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Abstract

Cooperative diversity has been recently shown to provide dramatic gains in slow fading wireless environments.

However most of the proposed solutions require distributed space-time protocols, many of which are infeasible

if there is more than one cooperative relay. We propose a novel scheme, ”opportunistic relaying” that alleviates

these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first

selects the best relay from a set ofM available relays and then uses this ”best” relay for cooperation between the

source and the destination. We develop and analyze a distributed method to select the best relay based on the local

measurements of the channel conditions by the relays. This method also requires no explicit communication among

the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel,

and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information

theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff

as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is

required, such as those proposed in [8]. The simplicity of the technique, allows for immediate implementation in

existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future

4G wireless systems.

I. I NTRODUCTION

In this work, we propose and analyzeOpportunistic Relaying, which is a novel method to select the

”best” end-to-end path between a source and destination of wireless information. The setup includes a

set of cooperating relays which are willing to forward received information towards the destination and

opportunistic relaying is about a distributed algorithm that selects the most appropriate relay to forward

information towards the receiver. The decision is based on the end-to-end instantaneous wireless channel

conditions and the algorithm is distributed among the cooperating wireless terminals.



The best relay selection algorithm lends itself naturally into cooperative diversity protocols, which

have been recently proposed to improve reliability in wireless communication systems using distributed

virtual antennas. The key idea behind these protocols is to create additional paths between the source

and destination terminals using intermediate relay nodes. Reliable communication between the source

and destination is possible ifany one of the paths is strong enough. Several cooperative protocols were

proposed in [7] and their performance was measured in terms of the diversity-multiplexing tradeoff [12].

Their basic setup included one sender, one receiver and one intermediate relay node and both analog as

well as digital processing at the relay node were considered. Subsequently the case when there are several

intermediate relay nodes was considered in [1], [8] and it was shown that the diversity gains achieved are

on the order of the number of relay nodes in the network.

Unfortunately, these protocols require the implementation of distributed space time codes across the

relay nodes and this is practically not feasible: while well known space time codes such as the Alamouti

scheme, can be implemented in the single relay case, to the best of our knowledge, the current state of art

in space time codes is far from developing practical schemes when there is more than one intermediate

relay 1. Apart from practical space-time coding, the formation of virtual antenna arrays using individual

terminals distributed in space, requires significant amount of coordination, which is still an open research

problem. Specifically, the formation of cooperating groups of terminals involves distributed algorithms

[8] while synchronization at the packet level is required among several different transmitters. Those

additional requirements for cooperative diversity demand significant modifications to almost all layers

of the communication stack (up to the routing layer) which has been built according to ”traditional”,

point-to-point (non-cooperative) communication.

In such distributed settings, opportunistic relaying algorithm provides a practical alternative to select

simply the best available relay between the source and the destination rather than involving all available

relays and then using the well known space time protocols used in the single relay case. Additionally, the

algorithm itself provides for the necessary coordination in time and group formation among the cooperating

terminals.

A natural question to consider is how much performance loss is incurred through this practically appeal-

ing alternative as compared to the more complicated protocols. In this work we study this performance loss.

Surprisingly we observe that in terms of the diversity multiplexing tradeoff, there is no performance loss

1At least we are not aware of generalizations of Alamouti scheme that achieve the entire diversity multiplexing tradeoff curve.
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Fig. 1. A transmission is overheard by neighboring nodes. Practical cooperative diversity schemes should address which nodes are beneficial

to relay information to the receiver. Distributed Space-Time coding is needed so that all overhearing nodes could simultaneously transmit.

In this work we analyze ”Opportunistic Relaying” where the relay with the strongest transmitter-relay-receiver channel is selected, among

several candidates, in a distributed fashion.

compared to more complicated protocols, such as that proposed in [8]. Intuitively, the gains in cooperative

diversity do not come from using complex schemes, but rather from the fact that we have enough relays

in the system to provide sufficient diversity.

In the following sections, we first explain in detail the motivation behind this work. We then describe the

algorithm and present a simple probabilistic analysis that quantifies the success (or failure) of selecting the

most appropriate path. Given the dependence of the selection scheme on the wireless channel conditions,

performance is evaluated according to the statistics of the wireless channel. The analytical solution applies

for any kind of wireless channel distribution and specific examples on Rayleigh and Ricean fading are

given. We continue with the diversity-multiplexing tradeoff analysis of the proposed scheme. We conclude

this work in the last section.

The simplicity of the technique, allows for immediate implementation in existing radio hardware.

An implementation of the scheme using custom radio hardware is reported in [3], [4]. Its adoption

could provide for improved flexibility (since the technique addresses coordination issues), reliability and

efficiency (since the technique inherently builds upon diversity) in future 4G wireless systems.

II. M OTIVATION

Cooperative diversity in its simplest form of a transmitter, single relay and receiver, involves relaying

of information from a neighboring overhearing node rather than having the initial transmitter repeat
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its transmission. The receiver would exploit both direct and relayed transmission over two statistically

independent paths and therefore resistance to fading would improve because of diversity.

