

Issues of Autonomous Character Design
(The Truth About Catz and Dogz)

From the proceedings of the 1997 Computer Games Developer Conference,
Santa Clara, CA

By Ben Resner, Adam Frank, Andrew Stern.
benres @aol.com

What is an Autonomous Character?

Traditional computer games have centered around characters for years. But
these are not autonomous characters, they're merely puppets controlled by the
user. The dexterity of the game's character is directly proportional to the dexterity
of the user. For example, the faster someone can hit the fire button, the more
rounds of ammo the character can fire off.

An autonomous character is not directly controlled by the user. This should not
imply they are independent of the user, for their behavior is strongly influenced
by what the user does. The user and the character form a relationship, where
each one learns from the other.

In traditional games, the user is represented in the game world as the character,
either by an image of the character, or the character's point of view. With an
autonomous characters, the user is represented as the user himself, usually via
the arrow cursor or some other independent interface element.

This distinction is central to the design of the Petz products, starting with Dogz,
then Catz, and most recently Oddballz. For example, in Catz and Oddballz, the
pet has the same access to the supply shelf as the user. This reinforces the
relationship between the user and the pet. The toys and other objects in the Petz
playpen are for both the user and the pet. The user does not have special access
to items in the Pet's world.

Disney, not Minsky

For a computer pet or other autonomous character to be believable it must show
personality. To that end, we've focused on Artificial Personality (AP), rather than
Artificial Intelligence (AI). AI is clearly superior at solving actual problems, such
as learning mazes, recognizing faces, or sorting items according to color, size, or
some other constraint. But AI rarely looks to the user like intelligence. Users
make judgments of intelligence based on how the pet acts, not on the final
outcome of their actions. For example, a dog that struggles to figure out how to
open a cabinet but ultimately fails is much more appealing to a user than a dog

that figures out the system immediately. While the latter dog has a superior AI
engine, and is more "intelligent", the former will have much more warmth.

To this end, Petz design have been much more influenced by Disney than by
Minsky. Timing is the central element of comedy, and it's no different for
autonomous lifelike characters. AI focuses on the result, neglecting timing and
performance. AP tools center around the ability to tightly control timing. Many
variations and alternate scripts for the same goal are included in the Pet to avoid
any one "solution" becoming stale. It's more important for the pet to look
intelligent than to actually be intelligent.

Storytelling

One of the most powerful aspects of the user-pet relationship is the user's ability
to tell stories about the Pet. We receive lots of mail from customers where they
narrate experiences with their pet far beyond what any AP or AI engine could
ever hope for. These are stories full of complex and sophisticated relationships
developed over long periods of time that are simply not part of the shipping code.

Users tell these stories because the pet looks like a pet and acts like a pet. Petz
development has been shameless about taking advantage of this. Just as
children will tell stories about their stuffed animals as if they were real, adults will
tell stories about their computer pet, as if it was real. The only difference between
adults and children is adults need to be tricked into telling their story.

A fun "party trick" is to ask someone to make up a story. Children have no
problem with this kind of make-believe, and start talking immediately. Most
adults, however, will stammer, saying: "Oh, I don't think so, I can't tell stories".
The reluctant adult is then told: "OK, I'm thinking of a story. Why don't you ask
me yes or no questions about the story I'm thinking of". Provided the person is
still game, questions usually flow freely. "Does it have a happy ending?" "Is it
about a baby?", or "is it about someone at the Computer Games Developer
Conference?".

Questions are answered according to a very simple algorithm. If the question
ends in a consonant, answer "yes". If it ends in a vowel, answer "no", and if it
ends in a "y", say "maybe". If there are too many "no's" in a row, answer "yes".
This avoids negativity, which is discouraging.

The adult has essentially been tricked into telling a story. Never mind that it's
being told as a series of questions, the adult generating a narration totally on his
own. But before this could happen, the adult had to be convinced it wasn't their
story, thus removing all risk of embarrassment.

With autonomous Petz, this "risk of storytelling" is similarly removed. Adults feel
silly telling stories about stuffed animals because they've been taught they should

know better. But the vast majority of adults is unaware of the limits of artificial life
on an average desktop computer, and will accept a behavior engine far more
powerful than what an average desktop computer can support. They don't feel
childish narrating complex stories about their pets because they're convinced the
pet is the origin of the story, and not their own mind. We focus on creating the
illusion of desktop life.

Creating a pet which allows this flexibility is a lot of work. A pet with too much
random behavior will appear disconnected. Alternatively, too little randomness
creates a robotic and repetitive pet. Tuning the personality between these two
extremes is a large part of the art of realistic personality development. We use
what we call "constrained randomness" to find this balance.

One of the design goals of Petz was to never penalize the user for doing
something wrong. During product development, when we would watch users
using the Pet, we're often tempted to say: "Don't do that" or "You're doing that
wrong". This wasn't a shortcoming of the user, it's a shortcoming of the product.
The issue isn't how to educate the user, but how to design the pet so that the
user's offending action will have some effect on the pet. Every interaction should
increase the user's ability to tell a story about the pet.

