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Modeling interactions via trees

If a dataset has many interactions, regression equations can become complex and unmanageable.
Another approach is to split the data into subgroups, and use a simple model in each group.

A regression tree makes predictions by asking a series of questions, each one dependent on
the answers to the previous questions. The questions are chosen to be the most informative

given the answers so far. An estimate of the response is available at each step.

 Horsepower

<−0.2
 Weight

<−0.4  Horsepower

<−1.3  (9) Price = −1.6

>−1.3  (20) Price = −0.92

>−0.4  (9) Price = −0.16

>−0.2
 Horsepower

<0.6

 Wheelbase

<0.08  (14) Price = 0.055

>0.08  Wheelbase

<0.8  (6) Price = 0.82

>0.8  (15) Price = 0.25

>0.6  Horsepower

<1.4  (13) Price = 0.95

>1.4  (6) Price = 1.8

The questions are usually about one attribute, and have a yes/no answer, such as “Is Horsepower
> −0.2?” Thus they repeatedly split the data into subgroups.

This tree has R2 = 0.85. Linear regression has R2 = 0.8.
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Let c be the outcome of the question, and y the response. The best question to ask maximizes
I(c, y). Usually this is computed by assuming the response is normal and has the same variance

in each group, leading to the simple formula given in handout 10. Equivalently, the best question
explains as much of the variance in the response as possible (has highest R2).

Thus the tree not only subdivides the data but also tells you the most important predictor in
each group. They also make few assumptions about the regression function—they don’t require
linearity or smoothness.

An example using one predictor:
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 Wheelbase

<0.08

 Wheelbase

<−1.4  (8) Price = −1.6

>−1.4  Wheelbase

<−0.8  (16) Price = −0.61

>−0.8  (28) Price = −0.19

>0.08  (40) Price = 0.65

The tree captures the nonlinearity of the function, though not the smoothness.
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With two predictors, the splits of the tree can be visualized as horizontal and vertical lines.
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 Horsepower

<−0.2
 Wheelbase

<−0.07  Horsepower

<−1.3  (9) Price = −1.6

>−1.3  (21) Price = −0.89

>−0.07  (8) Price = −0.15

>−0.2
 Horsepower

<0.6  Wheelbase

<0.08  (14) Price = 0.055

>0.08  (21) Price = 0.42

>0.6  (19) Price = 1.2

The tree correctly represents the interaction between Horsepower and Wheelbase. When
Horsepower > 0.6, Wheelbase no longer matters. When both are equally important, the
tree switches between them.
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Trees attempt to be concise by using only one predictor at each step. If multiple predictors
are equally important, the tree will switch between the predictors at random, which can give
a misleading impression. (For example, Weight is just as good as Wheelbase in the previous
tree.) If you want to know about all the important variables, projection is better.

It is possible to extend trees to make diagonal splits, involving multiple predictors at a time.
How could you determine the most informative combination of variables?

Trees give coarse predictions, because they only use the mean response in each group. This
can be an advantage in data mining. The coarse predictions represent the dominant factors
influencing the response, which are typically obvious and uninteresting. By removing these
factors, we can get at the second-order effects, which are often interesting and actionable.
This is done by examining residuals of the regression tree.

Here is a regression tree to predict the residuals:
Residuals

 Turn.circle

<−0.14
 Length

<−0.4  MPG.highway

<1.2  (16) Price = −0.1

>1.2  (9) Price = 0.066

>−0.4  (14) Price = 0.37

>−0.14

 Length

<0.9

 Length

<−0.4  (7) Price = 0.078

>−0.4  Length

<0.14  (12) Price = −0.34

>0.14  (18) Price = −0.14

>0.9  (16) Price = 0.12

It explains 30% of the variance in the residuals, and together with the first tree explains 90%
of the variance in Price.
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Turn.circle and Length figure prominently in this tree, so we plot them separately:
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The upper left box captures 14 ‘overpriced’ cars. Longer cars generally require more space to
turn. But some long cars are maneuverable enough to make tight turns, and this is reflected
in their price. This group includes the Mercedes-Benz 300E and Saab 900. (The low-priced
member of the group is the Mercury Cougar.)

This is the type of second-order effect we were looking for. To see how subtle it is, note that
Turn.circle is considered irrelevant to Price by the original tree, the regression projection,
and the linear regression from last week.
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