In figure 1 a transmitter transmits its information towards the receiver while all the neighboring nodes

are in listening mode. For a practical cooperative diversity in a three-node setup, the transmitter should

know that allowing a relay at location (B) to relay information, would be more efficient than repetition

from the transmitter itself. This is not a trivial task and such event depends on the wireless channel

conditions between transmitter and receiver as well as between transmitter-relay and relay-receiver. What

if the relay is located in position (A)? And how could cooperative diversity scale in practice when larger

number of relays are used?

Current proposals allow for all overhearing nodes to relay simultaneously during the second step of

the scheme (figure 1). Opportunistic relaying needs only two transmissions, one from source and one

from ”best” relay. Therefore, opportunistic relaying simplifies and address cooperative communication

as a Routing problem: how could the best end-to-end path be selected in a distributed and dynamic

way that adapts to the wireless channel conditions? This perspective motivated our work and allowed

the implementation of a demonstration on cooperative diversity, using opportunistic relaying and custom

radio hardware [3], [4].

MIMO theory suggests that selection diversity in a multi-antenna transceiver (i.e. selecting the antenna

with the highest SNR among M antennas) provides for a diversity gain of M, even though one antenna is

used [9]. Therefore, it was natural to explore ”virtual” antenna arrays with the same behavior. Opportunistic

relaying is based on similar ideas and provides for diversity gain equal to the number of cooperating nodes,

even though only two nodes transmit.

III. D ESCRIPTION OFOPPORTUNISTICRELAYING

According to opportunistic relaying, a single relay among a set ofM nodes is selected, depending on

which relay provides for the ”best” end-to-end path between source and destination (figure 1, 2). The

wireless channelasi between source and each relayi, as well as the channelaid between relayi and

destination affect performance. Since communication among all relays should be minimized for reduced

overall overhead, a method based on time was selected: each relay starts a timer from a parameterhi

based on the channel conditionsasi, aid. The timer of the relay with the best end-to-end channel conditions

will expire first. All relays, while waiting for their timer to reduce to zero (i.e. to expire) are in listening

mode. As soon as they hear another relay to forward information (the best relay), they back off.
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Fig. 2. Source transmits to destination and neighboring nodes overhear the communication. The ”best” relay among M candidates is selected

to relay information, via a distributed mechanism and based on instantaneous end-to-end channel conditions.

For the case where all relays can listen source and destination, but they are ”hidden” from each other

(i.e. they can not listen each other), the best relay could notify the destination with a short durationflag

packet and the destination could then notify all relays with a short broadcast message.

All the above assume that all relays start their timers at the same time. Synchronization can be easily

achieved by the exchange of Ready-to-Send (RTS) and Clear-to-Send (CTS) packets between source

and destination. Relays can start their timers as soon as they receive the CTS packet. In that case,

synchronization error on the order of propagation delay differences across all destination-relay pairs should

be taken into account. For the cases where source and destination are not in direct range, they need to

synchronize their RTS/CTS exchange by other means. For example, Network Time Keeping algorithms

in client/server setups, such as those examined in [2] could be employed. Or fully decentralized solutions

for network time keeping could be facilitated, such as those demonstrated in [5].

The RTS/CTS mechanism, existent in most MAC protocols, is also necessary for channel estimation

at the relays: the transmission of RTS from the source allows for the estimation of the wireless channel

asi between source and relayi, at each relayi. Similarly, the transmission of CTS from the destination,

allows for the estimation of the wireless channelaid between relayi and destination, at each relayi,

according to the reciprocity theorem.

The channel estimatesasi, aid at each relay, describe the quality of the wireless path source-relay-

destination, for each relayi. Opportunistic relaying is about selecting the ”best” path amongM possible
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options. Since the two hops are equally important for end-to-end performance, each relay should quantify

its appropriateness as an active relay, using a function that balances the two hops. Two functions are used

in this work. Under policy I, the minimum of the two is selected (equation (1)), while under policy II,

the harmonic mean of the two is used (equation (2)).

Under policy I:

hi = min{|asi|2, |aid|2} (1)

Under policy II:

hi =
2

1
|asi|2 + 1

|aid|2
=

2 |asi|2 |aid|2

|asi|2 + |aid|2
(2)

The relay i that maximizes functionhi is the one with the ”best” end-to-end path between initial

source and final destination (equation (4)). All relays will start their timer with an initial value, inversely

proportional to the end-to-end channel qualityhi, according to the following equation:

Xi =
λ

hi
(3)

λ is a constant that converts units of channel quality|a|2 in units of time. It has units”unit of time” x

”unit of |a|2” . For example, if time is measured inµsecs and |a|2 in units of power, thenλ could have

values inµsec µWatts.

