
The H-Bus: A Media Acquisition Bus Optimized for Multiple Streams

Je�rey J. Wong, John A. Watlington, V. Michael Bove, Jr.

fjjwong, wad, vmbg@media.mit.edu
MIT Media Laboratory, 20 Ames St., Room E15-324, Cambridge MA 02139 USA

(617) 253-0334, fax (617) 258-6264 (correspondence to third author, please)

ABSTRACT

The H-Bus is a dedicated input bus designed for transmitting digital media streams from multiple sources to
one acquiring host device. Unlike previous solutions to this problem which utilized a star topology to connect
each source to a bank of analog-to-digital converters in the host device, the H-Bus places the A/D converters at
each of the sources and uses a linear topology to connect the devices together in one contiguous chain. In this
paper we explain the engineering requirements which motivated our design, describe the electrical and physical
characteristics of, and applications for, the H-Bus.

Keywords: multimedia capture, buses, interfaces

1 INTRODUCTION

Consider the problem of controllably acquiring and digitizing multiple media streams, such as might occur
in a digital television studio, a machine vision laboratory, or a computer-processed surveillance application.
The H-Bus, developed by the MIT Media Laboratory, is a daisy-chained media acquisition system in which the
analog/digital (A/D) converters are placed at the sources, and a shared connection is made to a single digital
port on the computer or other destination device. The distributed, modular nature of this system means that
system cost scales with the number of sources to be acquired, while placing the A/D converters at the sources
enables use in an electrically noisy environment. With the incorporation of simple subsampling hardware along
with the A/D, several sources may be monitored with additional bandwidth/resolution allocated to sources of
greater interest.

Through limiting the expected bus tra�c to media streams, much of the overhead necessary for the exibility
of general purpose buses may be removed. For example, the bus arbitration mechanism, which typically favors
the more common random bus tra�c case to the detriment of real-time data transmission, may be designed to
meet the demands of transporting multiple media streams. The H-Bus is designed to allow the maximum possible
number of uncorrupted data streams to be sent to the bus master, even if the user attempts simultaneously to
enable more devices on the bus than possible due to bandwidth constraints. A prioritized arbitration scheme
ensures that bandwidth is concentrated on the higher priority streams and prevents excess packets from stealing
needed bus resources.

A set of design parameters were developed to specify the requirements of this stream-oriented bus, including:



� High throughput capacity - 640 Mbit/s - su�cient to carry two medium resolution color video channels
along with associated audio and sideband information.

� Capable of handling up to eight external, physically separated slave devices per bus.

� Capable of handling multiple virtual channels of data from each slave unit. Each virtual channel is an
independent media stream, such as a single audio channel, or a single component video signal.

� Graceful degradation under heavy load

� Low cost

� Non-centralized bus arbiter, in order to allow a serial cabling topology.

� Easy to implement via conventional construction techniques - no ASICs or extensive surface mount work
needed for slave prototype development.

2 CURRENT STANDARDS

One of the fundamental design problems faced by digital multimedia system architects is the transfer of large
amounts of time-critical data between separate components in a system. A medium resolution digital video
data stream may easily require bandwidths of 216 Mbit/s 1 or more. Prior to the recent growth of multimedia
applications in personal computers, non-backplane peripheral buses with su�cient bandwidth for digital video
were specialized, expensive, and designed for high performance computing, such as HiPPI. As the processing
capabilities of personal computers increased, existing bus standards such as the Small Computer System Interface
(SCSI) were upgraded and a new generation of higher bandwidth bus standards were developed.

While no currently available industry standard bus met all the requirements of our application, several were
close enough to deserve discussion. In particular, limiting ourselves to electrical (vs. optical) interconnect, these
are the High Performance Serial Bus (IEEE P1394), the Scalable Coherent Interface (IEEE P1596), and the latest
extension to the SCSI standard.

