected for Confidence-75 because there are not enough
examples for each of the 9 classes. As such, the model tends
to overfit for the clases with few examples, and thus requires
greater regularization. Along the same lines, examples in the
classes with few examples may be clearly defined by just one or
two features. This would explain the L1 regularization method,
which enforces sparsity. This could perhaps by alleviated by
adjusting n to distribute the examples more evenly.

Superpixel Training Data Labeling Method Regularization λ
Unanimous L2 0.001

Min-Ratio-75 L2 0.0001
Majority Elastic Net 0.0001

Confidence-75 L1 0.1
TABLE I. GRIDSEARCH RESULTS FOR SUPERPIXEL CLASSIFICATION

2) Overall Results
Figure 2 illustrates how inaccurate the final pixel-level

predictions are. Pixel level predictions are obtained by simply
propagating down the superpixel level predictions. While the
distribution of buildings are roughly in the correct area, the
buildings are clearly misshapen and sparse. Moreover, all the
roads are missing.

Figure 3 plots the accuracy at the superpixel level. We see
how accuracy decreases as the uncertainty in the superpixel
training label increases. For instance, the accuracy for
unanimous is high, as to be expected, because the model
is trained and tested only on superpixels in which all its
pixels’ labels agree. The superpixels are thus well-described.
Unfortunately, the conditions for Unanimous and Min-Ratio
mean that not all superpixels will be labeled. Furthermore,
the vast majority of the unlabeled superpixels contain the
Roads and Buildings, so we cannot perform label propagation.
As such, we have to turn to either Majority labeling or
Confidence. Majority labeling is at the other end of the
spectrum of uncertainty in the superpixel training label. It
is not surprising that superpixels composed of a wide mix
of Road, Building, and Other will be hard to classify. This
points at the reason for the poor final result shown in figure
2. There are too many ambigious superpixels composed of
a mix of differently labeled pixels. This is especially true
for superpixels around Roads and Buildings, in which the
image is noisier and harder to segment. As a final note, I
believe Confidence-75 is especially low because there are
not enough examples of each class to capture the feature space.

3) Precision and Recall
Precision is defined as the accuracy of the predicted positive

points. Recall is defined as the percent of positive points
that were correctly predicted as positive. As suggested by
the result in Figure 2, recall is near 0 for Roads, low for
Buildings, and high for Other. Precision is around 20% for
Roads (when there are even any predicted Roads), and 70-80%
for Buildings and Other. Precision-recall curves are created by
varying the decision threshold. As we would like to have both

(a) Ground Truth (b) Prediction

Fig. 2. Ground truth and example of poor test results.

Fig. 3. Accuracy on test set at the superpixel level. Pink = LR, Red = SVM.
From left to right on the x-axis, Unanimous labeling (∼94%), Min-Ratio-
75 labeling (∼88%), Majority labeling (∼80%), and Confidence-75 labeling
(∼58%).

high precision and high recall, a large area under the curve
(AUC) is a measure of good classifier performance.

Figure 4 shows the varying precision recall curves for
each class when trained and tested using logistic regression
with the majority labeling scheme. As we can see, Other has
relatively high AUC, while Road has abysmally low AUC.
There are two reasons for this. First, Figure 5 shows how few
Road points there are. Confusion matrices identify common
mistakes in classification by plotting predicted labels against
ground truth labels, and we can see that the majority of the
points are Other. As mentioned in section 5.C, I tried to guard
against this using weighted classes with little luck. Second,
as suggested by Figure 3, there are too many ambiguous
superpixels. Most of these superpixels contain a large number
of Roads and Buildings pixels. These pixels are in inherently
noisier regions of the image, and the UCM technique cannot
accurately segment them.

4) Feature Weights
Examination of the feature weights reveals that in general,

RGB values were usually among the most important features
of the superpixel. The parent size and density were sometimes
relevant, and corner density failed to be relevant for Buildings.