Assuming synchronization among the relays (either from the RTS/CTS exchange between source

and destination or through explicit multi-hop schemes as explained above), all relays start their timer

simultaneously, with different initial values, depending on their channel realizations. The ”best” relay,

is the one with its timer reduced to zero first (since it started from a smaller initial value, according to

equations (5), (3). This is the relayb that will participate in forwarding information. The rest of the relays,

will back off.

hb = max{hi}, ⇐⇒ (4)

Xb = min{Xi}, i ∈ [1..M ]. (5)

In the following section, we quantify the probability any other relay’s timer (apart from the ”best”

relay) expires within a time intervalc, from the instant when the best relay timer expired. In that way,

we are able to calculate the probability this scheme to succeed in selecting the ”best” relay or fail when

two or more relay transmissions collide.
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As can be seen from the above equations, the scheme depends on the instantaneous channel realizations

or equivalently, on received SNRs. Therefore, the best relay selection algorithm should be applied as often

as the wireless channel changes and not as often the source transmits information. That rate of wireless

channel change depends on thecoherence timeof the channel. The advantage of opportunistic relaying

is that it requires no explicit communication among the relays.

In the following section we will calculate the probability of successful relay selection, even at the case

where the relays are hidden from each other.

IV. PROBABILISTIC ANALYSIS OF OPPORTUNISTICRELAYING

The probability of having two or more relay timers expire ”at the same time” is zero. However, the

probability of having two or more relay timers expire within the same time intervalc is non zero and can

be analytically evaluated, given knowledge of the wireless channel statistics.

The only case where opportunistic relay selections fails, is when the relays cannot listen each other

and therefore, one relay can not detect that another relay is more appropriate for information forwarding.

Note that we have already assumed that all relays can listen initial source and destination, otherwise they

do not participate in the scheme. We will assume two extreme cases: a) all relays can listen to each other

b) all relays are hidden from each other (but they can listen source and destination). In the second case,

the best relay sends a flag packet to destination (or source) to notify for its candidacy, as the best relay.

Then the destination (or source) notifies all relay nodes with a short broadcast message.

From figure 3, collision of two or more relays can happen if the best relay timerXb and one or more

other relays expire within[tL, tC ] for case (a), or within[tL, tH ] for case (b). In any case, the collision

probability can be upper bounded by the following expression:

Pr(Collision) ≤ Pr(any Xj < Xb + c | j 6= b) (6)

where Xb = min{Xj}, j ∈ [1,M ] and c > 0.

and

(a) No Hidden Relays:

c = rmax + |vb − vj|max + ds (7)

(b) Hidden Relays:

c = rmax + 2|vb − vj|max + ds + dur (8)
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Fig. 3. The middle raw corresponds to the ”best” relay. Other relays (top or bottom raw) could erroneously be selected as ”best” relays,

if their timer expired within intervals when they can not hear the best relay transmission. That can happen in the interval[tL, tC ] for case

(a) (No Hidden Relays) or[tL, tH ] for case (b) (Hidden Relays).tb, tj are time points where reception of the CTS packet is completed at

best relayb and relayj respectively.

• vj: propagation delay between relayj and destination.

• rmax: maximum propagation delay between two relays.

• ds: receive-to-transmit switch time of each radio.

• dur: duration of flag packet, transmitted by ”best” relay.

The upper bound of (6) and equations (7), (8) can be easily derived taking into account propagation

delays, radio switch time and flag packet duration.

In the following section, we will provide an analytic way to calculate the upper bound of equation (6).

But before doing so, we will easily show that this probability can be made arbitrary small, close to zero.

If Xb = min{Xj}, j ∈ [1,M ] and Y1 < Y2 < . . . < YM the ordered random variables{Xj} with

Xb ≡ Y1, then:

Pr(any Xj < Xb + c | j 6= b) = Pr(Y2 < Y1 + c) (9)

Given thatYj = λ/h(j), Y1 < Y2 < . . . < YM is equivalent to1/h(1) < 1/h(2) < . . . < 1/h(M), equation

(9) is equivalent to

Pr(Y2 < Y1 + c) = Pr(
1

h(2)

<
1

h(1)

+
c

λ
) (10)

andY1 < Y2 < . . . < YM ⇔ h(1) > h(2) . . . > h(M) (h, λ, c are positive numbers).

From the last equation (10), it is obvious that increasingλ at each relay (in equation (3)), reduces the

probability of collision to zero since the upper bound of (10) goes to zero with increasingλ.
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In practice,λ can not be made arbitrarily large, since it also ”regulates” the expected time, needed for

the network to find out the ”best” relay. From equation (3) and Jensen’s inequality we can see that

E[Xj] = E[λ/hj] ≥ λ/E[hj] (11)

or in other words, the expected time needed for each relay to flag its presence, is lower bounded by

λ. Therefore, there is a trade-off between probability of collision and speed of relay selection. We need

to haveλ as big as possible to reduce collision probability and at the same time, as small as possible,

to quickly select the best relay, before the channel changes again (i.e. within the coherence time of the

channel).

In the following section we provide a method to quantify performance for any kind of wireless channel

statistics and any kind of values forc andλ and show that the scheme can perform reasonably well.