High Performance Serial Bus The IEEE P1394-1995 Standard for a High Performance Serial Bus 2 had
primary design goals of low cost, high bandwidth, ease of use, and support of both backplane and external
cable variants. Each bus has a tree topology supporting up to 63 slaves in a non-cyclic point-to-point network
constrained both in length and tree depth, with up to 1024 buses supported in a system. To reduce connector
and cabling costs, the serial interconnect uses six conductors, two di�erential signal pairs and one power pair.
Data transfer rates of 98.3 Mbit/s and 196.6 Mbit/s are currently available, with 393.2 Mbit/s and 1.2 Gbit/s
forthcoming.4 P1394 was designed to simultaneously handle both asynchronous and isochronous bus transfers.
In the earliest stages of design, the bus architects realized that a normal arbitration scheme with no fairness
mechanisms would allow the closest node to the root to dominate the bus. As a result, they introduced fair and
isochronous arbitration mechanisms.7

Although IEEE P1394 meets most of our application requirements, the maximum throughput provided by the
current implementations of P1394 are insu�cient bandwidth for our application. While it is touted as a bus for
digital video,7 in order to carry multiple channels on a single bus the video must be subsampled and compressed.
Second, a lack of P1394 interface devices at the time would have delayed implementations of H-Bus devices.

1The data rate of a 720x480 raster at 30 fps, with the chroma channels subsampled by 2, or CCIR 601/656.
2Apple Computer's trademarked FireWire is a proprietary (but widely licensed) implementation of IEEE P1394, basically the one

considered here.



Scalable Coherent Interface The IEEE P1596-1992 Standard for a Scalable Coherent Interface (SCI) is
a very high speed interconnect protocol that uses point-to-point links to achieve throughputs of 8 Gbits/s in
local con�gurations. Designed to be an interface suitable for connecting thousand processor shared memory
supercomputers, SCI was designed to be a fast, exible interface which blurs the distinctions between I/O buses
and high speed memory buses. The physical interconnect (wire version) used between nodes is unidirectional and
consists of eighteen wires. Nodes may be connected using a variety of topologies, with up to 64K nodes in a system.
Four priority levels are used to di�erentiate bus tra�c, in order to minimize the latency of time-critical data.
The highest priority is granted 90% of the usable bandwidth, and the remaining bandwidth is dedicated to the
lower priority transfers. Fairness and latency reduction techniques such as priority inheritance and queue-entry
reservation mechanisms ensure that the network stays fast and fair for high priority tra�c.8

This priority scheme has a weakness when applied to \real-time" data transfers, which require a guaranteed
minimum bandwidth and maximum latency.2 As a result, multiple conicting proposals on how to modify
SCI have arisen and are still evolving, including SCI/RT-1995 and the P1596.6 SCI Speci�cation for RealTime
Applications. This, along with the need for an integrated (and complex) interface per node, prevents its use at
present time. Nonetheless, with its emphasis on high throughput low latency exible networks, SCI remains an
attractive future solution for our application.

UltraSCSI The latest incarnation of SCSI using electrical interconnect is Ultra SCSI. Ultra SCSI (formally
known as Fast-20 SCSI) is a part of the SCSI-3 standard drafted by the American National Standard XT310
Technical Committee. It de�nes electrical and mechanical improvements which double the maximum throughput
of SCSI-2 buses while maintaining backwards compatibility with existing equipment. It has a parallel topology
with up to eight devices in a single bus. Distributed arbitration is accomplished through bus contention logic to
simplify wiring, and a rich command set allows the bus master to initiate a whole range of actions on a slave or
obtain con�guration and status information from a slave device6.5

Several characteristics prevent Ultra SCSI from being an optimum solution for a dedicated real-time input bus.
In order to maintin compatibility with existing SCSI devices, a parallel bus topology is used, resulting in lower
signal speed and integrity when compared with serial topology buses. In addition, the timing of bus transactions
is kept longer that what is necessary with current technology; arbitration periods, for example, must last 2.4
�s. It also retains the protocol overhead of a general-purpose bus, unnecessary for our application. Finally, a
signi�cant portion (eight wires) of the available wiring resources in the bus are used for control signals. Although
this allows the bus state to be unambiguously determined from these lines, this approach is wasteful of wires.

3 ARCHITECTURE

Our proposed design, the H-Bus, meets the above requirements. It consists of between one and eight data-
producing, physically separate slave units linked together in a linear topology, with a single bus master at one
end of the chain. Data transfers are unidirectional, running downstream from the active slave (the slave which is
actively transferring data) to the bus master, and grouped into small (4 Kbit) packets for ow control.

A separate command bus runs in parallel with the data bus, supporting lower bandwidth bidirectional com-
munications between the devices on the bus. It is used by the bus master to con�gure or query slave device
parameters (such as resolution, bit depth, component sampling structure, frame rate) and to issue direct com-
mands to a slave (turn on, turn o�, pause, etc.). To minimize cost, the H-Bus uses common 50-pin SCSI cables
and connectors. The data bus uses 16 data lines, necessitating a data rate of 40 Mbit/s in order to provide the
desired aggregate throughput, a data clock, and two arbitration lines. The command bus (described separately
in Section 3.2) is utilizes four additional serial communication lines.