For example, petting is an excellent means for user to bond with the pet. Our first
few attempts at petting were awkward, and it was difficult to for users to get the
pet to respond. Instead of attempting to educate the user about how to pet a
computer pet, we had to continually tweak the petting algorithm to allow for all
kinds of users to have successful petting interactions. Often this meant reducing
the sensitivity of petting in order for it to work with a wider audience.

We're in Show Biz

Computer Petz is about putting on a show with high entertainment value. Just as
writers often remark their characters have taken on a life of their own, the same
must happen with computer Petz. Computer Petz must have distinct
personalities, recognizable from each other.

Before actual coding for a pet is started, a personality worksheet is generated.
This drives all subsequent design decisions ? ? how does the pet walk, how
does the pet respond to danger, and so on. Instead of "making it up as we go
along", we have a fixed reference to guide all decisions points. This makes sure
the pet has a consistent personality towards all objects in its world.

Direct Interaction -- Rendered vs. Cell Drawn

A key component of autonomous characters is direct interaction. Users need to
feel as if they're actually touching a real pet.

To this end, autonomous characters must be able to transition from any state to
any other state in a very short amount of time. When the user double-clicks to
gain the Pet's attention, the response must be immediate. If the engine takes a
few frames to respond, the effect is lost.

For this reason, Petz uses a real-time rendering engine rather than cell-drawn
animation. While cell-drawn animation usually looks much better on a frame-by-
frame basis, and is much easier to control, it has very limited variation, and rapid
transitions are difficult.
By using real 3D animations, the pet can be viewed from any angle. We also use
layering to combine two animations into one. For example, this allows the pet to
walk while turning it's head to keep its gaze fixed to a moving object. Additionally,
we use motion scaling and tweening further modify animation data. We also have
control over eyelid height and eyelid tilt, extremely powerful tools for
communicating the pet's emotional state to the user.

All these programmatic animation effects create a very lifelike pet. The user can
play with the pet for an hour, and never see the exact same animation frame
twice. Users are very keen to repetition, and once they see the same animation
too many times, the pet ceases to be alive, and simply become a robot.

Direct interaction allows the user to actually feel like they've reached into the
computer, and are touching a living animal. For many people, the computer pet
idea doesn't "click" into place until they have a chance to grab or stroke the pet
themselves. They'll watch a demo with a smile, but never actually laugh until they
get to grab or stroke the pet themselves.

"Home-Grown" Versus "Off The Shelf"

Critical to the bonding between user and autonomous character is uniqueness.
Much effort has gone into making each pet slightly different from each other.
Users can color their pet, and teach them tricks. By lavishing or withholding
attention or food, the user can change the pet's personality. Every user must be
made to feel their pet is unique and special. If my friend and I adopt a pet of the
same breed on the same day, after two weeks of playing, the pets will be
noticeably different.

A key to this bonding is the adoption process. The user carefully selects their pet,
which starts life as a puppy or kitten, and grows into an adult over the next few
weeks. We use the real-time render effects described above to show the pet in
any stage of maturity, from newborn to adult. Most people are naturally drawn to
animals with big eyes and big paws, and we've found it's no different with
computer Petz.

The user doesn't get a fully realized cartoon character with a predetermined
name, and hardwired quirks. The user only gets a personality template. The user

is responsible for naming the pet, and developing the idiosyncrasies that is one
of the hallmarks of pet ownership.

With an interactive Bugs Bunny, for example, users would not expect to alter
Bug's personality much, or see him grow and change over time. Bugs comes with
established personality traits, and most users would not try and go outside these
bounds. This may increase play-value in the short term because there's very little
learning curve. But it's difficult to form a relationship with an inelastic personality.

With generic pets and pet breeds, the limits are much looser. People come into
Petz with strong expectations of how a cat or dog acts, and even how different
breeds act, but not much more. People expect to be able to influence the
personality of their puppies and kittens.

One of the reasons we chose to do Dogz and Catz first is because of the
expectations users bring to the product. When the user sees a ball and a dog, it's
pretty clear what to do.

Death & Responsibility

Perhaps the largest design issue with autonomous characters is death. Should
autonomous characters die? To many, a character can never be alive unless the
user knows it will eventually die. Immortality cheapens the experience by not
making the time precious.

After many debates we decided against death. While we're trying to create a
realistic software pet, we're still software. Early focus tests and product feedback
has made it very clear most users will be scared away by responsibility towards
the pet, or the knowledge the pet will eventually die and cause them grief. While
a bond does form between the user and the pet, the majority of the experience is
still about fun and entertainment, and not responsibility.

Most people are aware that ill-behaved hyper puppies that gnaw furniture and
mess up the floor, with proper training, will eventually turn into loyal and well-
behaved companions. Imagine installing a piece of software that did similar
things to your computer -- slowed performance, mangled or deleted files, and
caused crashes. How long would it be before this software was deleted from the
computer? It's way premature to expect people to tolerate the downside of a
hyper-realistic computer pet in order to get to the reward.

As the power of computer pets grows, this will change. People will come to
expect more, and thus be willing to work harder to get there. And this hard work
on the part of the user will become a powerful tool for bonding with the pet.