A. CalculatingPr(Y2 < Y1 + c)

Theorem 1:The joint probability density function of the minimum and second minimum amongM i.i.d.

positive random variablesX1, X2, . . . , XM , each with probability density functionf(x) and cumulative

distribution functionF (x), is given by the following equation:

fY1,Y2(y1, y2) = M (M − 1) f(y1) f(y2) [1− F (y2)]M−2

0 < y1 < y2,

fY1 Y2(y1, y2) = 0

elsewhere. (12)

whereY1 < Y2 < Y3 . . . < YM are theM ordered random variablesX1, X2, . . . , XM .

Proof:

Please refer to appendix I.

Using Theorem 1, we can prove the following lemma:

Lemma 1:GivenM i.i.d. positive random variablesX1, X2, . . . , XM , each with probability density

function f(x) and cumulative distribution functionF (x), andY1 < Y2 < Y3 . . . < YM the M ordered

random variablesX1, X2, . . . , XM , thenPr( Y2 < Y1 + c), wherec > 0, is given by the following

equations:

Pr(Y2 < Y1 + c) = 1− Ic (13)
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Ic = M (M − 1)

∫ +∞

c

f(y) [1− F (y)]M−2 F (y − c) dy (14)

Proof:

Please refer to appendix I.

B. Results

Using Theorem 1 and Lemma 1 of the previous section, we can quantifyPr(Y2 < Y1 + c), for any

kind of wireless channel statistics. From the above, we have restricted discussion to identically distributed

wireless channel realizations. The results could be extended to the non-identically distributed case, where

geometry is taken into account. We chose to restrict the discussion to the identically distributed case for

simplicity and leave the non-identical (but still independent) case for future work. In the numerical results

below, we have normalizedE[|asi|2] = E[|aid|2] = 1.

In order to exploit theorem 1 and lemma 1, we first need to calculate the probability distribution ofXi

for i ∈ [1,M ]. From equation (3) it is easy to see that the cdfF (x) and pdff(x) of Xi are related to

the respective distributions ofhi according to the following equations:

F (x) ≡ CDFXi(x) = Pr{Xi ≤ x} = 1− CDFhi(
λ

x
) (15)

f(x) ≡ pdfXi(x) =
d

dx
F (x) =

λ

x2
pdfhi(

λ

x
) (16)

After calculating equations (15), (16), and for a givenc calculated from (7) or (8), we can calculate

probability of collision using equation (29).

Before proceeding to special cases, we need to observe that for a given distribution of the wireless

channel, collision performance depends only on the ratioc/λ, as can be seen from equation (10), discussed

earlier.

1) Rayleigh Fading:Assuming|asi|, |ajd| are i.i.d according to Rayleigh distribution, for anyi, j ∈

[1,M ], then |a|2 is distributed according to an exponential distribution, with parameterβ andE[|a|2] =

1/β.

Using the fact that the minimum of two i.i.d. exponentials is again an exponential with doubled

parameter, we can calculate the distributions forhi under policy I (equation 1). For policy II (equation

2), the distributions of the harmonic mean, have been calculated analytically in [6]. Equations (15) and

(16) under the above assumptions, become:
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Fig. 4. Probability of collision for two policies, in Rayleigh Fading, as a function of number of relays (M ). Notice that probability can be

made arbitrarily small with decreased ratioc/λ.

under policy I:

F (x) = e−2 β λ/x (17)

f(x) =
2 β λ

x2
e−2 β λ/x (18)

under policy II:

F (x) =
λ β

x
e−λ β/x K1(

λ β

x
) (19)

f(x) =
λ2

x3
b2 e−λ β/x [K1(

λ β

x
) +K0(

λ β

x
)] (20)

whereKi(x) is modified Bessel function of the second kind and orderi.

In figure 4, equation (29) is calculated for the tho policies. We can see that the collision probability can

be made arbitrarily small, with decreased ratioc/λ. That practically means that the smaller the propagation

delays among relays (or equivalently the smaller the transmission range of the radios) and the faster the

radios used (for smaller duration in time of the flag packet), the better performance. Practically, for

c ≈ 1 µsec, corresponding to 802.11b transmission range, and average time needed for relay selection,

on the order of100 µsecs (or λ ≈ 100µsecs units of hi), the collision probability can drop below 1%.

Another interesting observation is that the two policies (harmonic mean vs minimum of the two wireless

hop channel realizations) provide similar results.
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Fig. 5. Performance in Ricean and Rayleigh fading, for policy II (harmonic mean) andc/λ = 1/100.

2) Ricean Fading:It was interesting to examine the performance of opportunistic relay selection, in

the case of Ricean fading, when there is a dominating path between any two communicating points, in

addition to many reflecting paths and compare it to Rayleigh fading, where there is a large number of

independent paths, without any dominating one.

Keeping the average value of any channel coefficient the same (E[|a|2] = 1) and assuming a single

dominating path and a sum of reflecting paths of equal total (sum) power, we plotted the performance of

the scheme when policy II was used (the harmonic mean). The results for the Ricean case were calculated

using Monte-Carlo simulation. In figure 5, the corresponding case for Rayleigh fading is also plotted,

both calculated from equation (29) and from Monte-Carlo simulation. We can observe that theoretical

calculation of the collision probability from equation (29) coincides with the result of Monte-Carlo

simulation.