Table 1: H-Bus Signals
Name Description Pin Name Description Pin

D15 Data signal 46 D3 Data Signal 29
D14 Data Signal 45 D2 Data Signal 28
D13 Data Signal 44 D1 Data Signal 27
D12 Data Signal 43 D0 Data Signal 26
D11 Data Signal 42 HV CLK Data clock 37
D10 Data Signal 41 ACK Arbitration ACK 34
D9 Data Signal 40 REQ Arbitration REQ 35
D8 Data Signal 39 HV TxD+ Serial+ from Master 47
D7 Data Signal 33 HV TxD- Serial- from Master 48
D6 Data Signal 32 HV RxD+ Serial+ from Slaves 49
D5 Data Signal 31 HV RxD- Serial- from Slaves 50
D4 Data Signal 30 GND Ground 13, 14, 15, 16, 17
GND Ground 1, 2, 3, 4, 5, 6, 7 18, 19, 20, 21, 22

8, 9, 10, 11, 12 23, 24, 25, 36

3.1 Data Bus

This section describes the transfer of data between slave and master devices on the bus: the electrical signaling
layer, the packet de�nition, and the arbitration protocol.

3.1.1 Electrical signaling layer

Unlike parallel topology buses such as SCSI-2 or PCI, data transfers on the H-Bus are made through point-
to-point links between slave nodes. Each slave actively retimes and retransmits incoming data to allow a longer
aggregate bus length and higher data transfer rates. Each link is actively terminated at the receiving node. The
bus signals for the H-Bus are de�ned in Table 1. Pin number assignments refer the standard pin numbering for
Centronics SCSI-I and SCSI-2 connectors as de�ned by ANSI.6 Note that to save on wiring costs, many cables
use less wires for ground than pins.

Backplane Transceiver Logic (BTL) 3 was selected as the electrical signaling protocol for the data bus, having
several features which made it attractive. First, it was designed as bus logic (for IEEE 896 - FutureBus), using
small amplitude (1 v.), edge-rate controlled (6 nS) signals to reduce crosstalk problems along transmission lines.
Second, its receivers apply �ltering to reject spurious glitches and transitions which do not correspond to properly
driven waveforms. Although BTL is a single-ended signaling scheme, the cost of di�erential signaling with its
improved noise immunity is the near doubling of clock rate necessary to obtain an equal data rate over the same
number of wires.

Data values being transmitted along the data lines are synchronized using HV CLK - an NRZ clock signal
(whose rising and falling edges both correspond to valid clock edges). After gaining control of the bus through
arbitration (which also indicates that the bus master has bu�ers available for incoming data), the active slave
generates data and a dual-edged data clock signal (up to 40 MHz) indicating valid data words in a packet, and
sends them downstream. Its downstream neighbor receives the data signals, �lters and thresholds them to TTL
levels, then latches them using a recovered clock edge. The output of this latch is translated back into bus logic
levels and retransmitted, along with an appropriate clock, onto the downstream link to the next slave unit (or

3BTL is a trademark of National Semiconductor Corp.



the bus master.)

In asynchronous bus transfers, a handshaking protocol is used which, although allowing nodes of di�ering
speeds and capabilities to communicate, can limit the data transmission speed for long communication channels.
For example, during an asynchronous transfer along an eight meter SCSI chain, the target node must wait at
least 84 ns before it can change the data lines from their previous value due to the round trip time of the REQ/ACK
signals. Synchronous transfers, on the other hand, take advantage of knowledge about the data receiver 4 to
transfer data as rapidly as possible, using a (delayed) handshake to ensure that bu�ers at the receiver aren't
overrun. In order to maximize bus throughput, the H-Bus uses synchronous transfer of data within a \packet".
Each slave in the chain not sourcing data immediately forwards received data to the downstream node. The
four-phase asynchronous handshaking scheme used for bus arbitration is also used to control the overall ow of
packets, preventing bus master bu�er overow.

3.1.2 Packet de�nition layer

A data packet consists of a sixteen bit header and 4 Kbits of payload, arranged as one word of header, followed
by 256 words of data. The packet header identi�es which virtual channel the data belongs to, as well as providing
packet synchronization information (to detect the loss of packets in a data stream.) It is composed of the following
bit �elds:

Bits [15 . . . 8] are the channel ID. Each virtual channel of data has a unique ID; thus, a slave node with three
video outputs and two audio outputs would use �ve separate unique channel IDs. Up to 256 independent
virtual channels are supported.