Also, as models under Confidence-75 were grid searched
to use L1 regularization, the resulting weights are extremely
sparse. Under Majority labeling, which uses Elastic Net, only
a few features have non-zero weights. Finally, Min-Ratio and
Unanimous, which use L2, have smoother distributions across

5

Fig. 4. Precision-Recall Curves for Different Classes: Logistic Regression
with Majority Labeling Scheme. Red = Road (AUC = 0.16), Green = Building
(AUC = 0.56), Blue = Other (AUC = 0.87).

Fig. 5. Confusion Matrix: Logistic Regression with Majority Labeling
Scheme. X-axis = Ground Truth. From left to right: Road, Building, Other.
Y-axis: Predictions. From top to bottom: Road, Building, Other.

the weights. Relevant figures can be found in the supplementary
materials.

Next, in figure 6, we find that fewer features in SVM are
selected than in LR. When running SGD on the linear SVM
objective, model parameters are only updated if an example
violates the margin constraints. Even when L2 regularization
is used, this margin update fact can result in sparser models.

(a) LR (b) SVM

Fig. 6. Feature Importance for Roads with Unanimous Labeling of Superpix-
els: LR vs. SVM. Y-axis = Magnitude of weight, X-axis = Features. Features
from left to right are Binned Intensity (51 features), Corner Density (1), Parent
Superpixel Size (1), Parent Superpixel Density (1), average RGB (3).

B. Label Refinement using Label Propagation
Because the preliminary labels from the models are so poor,
there is little hope for label refinement. To illustrate that my
implementation works, Figure 7 demonstrates label refinement
at the superpixel level with k = 0.1 (∼ 1000 superpixels). In

image a), superpixels are labeled according to the Majority
labeling scheme, and the labels are then propagated down to
the pixel level. Image b) shows how the green Building labels
are propagated when τ = 1 and λ = 0.1. Comparing image c) to
image b) demonstrates how increasing τ decreases the amount
of propagation. A larger τ equals a smaller value inside the
negative exponent in the weight calculation. This means the
weights are smaller, which means that labels are less likely
to propagate. Comparing image d) to image b) demonstrates
how increasing λ decreases the amount of propagation. From
the objective function, we can see that a larger λ makes it
imperative that the difference between X (the assigned labels)
and Y (the preliminary labels) is small. Essentially, there is
large regularization, and propagation is unlikely.

(a) Majority Labeling of Superpix-
els

(b) Baseline Refinement: τ = 1, λ
= 0.1

(c) Refinement (Effect of τ): τ =
1000, λ = 0.1

(d) Refinement (Effect of λ): τ =
1, λ = 0.5

Fig. 7. Label Refinement on Superpixel Level: Effects of λ and τ .

VIII.CONCLUSION

Ultimately, this pipeline produced poor road and building
classification. The superpixels segmentation isn’t quite good
enough, as there are too many ambiguous superpixels that
contain pixels of different classes. Further dividing these su-
perpixels using UCM is not an option - empirical results on
further lowering the threshold k below 0.001 did not generate
more superpixels. There is a natural limit at which UCM will
not further subdivide. The success obtained by Sethi et. al was
predicated on their end goal being classification of superpixels,
with the ground truth also being provided at the superpixel level
[8].

There are still several ways to extend this approach to
address the ambiguous superpixels. First, we could try further
dividing them. Next, we could use different superpixel segmen-
tation techniques. A popular alternative is SLIC, which uses a
k-means based technique to create evenly-spaced superpixels
across the image [1]. However, it seems unlikely that this
can improve upon the state of the art UCM, which captures
global information. In addition, we could also try using fuzzy
SVMs, in which class membership is probabilistic instead of
absolute [6]. Along the same lines, we could try multi-label
classification instead of multi-class classification.

Finally, perhaps the evidence shows that this is not a hopeful
approach. We may have to return to CNN’s and see if we can
train them in a semi-supervised fashion.