We can also see that in the Ricean case, the probability of Collision slightly increases, since now, under

the i.i.d. assumption, the realizations of the wireless paths along different relays are clustered around the

dominating path and vary less. On the contrary, timer expiration at the relays under Rayleigh fading varies

more and therefore the interval between best relay timer and second best relay timer expiration increases.

In both cases, the scheme performs reasonably well.
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V. D IVERSITY-MULTIPLEXING TRADEOFF IN OPPORTUNISTICRELAYING

A. Channel Model

We consider an i.i.d slow Rayleigh fading channel model following [7]. Specifically, we assume that

the transmitting node does not have any channel knowledge, while the receiving node has perfect channel

knowledge. A half duplex constraint is imposed across each relay node, i.e. it cannot transmit and listen

simultaneously. The opportunistic relay scenario assumes known channel gain from relay to destination, at

each relay. However in this section we assume that this channel knowledge is not exploited in subsequent

transmissions from each relay, to compare the performance with prior art. If the discrete time received

signal at the destination and the relay node are denoted byY [n] andY1[n], then

Y [n] = asdX[n] + Z[n], source transmits (21)

Y [n] = ardX1[n] + Z[n], best relay transmits

Y1[n] = asrX[n] + Z1[n] (22)

Here asd, ard, asr are the respective channel gains from the source to destination, relay to destination

and source to relay respectively. There are modelled as i.i.d circularly symmetric complex Gaussian

N (0, 1). The noiseZ[n] andZ1[n] at the destination and relay are both assumed to be i.i.d circularly

symmetric complex GaussianN (0, σ2). X[n] andX1[n] are the transmitted symbols at the transmitter

and relay respectively. We impose a power constraint at both the source and the relay:E[|X[n]|2] ≤ P

andE[|X1[n]|2] ≤ P . For simplicity, we assume that both the source and the relay to have the same

power constraint. We will defineρ
∆
= P/σ2 to be the effective signal to noise ratio (SNR) at the receivers.

Note that this definition does not include the channel gain at the receivers. This setting can easily be

generalized when the SNR at the relay(s) and the destination is not the same.

Under our channel modelling assumption, the channel gains between the source to relay and relay to

destination are independent. We propose the following rule for selecting the best relay, according to Policy

I, outlined in equation 1. We note that this choice is optimal in the sense that it incurs no loss in the

diversity multiplexing tradeoff performance of several protocols we study in the subsequent section.

Rule 1: Among all the available relays, denote the relay with the largest value ofmin{|asr|2, |ard|2}

as the best relay .

We introduce the following notation which is necessary in the subsequent sections of the paper:
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Definition 1: A function f(ρ) is said to be exponentially equal tob, denoted byf(ρ)
.
= ρb, if

lim
ρ→∞

log f(ρ)

log ρ
= b. (23)

We can define the relation
.

≤ in a similar fashion.

Definition 2: The exponential order of a random variableX with a non-negative support is given by,

V = − lim
ρ→∞

logX

log ρ
. (24)

The exponential order greatly simplifies the analysis of outage events while deriving the diversity

multiplexing tradeoff. Some properties of the exponential order are derived in Appendix II, lemma 2.

Definition 3: (Diversity-Multiplexing Tradeoff ) We use the definition given in [1], [12]. Consider a

family of codesCρ operating at SNRρ and having ratesR(ρ) bits per channel use. IfPe(R) is the outage

probability (see [10]) of the channel for rateR, then the multiplexing gainr and diversity orderd are

defined as2

r
∆
= lim

ρ→∞

R(ρ)

log ρ d
∆
= − lim

ρ→∞

logPe(R)

log ρ
(25)

B. Digital Relaying - Decode and Forward Protocol

We will first study the case where the intermediate relays have the ability to decode the received signal,

re-encode and transmit it to the destination. We will study the protocols proposed in [8] and show that

both these protocols can be considerably simplified through the selection relaying algorithm.

The decode and forward algorithm considered in [8] can be briefly summarized as follows. In the

first half time-slots the source transmits and all the relays and receiver nodes listen to this transmission.

Thereafter the relays that are successful in decoding the message, re-encode the message using a distributed

space time protocol and collaboratively transmit it to the destination. The destination decodes the message

at the end of the second time-slot. Note that the source does not transmit in the second half time-slots.

The main result for the decode and forward protocol is given in the following theorem:

Theorem 2 ( [8]): The achievable diversity multiplexing tradeoff for the decode and forward strategy

with N − 1 intermediate relay nodes is given byd(r) = N(1− 2r) for r ∈ (0, 0.5).

The main advantage of opportunistic relaying in the decode and forward strategy is that it simplifies

space-time coding since we can implement a practical space time code, like the Alamouti code across

2We will assume that the block length of the code is large enough, so that the detection error is arbitrarily small and the main error event

is due to outage.
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the source and the selected relay. Alamouti code has a useful property that any standard AWGN code

can be used for space time transmission while preserving the optimality properties [11]. The following

Theorem shows that opportunistic relaying achieves the same diversity-multiplexing tradeoff if the best

relay selected according to rule 1.