Bits [3 . . . 1] are used as a sixteen value packet counter to identify the current data packet's position relative
to other packets in the stream. Thus, if the slave node fails to transmit a small number of packets, the bus
master will be able to detect the error and place the next transmitted packet at the correct location in the
memory store.

Bits [5 . . . 4] are similarly used as a four value frame ID to enable bus master to identify the frame which
corresponds to the data packet. Thus, if long-term overow condition causes a large number of packets to
be lost, the bus master can place the next incoming data packets into the correct frame in memory, restoring
frame sync.

The packet size chosen for the H-Bus is a compromise of several constraints: bus arbitration overhead, master
address generator throughput, and the likelihood of bu�er overrun in slaves blocked from bus access. Small
packet sizes have several disadvantages: Dividing a constant data rate stream into smaller packets increases
packet interarrival rate. As a result, the master interface has less time to process (generate an address and store)
each packet. Eventually, as packets are made too small, the master interface would limit bus throughput. In
addition, since arbitration delay is independent of packet size, smaller packet sizes lead to higher proportions of
total bus time devoted to arbitration. Although larger packet sizes are more e�cient, they result in competing
slave units obtaining bus access less frequently. The likelihood of slave bu�er overow is increased unless the
amount of slave bu�er memory is increased accordingly. The packet size chosen, 4 Kbits, allows small packet
bu�ers in slaves to hold several packets.

4In a more complicated bus protocol, SCSI for example, these synchronous transfer parameters may be negotiated between devices

as part of each transfer. In the H-Bus, these parameters are �xed, simplifying the controller and minimizing the transfer overhead.



Req

Ack

Ask

Bus Data

Grant

Packet 0 is
received and goes
directly into M1

Packet 1 is
received and
waits...

Packet 2
is received
anyway

Packet 3 is
stalled

Packet 1
xferred
into M1

Packet 2
xferred
into M1

Packet 
receive

F
ig
u
re
1
:
H
-B
u
s
A
rb
itra
tio
n
a
n
d
P
a
ck
et
F
low
C
o
n
tro
l

3
.1
.3

A
rb
itra
tio
n
p
ro
to
c
o
l

In
a
b
u
s
ch
a
ra
cterized
b
y
ra
n
d
o
m

tra
�
c,
su
ch
a
s
a
co
m
p
u
ter
b
a
ck
p
la
n
e,
sh
o
rt
m
essa
g
es
a
re
sen
t
b
etw
een

d
ev
ices
o
n
th
e
b
u
s
a
t
p
seu
d
o
-ra
n
d
o
m

in
terva
ls.
If
m
u
ltip
le
d
ev
ices
req
u
est
th
e
b
u
s
sim
u
lta
n
eo
u
sly,
a
ty
p
ica
l

a
rb
itra
tio
n
sch
em
e
w
ill
try
to
g
ra
n
t
a
ccess
to
th
e
d
ev
ices
in
a
n
u
n
b
ia
sed
fa
sh
io
n
to
m
in
im
ize
th
e
la
ten
cy
seen
b
y

a
n
y
o
n
e
d
ev
ice.
T
h
is
a
p
p
ro
a
ch
is
a
ccep
ta
b
le
b
eca
u
se
m
essa
g
es
a
re
n
o
t
tim
e
critica
l.

In
a
strea
m
-b
a
sed
sy
stem
,
h
ow
ev
er,
la
ten
cy
is
a
n
ex
trem
ely
im
p
o
rta
n
t
issu
e.
E
a
ch
so
u
rce
g
en
era
tes
p
a
ck
ets
a
t

fa
irly
reg
u
la
r
tim
e
in
terva
ls,
a
n
d
u
n
lik
e
th
e
a
b
ov
e
sy
stem
,
th
e
b
u
�
er
sp
a
ce
o
n
th
e
so
u
rce
m
ay
n
o
t
b
e
a
b
le
to
sto
re

m
o
re
th
a
n
o
n
e
o
r
tw
o
p
a
ck
ets.
T
h
erefo
re,
if
a
n
a
rb
iter
a
ttem
p
ts
to
reso
lv
e
co
n