6

REFERENCES

[1] Achanta, Radhakrishna, et al. ”SLIC superpixels compared to state-of-
the-art superpixel methods.” Pattern Analysis and Machine Intelligence,
IEEE Transactions on 34.11 (2012): 2274-2282.

[2] Arbelaez, Pablo, et al. ”Contour detection and hierarchical image segmen-
tation.” Pattern Analysis and Machine Intelligence, IEEE Transactions on
33.5 (2011): 898-916.

[3] Chapelle, Olivier; Schlkopf, Bernhard; Zien, Alexander (2006). Semi-
supervised learning. Cambridge, Mass.: MIT Press.

[4] Farabet, Clement, et al. ”Learning hierarchical features for scene label-
ing.” Pattern Analysis and Machine Intelligence, IEEE Transactions on
35.8 (2013): 1915-1929.

[5] Harris, Chris, and Mike Stephens. ”A combined corner and edge detector.”
Alvey vision conference. Vol. 15. 1988.

[6] Lin, Chun-Fu, and Sheng-De Wang. ”Fuzzy support vector machines.”
Neural Networks, IEEE Transactions on 13.2 (2002): 464-471.

[7] Mnih, Volodymyr, and Geoffrey E. Hinton. ”Learning to detect roads
in high-resolution aerial images.” Computer VisionECCV 2010. Springer
Berlin Heidelberg, 2010. 210-223.

[8] Sethi, Manu, et al. ”Scalable Machine Learning Approaches for Neigh-
borhood Classification Using Very High Resolution Remote Sensing Im-
agery.” Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2015.

[9] Platt, John. ”Fast training of support vector machines using sequential
minimal optimization.” Advances in kernel methodssupport vector learn-
ing 3 (1999).

[10] Zadrozny, Bianca, and Charles Elkan. ”Transforming classifier scores
into accurate multiclass probability estimates.” Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2002.

[11] Zou, Hui, and Trevor Hastie. ”Regularization and variable selection
via the elastic net.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67.2 (2005): 301-320.

1

Supplemental Materials

I. MAJORITY LABELING: AS GOOD AS IT GETS.
These plots demonstrate what pixel-level results could be achieved if the superpixel classifier achieved 100% accuracy. The

right-hand plots are created by assigning each superpixel its Majority labeling.
In figure S1, we see that the best possible result is decent. In figure S2, however, we see just how poor even 100% accuracy

can be. In short, the best possible results with Majority labeling are sometimes nowhere close to reality. This is especially true
for images with dense roads and buildings.

(a) Ground Truth (b) Best Possible - Majority Labeling

Fig. S1. Ground truth and example of best possible results using Majority labeling scheme for superpixels.

(a) Ground Truth (b) Best Possible - Majority Labeling

Fig. S2. Ground truth and example of best possible results using Majority labeling scheme for superpixels.

II. FEATURE WEIGHTS

A. Separablility of Roads in Feature Space under Majority vs. Unanimous Labeling
Figure S3 shows how under Unanimous labeling, Roads can be differentiated from Buildings and Other. Note the importance of
the low-end intensity features. This makes sense as roads are a light gray in contrast to the darker blues, browns, and greens
found in the rest of the satellite images. Under Majority labeling, however, this separability vanishes. This again reinforces the
problem that ambiguous superpixels create.

B. Sparsity under different labeling schemes
Please refer to figure S4. As models under Confidence-75 were grid searched to use L1 regularization, the resulting weights are
extremely sparse. Under Majority, which uses Elastic Net, only a few features have non-zero weights. Finally, Min-Ratio and
Unanimous, which use L2, have even more features with non-zero weights.

2

(a) Road, Unanimous (b) Building, Unanimous (c) Other, Unanimous

(d) Road, Majority (e) Building, Majority (f) Other, Majority

Fig. S3. Feature importance under different labeling schemes

(a) Confidence-75 (b) Majority (c) Min-Ratio-75 (d) Unanimous

Fig. S4. Feature importances and sparsity under different labeling schemes