Theorem 3:Under opportunistic relaying, the decode and forward protocol withN − 1 intermediate

relays achieves the same diversity multiplexing tradeoff stated in Theorem 2.

Proof: We follow along the lines of [8]. LetE denote the event that the relay is successful in

decoding the message at the end of the first half of transmission andĒ denote the event that the relay is

not successful in decoding the message. EventĒ happens when the mutual information between source

and best relay drops below the code rate. Suppose that we select a code with rateR = r log ρ and let

I(X;Y ) denote the mutual information between the source and the destination. The probability of outage

is given by

Pe = Pr(I(X;Y ) ≤ r log ρ|E) Pr(E) + Pr(I(X;Y ) ≤ r log ρ|Ē) Pr(Ē)

= Pr

(
1

2
log(1 + ρ(|asd|2 + |ard|2)) ≤ r log ρ

)
Pr(E) +

Pr

(
1

2
log(1 + ρ|asd|2) ≤ r log ρ

)
Pr(Ē)

≤ Pr

(
1

2
log(1 + ρ(|asd|2 + |ard|2)) ≤ r log ρ

)
+

Pr

(
1

2
log(1 + ρ|asd|2) ≤ r log ρ

)
Pr

(
1

2
log(1 + ρ|asr|2) ≤ r log ρ

)
≤ Pr

(
|asd|2 + |ard|2 ≤ ρ2r−1

)
+ Pr

(
|asd|2 ≤ ρ2r−1

)
Pr
(
|asr|2 ≤ ρ2r−1

)
≤ Pr

(
|asd|2 ≤ ρ2r−1

)
Pr
(
|ard|2 ≤ ρ2r−1

)
+ Pr

(
|asd|2 ≤ ρ2r−1

)
Pr
(
|asr|2 ≤ ρ2r−1

)
.

≤ ρ2r−1ρ(N−1)(2r−1) + ρ2r−1ρ(N−1)(2r−1) .= ρN(2r−1)

In the last step we have used claim 2 of Lemma 3 in the appendix withm = N − 13.

C. Analog relaying - Basic Amplify and Forward

We will now consider the case where the intermediate relays are not able to decode the message, but

can only scale their received transmission (due to the power constraint) and send it to the destination.

3in the previous section, we used notationM for the number of relays. Here we follow notationN − 1 as in [8]. Therefore,N − 1 ≡M

throughout this work.
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The basic amplify and forward protocol was studied in [7]. The source broadcasts the message for first

half time-slots. In the second half time-slots the relay simply amplifies the signals it received in the first

half time-slots. Thus the destination receives two copies of each symbol. One directly from the source and

the other via the relay. At the end of the transmission, the destination then combines the two copies of

each symbol through a matched filter. Assuming i.i.d Gaussian codebook, the mutual information between

the source and the destination can be shown to be [7],

I(X;Y ) =
1

2
log
(
1 + ρ|asd|2 + f(ρ|asr|2, ρ|ard|2)

)
(26)

f(a, b) =
ab

a+ b+ 1
(27)

The amplify and forward strategy does not generalize in the same manner as the decode and forward

strategy does. We do not gain by having all the relay nodes amplify in the second half of the time-

slot. This is because at the destination we do not receive a coherent summation of the channel gains

from the different receivers. Ifβj is the scaling constant of receiverj, then the received signal will be

given byy[n] =
(∑N−1

j=1 βja
j
rd

)
x[n] + z[n]. Since this is simply a linear summation of Gaussian random

variables, we do not see the diversity gain from theN relays. A possible alternative is to have theN

relays amplify in a round-robin fashion. Each relay transmits only one out of everyN symbols in a round

robin fashion. This strategy has been proposed in [7], but the achievable diversity-multiplexing tradeoff is

not analyzed. Opportunistic relaying provides another possible solution, where we only dedicate the best

relay (according to rule 1) for transmission between the source to the destination. The following theorem

shows that opportunistic relaying achieves the same diversity multiplexing tradeoff as that achieved by

the more complicated decode and forward scheme in [7].

Theorem 4:Opportunistic amplify and forward achieves the same diversity multiplexing tradeoff stated

in Theorem 2.

Proof: We begin with the expression for mutual information between the source and destination
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Fig. 6. The diversity-multiplexing of opportunistic relaying is exactly the same with that of more complex space time coded protocols.

(26). An outage occurs if this mutual information is less than the code rater log ρ. Thus we have that

Pe = Pr (I(X;Y ) ≤ r log ρ)

= Pr
(
log(1 + ρ|asd|2 + f(ρ|asr|2, ρ|ard|2) ≤ 2r log ρ

)
≤ Pr

(
|asd|2 ≤ ρ2r−1, f(ρ|asr|2, ρ|ard|2) ≤ ρ2r

)
(a)

≤ Pr
(
|asd|2 ≤ ρ2r−1,min (|asr|2, |ard|2) ≤ ρ2r−1 + ρr−1

√
1 + ρ2r

)
(b).
= ρ2r−1ρ(N−1)(2r−1) = ρN(2r−1)

Here (a) follows from Lemma 4 and (b) follows from Lemma 3, claim 1 in appendix II and the fact that

ρr−1
√

1 + ρ2r → ρ2r−1 asρ→∞.