icts
w
ith
a
n
u
n
b
ia
sed
a
lg
o
rith
m
,

a
ll
strea
m
s
w
ill
su
�
er
d
eg
ra
d
a
tio
n
d
u
e
to
lo
st
p
a
ck
ets
if
tra
�
c
ex
ceed
s
a
certa
in
fra
ctio
n
o
f
th
e
th
eo
retica
l
ca
p
a
city

o
f
th
e
b
u
s.
F
u
rth
erm
o
re,
sin
ce
ev
en
a
sin
g
le
p
a
ck
et
o
f
lo
st
d
a
ta
w
ill
ca
u
se
o
b
jectio
n
a
b
le
a
rtifa
cts
in
a
m
u
ltim
ed
ia

strea
m
,
th
e
fa
ir
a
rb
iter
m
ay
d
estroy
a
ll
u
sefu
l
in
p
u
ts
to
th
e
m
a
ster
if
th
e
b
u
s
is
ov
erlo
a
d
ed
fo
r
a
sh
o
rt
seg
m
en
t
o
f

tim
e.T

h
e
H
-b
u
s
a
rb
itra
tio
n
sch
em
e
a
ssig
n
s
p
rio
rity
to
slav
es
b
a
sed
o
n
th
eir
p
o
sitio
n
in
th
e
b
u
s
to
p
o
lo
g
y.
H
ig
h
est

p
rio
rity
is
g
iv
en
to
th
e
slav
e
clo
sest
to
th
e
m
a
ster,
a
n
d
su
b
seq
u
en
t
low
er
p
rio
rities
a
re
a
ssig
n
ed
to
slav
es
fu
rth
er

u
p
strea
m
.
W
h
en
tw
o
slav
es
a
ttem
p
t
to
req
u
est
th
e
b
u
s
sim
u
lta
n
eo
u
sly,
th
e
slav
e
w
ith
th
e
h
ig
h
est
p
rio
rity
g
ets
to

m
a
k
e
th
e
req
u
est.
T
h
is
a
rb
itra
tio
n
sch
em
e
is
ea
sily
im
p
lem
en
ted
in
th
e
p
h
y
sica
l
stru
ctu
re
o
f
th
e
H
-B
u
s
b
y
u
sin
g

a
seria
l
a
rb
itra
tio
n
sch
em
e
i.e.,
ru
n
n
in
g
th
e
req
u
est
lin
es
d
ow
n
strea
m
th
ro
u
g
h
ea
ch
o
f
th
e
slav
es
a
n
d
ru
n
n
in
g
th
e

a
ck
n
ow
led
g
e
lin
e
b
a
ck
u
p
strea
m
th
ro
u
g
h
th
e
slav
es.
T
h
u
s,
if
a
slav
e
o
f
low
er
p
rio
rity
a
ttem
p
ts
to
req
u
est
th
e
b
u
s,

its
req
u
est
m
u
st
p
a
ss
th
ro
u
g
h
a
ll
th
e
slav
es
o
f
h
ig
h
er
p
rio
rity.
If
a
n
y
o
f
th
e
h
ig
h
er
p
rio
rity
slav
es
n
eed
s
th
e
b
u
s,

it
ca
n
b
lo
ck
th
e
in
co
m
in
g
req
u
est
sig
n
a
l
a
n
d
rep
la
ce
it
w
ith
its
ow
n
.
S
im
ila
rly,
if
a
n
a
ck
n
ow
led
g
e
p
a
ck
et
g
ra
n
tin
g

b
u
s
co
n
tro
l
is
b
ein
g
sen
t
u
p
strea
m
to
a
low
er
p
rio
rity
slav
e,
a
h
ig
h
er-p
rio
rity
slav
e
ca
n
b
lo
ck
th
e
tra
n
sfer
o
f
th
e

a
ck
n
ow
led
g
e
sig
n
a
l
a
n
d
u
tilize
th
e
b
u
s
to
tra
n
sfer
its
ow
n
d
a
ta
.
T
h
is
h
a
n
d
sh
a
k
in
g
sch
em
e
is
sh
ow
n
in
F
ig
u
re
1
.