D. Discussion

The diversity-multiplexing tradeoff calculated above is plotted in figure 6. Even though a single terminal

with the ”best” end-to-end channel conditions (equations 1, 2) relays the information, the diversity order

at the low SNR (ρ) regime is on the order of the numberN of all participating terminals. Moreover, the

tradeoff is exactly the same with that when space-time coding acrossN − 1 relays is used.

From figure 6, it can be seen that performance is significantly better thanrepetition codingbut

deteriorates for multiplexing gainr > 0.5 where there is a significant gap from the ideal case (i.e. the

trade-off achieved by a single terminal withN antennas transmitting to a single antenna receiver). That

gap in performance occurs because we haven’t allowed the transmitter to transmit while the intermediate

terminals transmit their relayed information. The basic incentive behind the above requirement is that we
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assume half-duplex relays, so that they could not receive while they transmit.

More complex protocols that allow the transmitter to continuously transmit were proposed in [1] and

seem to close the aforementioned gap in the tradeoff performance. Opportunistic relaying could further

simplify those protocols and details of such simplification and its performance are underway and will be

reported elsewhere. The focus in this work is to show that opportunistic relaying simplifies cooperative

diversity. Necessary coordination among cooperating nodes as well as practical distributed space-time cod-

ing (since maximum two nodes could in principle transmit simultaneously under opportunistic relaying4)

are facilitated without performance loss, when compared with other approaches in the field [8].

VI. CONCLUSION

We proposed Opportunistic Relaying as a practical scheme for cooperative diversity. The scheme relies

on distributed path selection considering end-to-end wireless channel conditions, facilitates coordination

among the cooperating terminals and simplifies to practice necessary space-time coding in the communi-

cating transceivers.

We presented a method to calculate the performance of the relay selection algorithm, for any king of

wireless fading model and showed that successful relay selection could be engineered with reasonable

performance. Specific examples for Rayleigh and Ricean fading were given.

Treating Opportunistic Relaying as a distributed virtual antenna array system and analyzed its diversity-

multiplexing tradeoff revealed no performance loss when compared with more complex protocols in the

field.

The approach presented in this work explicitly addresses coordination among the cooperating terminals

and has similarities with a Medium Access Protocol (MAC) since it directswhena specific node to relay.

The algorithm has also similarities with a Routing Protocol since it coordinateswhich node to relay (or

not) received information among a collection of candidates. Devising wireless systems that dynamically

adapt to the wireless channel conditions, in a distributed manner, similarly to the ideas presented in this

work, is an important and fruitful area for future research.

The simplicity of the technique, allows for immediate implementation in existing radio hardware and

its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.

4the ”best relay” plus a transmitter.
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APPENDIX I

PROBABILISTIC ANALYSIS OF SUCCESSFULPATH SELECTION

Theorem1 The joint probability density function of the minimum and second minimum amongM i.i.d.

positive random variablesX1, X2, . . . , XM , each with probability density functionf(x) and cumulative

distribution functionF (x), is given by the following equation:

fY1,Y2(y1, y2) = M (M − 1) f(y1) f(y2) [1− F (y2)]M−2

0 < y1 < y2,

fY1 Y2(y1, y2) = 0

elsewhere. (28)

whereY1 < Y2 < Y3 . . . < YM are theM ordered random variablesX1, X2, . . . , XM .

Proof: fY1,Y2(y1, y2) dy1 dy2 = Pr(Y1 ∈ dy1, Y2 ∈ dy2) =

Pr(one Xi in dy1, one Xj in dy2 (with y2 > y1 and i 6= j), and all the rest X ′is greater than y2) =

= 2
(
M
2

)
Pr( X1 ∈ dy1, X2 ∈ dy2 (y2 > y1), Xi > y2, i ∈ [3,M ]) =

= 2
(
M
2

)
f(y1) dy1 f(y2) dy2 [1− F (y2)]M−2 =

= M (M − 1) f(y1) f(y2) [1− F (y2)]M−2 dy1 dy2, for 0 < y1 < y2.

The third equality is true since there are
(
M
2

)
pairs in a set of M i.i.d. random variables. The factor 2

comes from the fact that ordering in each pair matters, hence we have a total number of2
(
M
2

)
cases,

with the same probability, assuming identically distributed random variables. That concludes the proof.