O
v
er
ow
erro
rs
in
a
strea
m
a
re
g
u
a
ra
n
teed
to
b
e
th
e
lo
ss
o
f
a
n
in
teg
ra
l
n
u
m
b
er
o
f
p
a
ck
ets,
a
n
d
a
re
recov
era
b
le

th
ro
u
g
h
sy
n
ch
ro
n
iza
tio
n
in
fo
rm
a
tio
n
co
n
ta
in
ed
in
th
e
d
a
ta
p
a
ck
et
h
ea
d
ers.
B
u
s
d
esig
n
ers
h
av
e
th
e
o
p
tio
n
o
f

im
p
lem
en
tin
g

ow
co
n
tro
l
m
ech
a
n
ism
s
in
so
ftw
a
re
w
h
ich
en
a
b
le
th
e
b
u
s
m
a
ster
to
a
u
to
m
a
tica
lly
red
u
ce
th
e

th
ro
u
g
h
p
u
t
o
f
th
e
low
er
p
rio
rity
slav
e
m
ed
ia
so
u
rces
if
ov
er
ow
erro
rs
o
ccu
r.

S
ev
era
l
b
u
s
a
rb
itra
tio
n
p
ro
to
co
ls
a
re
still
u
n
d
er
p
erfo
rm
a
n
ce
eva
lu
a
tio
n
.
T
h
ere
is
ev
id
en
ce
th
a
t
a
b
o
o
k
k
eep
in
g

sch
em
e
m
ay
h
elp
en
su
re
th
a
t
h
ig
h
er
p
rio
rity
slav
es
d
o
n
o
t
u
n
n
ecessa
rily
b
lo
ck
low
er
p
rio
rity
strea
m
s,
3

b
u
t
th
e

co
st
o
f
im
p
lem
en
tin
g
a
co
m
p
lex
a
rb
iter
m
ay
o
�
set
th
e
b
en
e�
ts
o
f
su
ch
a
sy
stem
.



3.2 Command Bus

The expected command tra�c patterns are bidirectional, small (on the order of 16 to 128-bit) and variably
sized data transfers. In addition, the total thoughput is small and the latency requirements minimal.

Instead of multiplexing both the command and the data streams over the same physical bus, as is done in the
majority of buses, we provide a separate interconnects. This simpli�es the bus interface, allowing the data bus
to be optimized for the transfer of data packets of a �xed size, whereas the command bus minimizes the number
of physical wires used.

3.2.1 Electrical layer

The command bus is implemented as a four wire multidrop network consisting of one di�erential pair of wires
connecting the bus master transmitter to all the slave receivers and another di�erential pair which connects (in
parallel) all slave transmitters to the master receiver. Unlike the data bus, each slave merely passes the command
bus through to the next device in the bus, without retiming or reshaping the signal. Since the communications
bandwidth of the command bus is low (it is currently operating at 38.4 Kbits/s), this simpler topology is acceptable
for the aggregate bus length speci�ed.

The Electronics Industry Association RS-485 standard was chosen as the electrical and signaling protocol for
the command bus. While a mature standard, it provides adequate throughput using a minimum of interconnect
wires and supports multiple nodes connected in parallel. In addition, it uses a di�erential signal representation,
minimizing the e�ects of crosstalk from the data bus. Although it is possible to use a single di�erential signal
pair bidirectionally, the four wire multidrop con�guration had several advantages. First, by isolating the master
to slave bus and slave to master bus, we can eliminate packet ambiguity (slave receivers don't have to parse other
slave to master packets.) Furthermore, a command protocol supporting transaction pipelining or split phase
transactions is much more di�cult to implement with a common serial channel.

3.2.2 Message layer

The command bus receivers on the slave devices monitor the HV TxD signal pair for the start of a message
from the master's transmitter. Upon detecting a new message, all receivers process the �rst byte of the message
to determine if the message applies to them. Those not addressed by the message ignore the remainder, waiting
for another message to be sent out. Unambiguous identi�cation of the start of a message is di�cult to guarantee.
After considering several alternatives, we chose to dedicate one bit of every command word (eight bits) sent
to this task. This method is supported by hardware in the Motorola MC68HC11 MCU typically used in the
slave devices, and does not rely on slaves correctly parsing every packet sent over the bus, or the use of explicit
message synchronization commands. Since most commands are only two to four words long9 the 12.5% overhead
is acceptable (a unique packet start word would require 25% to 50% overhead for most commands.) The command
protocol currently supports single phase, unpipelined bus command transactions, which are initiated by the master
and followed by a reply from the addressed slave unit.

3.3 Bus slave design

An H-Bus slave unit may be abstracted into four separate functional blocks, interconnected as shown in
Figure 2 : the data producer, the packet bu�ers, the packet consumer, and the bus interface unit (BIU). The
data producer is the media data generating mechanism on the slave unit. It may be a device with one channel



Data
Producer

Packet
Buffers

Packet
Consumer

Bus
Interface

Unit

To
Down-
stream
Node

From
Upstream

SlaveData
Command

Figure 2: Block Diagram of H-Bus Slave

of output, such as a monochrome video digitizer, or a multichannel device such as an RGB component digitizer
with stereo audio input. The producer also contains the slave control unit (typically a small microcontroller) that
interfaces to the command bus and interprets the commands. It is assumed that the producer interfaces to the
packet bu�er using independent write clocks, allowing data production rates which are asynchronous relative to
H-Bus interface.

The packet bu�ers act as a repository for data from the producer between the time when the producer initially
generates data and the time when the consumer has successfully arbitrated for the bus and may transfer the packet
of data to the bus master. As data is fed into the packet bu�ers by the producer, the packet consumer is provided
with status ags indicating the fullness of the bu�er. If an overow condition occurs (the consumer fails to
transfers packets as fast a data is being produced,) the packet bu�ers are responsible for recovering in a manner
which results in the loss of an integral number of packets, preserving the synchronization of the remainder of the
stream.

The packet consumer has the task of requesting that the BIU arbiter for the bus whenever a packet of
data is available. If multiple virtual channels of data are supported by a slave, independent packets bu�ers are
maintained for each channel, and the consumer monitors all of them for available packets. When the BIU signals
that arbitration for the bus was succesful, the consumer generates the header word, then transfers it and the
packet data to the BIU along with a clock signal.

The bus interface unit is composed of several functional blocks which together serve three purposes. First, it
arbitrates for the bus whenever the consumer determines that a packet should be sent to the bus master. Second,
when the slave unit is depositing data onto the H-Bus, the BIU converts the data signals from TTL levels used
for internal logic into Bus Transceiver Logic (BTL) levels used on the cable segments between the slave nodes.
Third, it interfaces to an upstream link. When an upstream slave device transfers data to the bus master, the
BIU reshapes and retimes the data, then transmits it on its downstream link.

3.4 Bus master design

The bus master interfaces the H-Bus to a large shared data store via packet bu�ers, arbitrating internally for
access to the memory with other bus controllers. It extracts the header from each packet received, and uses it
to calculate the appropriate bu�er location in the data store for the packet. The bus master consists of several
components: the bus interface unit (BIU), the packet bu�ers, the address generator, and the command interface.

The bus interface unit is similar to the upstream bus interface of a slave unit. It receives data, and HV CLK

from the closest slave unit. All necessary input signal reshaping and retiming is performed, before the packet
header and data are passed to the packet bu�ers. The interface generates a REQ signal, in response to an ACK



Address
Generator

Bus
Interface

Unit
To
Shared
Data
Store

From
Upstream

Slave

Data
Command

Addr

Ctl

Data

Packet
Buffers

Serial
Interface

Figure 3: Block Diagram of H-Bus Master

signal passed to it by the nearest slave, when there is room available in the packet bu�ers for another packet.

An error checking state machine runs a counter tallying the number of payload words received for a packet,
verifying that it is indeed 256. If the correct number of words has not been detected when the slave deasserts REQ,
an error signal is asserted, allowing the address generator to clear the corrupted packet from the packet bu�ers.

The packet bu�er, which is shared by all virtual channels in a system, should be large enough to store several
(three or more) packets to e�ectively decouple the H-Bus data transfers from the shared data store access latency.
The packet bu�er typically transforms the 16-bit H-Bus data words into a larger word width for local transfer.
The data generated by the BIU contains both packet header and data. The 16-bit header information is typically
queued separately, where it can be accessed by the address generator.

The address generator examines the header information of a packet, and generates an appropriate destination
address in the shared data store. Using the bus parameters speci�ed above, a new packet address may be needed
every 6.8 �s. The capabilities of the address generator may vary, but they allow the storage of packet data
pertaining to each virtual channel to be stored in a separate (and possibly circular) bu�er in the shared data
store. A means of informing application software of the availability of new data should be provided, usually upon
the arrival of a new \frame" of packets.

The command bus is driven by a general purpose asynchronous interface (UART) under the control of a
software driver on the host providing an interface for applications.