Using Theorem 1, we can prove the following lemma:

Lemma1 GivenM i.i.d. positive random variablesX1, X2, . . . , XM , each with probability density

function f(x) and cumulative distribution functionF (x), andY1 < Y2 < Y3 . . . < YM the M ordered

random variablesX1, X2, . . . , XM , thenPr( Y2 < Y1 + c), wherec > 0, is given by the following
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Y2 Y1= Y2 Y1= + c

Dc

D

Fig. 7. Regions of integration offY1,Y2(y1, y2), for Y1 < Y2 needed in Lemma I for calculation ofPr(Y2 < Y1 + c), c > 0.

equations:

Pr(Y2 < Y1 + c) = 1− Ic (29)

Ic = M (M − 1)

∫ +∞

c

f(y) [1− F (y)]M−2 F (y − c) dy (30)

Proof: The joint pdffY1,Y2(y1, y2) integrates to1 in the regionD ∪Dc, as it can be seen in figure

7. Therefore:

Pr( Y2 < Y1 + c) =

∫ ∫
D

fY1,Y2(y1, y2) dy1 dy2

= 1−
∫ ∫

Dc

fY1,Y2(y1, y2) dy1 dy2

= 1− Ic

Again from figure 7,Ic can easily be calculated:

Ic =

M(M−1)

∫ +∞

y2=c

f(y2) [1− F (y2)]M−2

∫ y2−c

0

f(y1) dy1 dy2

= M(M−1)

∫ +∞

y2=c

f(y2) [1− F (y2)]M−2 F (y2 − c) dy2 (33)

The last equation concludes the proof.

APPENDIX II

DIVERSITY-MULTIPLEXING TRADEOFFANALYSIS

We repeatDefinition 1andDefinition 2 in this section for completeness. The relevant lemmas follow.

Definition 1: A function f(ρ) is said to be exponentially equal tob, denoted byf(ρ)
.
= ρb, if

lim
ρ→∞

log f(ρ)

log ρ
= b. (34)
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We can define the relation
.

≤ in a similar fashion.

Definition 2: The exponential order of a random variableX with a non-negative support is given by,

V = − lim
ρ→∞

logX

log ρ
. (35)

Lemma 2:SupposeX1, X2, . . . , Xm arem i.i.d exponential random variables with parameterλ (mean

1/λ), andX = max{X1, X2, . . . Xm}. If V is the exponential order ofX then the density function ofV

is given by

fV (v)
.
=


ρ−mv v ≥ 0

0 v < 0

(36)

and

Pr(X ≤ ρ−v)
.
= ρ−mv (37)

Proof: Define,

Vρ = − logX

log ρ
.

ThusVρ is obtained from definition 2, without the limit ofρ→∞.

Pr(Vρ ≥ v) = Pr(X ≤ ρ−v)

= Pr(X1 ≤ ρ−v, X2 ≤ ρ−v, . . . Xm ≤ ρ−v)

=
m∏
i=1

Pr(Xi ≤ ρ−v)

=
(
1− exp(−λρ−v)

)m
=

(
λρ−v +

∞∑
j=2

(−λ)j

j!
ρ−jv

)m

Note thatPr(Vρ ≥ v) ≈ ρ−mv. Differentiating with respect tov and then taking the limitρ→∞, we

recover (36).

From the above it can be seen that for the simple case of a single exponential random variable (m = 1),

Pr(X ≤ ρ−v) = Pr(Vρ ≥ v)
.
= ρ−v.

Lemma 3:For relays,j = 1, 2, . . . ,m, let asj and ajd denote the channel gains from source to relay

j and relayj to destination. Suppose thatasr andard denote the channel gain of the source to the best

relay and the best relay to the destination, where the relay is chosen according to rule 1. i.e.

min(|asr|2, |ard|2) = max{min(|as1|2, |a1d|2), . . . ,min(|asm|2, |amd|2)}
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Then,

1) min(|asr|2, |ard|2) has an exponential order given by (36).

2)

Pr(|asr|2 ≤ ρ−v) = Pr(|ard|2 ≤ ρ−v)
.

≤


ρ−mv v ≥ 0

1 otherwise

Proof: Let us denoteX(j) ∆
= min(|asj|2, |ajd|2). Since each of theX(j) are exponential random

variables with parameter 2, claim 1 follows from Lemma 2. Also since|asd|2 and |ard|2 cannot be less

thanmin(|asd|2, |ard|2) claim 2 follows immediately from claim 1.

Lemma 4:With f(·, ·) defined by relation (27), we have that

Pr (f(ρa, ρb) ≤ ρ2r) ≤ Pr
(

min(a, b) ≤ ρ2r−1 + ρr−1
√

1 + ρ2r
)

.

Proof: Without loss in generality, assume thata ≥ b.

f(ρa, ρb) = ρ
ab

a+ b+ 1
ρ

= ρb

(
a

a+ b+ 1
ρ

)
(a)

≥ ρb

(
b

2b+ 1
ρ

)

Here (a) follows since a
a+K

is an increasing function ina, for K > 0 anda ≥ b.

Now we have that

Pr (f(ρa, ρb) ≤ ρ2r) ≤ Pr

(
b2

2b+ 1
ρ

≤ ρ2r−1

)
= Pr

(
b2 ≤ 2ρ2r−1b+ ρ2r−2

)
= Pr

(
(b− ρ2r−1)2 ≤ ρ4r−2 + ρ2r−2

)
(a)
= Pr

(
b ≤ ρ2r−1 + ρr−1

√
1 + ρ2r

)
Where (a) follows sinceb ≥ 0 so thatPr(b < 0) = 0.
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