4 IMPLEMENTATION

An implementation of the H-Bus has been built, and is being tested. The Cheops image processing system1

has as one of its component modules a large (up to 32 Gbit) solid-state shared data store (M1). In addition to
the Cheops system interconnects (allowing up to 2 Gbit/s of data I/O,) M1 supports up to 3.2 Gbit/s of I/O
through a daughtercard interface. A video digitizer card (I1) for this daughtercard interface includes two H-Bus
masters, which allow up to sixteen additional input units to shared the high-speed M1 daughtercard port. To
date the only H-Bus slaves which have been constructed are test units.

4.1 I1 H-Bus master

The two H-Bus interfaces on a Cheops I1 Video input card each have a separate bus interface unit and packet
bu�ers, but share a command bus interface and the address generator. The packet bu�ers generate the 128-bit



wide words required by the M1 shared data store interface. Enough memory is provided in the packet bu�ers
(built of 64x18 FIFOs) for three data packets. Separate registers are provided for storing the packet headers.

The address generator is shared with the onboard digitizer as well as both H-Bus interfaces, requiring it to
provide up to one destination address per 2 �s, and support over 500 virtual channels. While a custom design
was contemplated, a programmable solution was determined to be cheaper and quicker to implement, due to the
complexity of the bu�er addressing algorithms desired.

An Intel i960CA 32-bit RISC microprocessor was dedicated to the task of constantly polling for newly arrived
packets, parsing the packet headers and generating a destination address for each packet. It uses 1 Mbit of
SRAM for both code and channel state storage. A message passing mechanism (using the shared SRAM) is used
for communication with application software running on the Cheops system. The address generator supports
fragmented circular bu�ers for storage of virtual channel data, queueing of digitization request and automatic
temporal decimation of video data.

4.2 Bus slave

A test slave has been designed and is being built in order to allow testing the bus under controlled conditions.
The test slave uses a small amount (2 Mbits) of pattern memory instead of a video or audio A/D to provide data
for bus transfer. The pattern memory may be loaded with a particular data sequence by a local microcontroller
in response to commands transmitted over the H-Bus. A single test slave is capable of saturating the data bus
throughput, as well as sourcing all virtual channels.

5 CONCLUSIONS

Building systems capable of simultaneously acquiring and manipulating multiple media streams is still a
di�cult problem. While several industry bus standards are beginning to address the problems of real-time media
distribution, they either do not provide the throughput required for acquisition of multiple sources using a single
bus, or require expensive, complex bus interfaces. We present the H-Bus as an example of the functionality
which may be provided using common components and an alternative approach speci�cally targeting the needs
of multimedia acquisition.

6 ACKNOWLEDGMENTS

Components of this research have been sponsored by the Television of Tomorrow research consortium of the
Media Laboratory, MIT.

7 REFERENCES

[1] V. M. Bove, Jr., J. A. Watlington. \Cheops: A Recon�gurable Data-Flow System for Video Process-
ing," to be published in IEEE Trans. on Circuits and Systems for Video Technology, 1995. Available at
http://wad.www.media.mit.edu/people/wad/cheops CSVT/cheops.html

[2] David James, David Gustavson. \Draft Proposals for Real-Time Transactions on SCI." SCI/RT-1995.



[3] Saied Hosseini-Khayat, Andreas D. Bovopoulos, \A simple and e�cient bus management scheme that sup-
ports continuous streams." ACM Transactions on Computer Systems, Vol.13, No. 2, May 1995, pp. 122-140

[4] Adam J. Kunzman, Alan T. Wetzel. \1394 High Performance Serial Bus: The Digital Interface for ATV,"
IEEE Trans. on Consumer Electronics, August 1995, Vol. 14, No. 13, pp. 893-900.

[5] Mark Nossoko� and Gene Freeman. "SCSI R.I.P. - NOT! The Case for FAST-20 SCSI." Computer Technology
Review, April 1995. Also available at http://www.symbios.com/articles/ctr 495.htm

[6] Small Computer System Interface - 2, X3.131-199x, ANSI.

[7] Michael Teener. \New Technology in the IEEE P1394 Serial Bus - Making it Fast, Cheap, and Easy to Use,"
presented at the Hot Interconnects Symposium '93, Stanford University, Aug. 6, 1993.

[8] Ivan Tving. \Multiprocessor interconnection using SCI." Masters Thesis, Technical University of Denmark,
1994. Available at ftp://ftp.SCIzzL.com/u/SCIzzL/sci/latest pdf/TvingThesis.pdf

[9] Je�rey J. Wong. \Hoover Bus: An Input Bus Optimized for Multiple Real-Time Data Streams." MEng
Thesis, Massachusetts Institute of Technology, Sept. 1996.


