36-350: Data Mining

Lab 11
Date: November 8, 2002 Due: end of lab

1 Introduction

This lab teaches you how to construct and prune classification trees.

There are 5 questions. For each one, submit your commands and a response from R demonstrating
that they work. (Only hand in commands relevant to the question.) To submit a plot, click on the
plot window and select

File -> Save as -> Postscript...

This saves the plot to a file which can be printed, incorporated into a Word document, or mailed to
us as an attachment.

2 Starting R

Start R as in lab 1. On the class web page, go to “computer labs” and download the files for lab 11
into your work folder. Read the special functions into your running R application via the commands

source("labll.r")

If this fails, check that the files were downloaded correctly.

3 The data

The dataset used in this lab is the repayment behavior of 1000 individuals who acquired loans from a,
bank. The bank would like to use this data to decide which customers in the future are likely to repay
a loan. Each individual is described by 21 variables, the most important being Class which classifies
the loan as good or bad. Load this data via

load("Credit.rda")

This defines a matrix of training data called x.tr and a matrix of test data called x.te. Your job is
to construct a classifier from the training data which has high accuracy in predicting Class on the
test data.

Several of the variables are categorical. In the matrices, they have been numerically coded as follows:



Checking :
<0 0-200 >200 Nomne
0.51 0.61 0.78 0.88

History :
None Okay.here Until.now Delays Critical
0.38 0.43 0.68 0.68 0.83
Purpose :
Education Other New car
0.56 0.58 0.62
Repairs Business Appliance
0.64 0.65 0.67
Furniture/equipment Radio/TV Used car
0.68 0.78 0.83
Retraining
0.89
Savings :
<100 100-500 0 500-1000 >1000
0.64 0.67 0.83 0.83 0.88
Employed :
<1 0 1-4 >7 4-7
0.59 0.63 0.69 0.75 0.78
Gender.Status :
Male.divorced Female.married Male.married Male.single
0.60 0.65 0.73 0.73
Guarantor :
Co.applicant None Guarantor
0.56 0.70 0.81
Property :
None Car Life.insurance Real.estate
0.56 0.69 0.69 0.79
Other.plans :
Bank Stores None
0.59 0.60 0.72
Housing :
Free Rent Own
0.59 0.61 0.74
Job :
Manager None  Skilled Unskilled
0.66 0.68 0.70 0.72
Telephone :
No Yes
0.69 0.72
Foreign :
Yes No
0.69 0.89



4 Constructing a tree

The command to construct a tree is tree. It is used the same way as 1m and loess. You provide a
formula and a data matrix and it returns a tree object. This tree object can be plotted by giving it
to the function plot.graph.tree.

tr <- tree(Class”.,x.tr)
plot.graph.tree(tr)

To evaluate the tree’s accuracy, there is the function misclass. Give it the tree object and a data
matrix to classify. It returns the number of times the classifier chose a class different than the true
class given in the matrix.

misclass(tr,x.tr)
misclass(tr,x.te)

Question 1: Submit code to convert the number of errors above into accuracy rates. Use
it to report classifier performance in the following questions.

To prune a tree, there is the function prune.misclass. Give it the tree object and a data matrix on
which to evaluate different prunings. It returns the number of errors that each pruned tree makes. For
illustration, try giving it the test data, to get an idea of what the “ideal” pruning of the tree should
look like:

p = prune.misclass(tr,newdata=x.te)
plot(p,type="o0")

The “size” axis here is the number of leaves in the tree. You should find that pruning the tree a little
does help its performance. Of course, in a real situation you wouldn’t be able to use the test data this
way. In the next section, you will use cross-validation to try to approximate the ideal pruning.

Question 2: Why isn’t prune.misclass useful on the training data?

5 Cross-validation pruning

The function for pruning by cross-validation is best.size.tree. It takes a tree as input. It splits
the training set for this tree into 10 blocks, constructs 10 new trees, and prunes each tree based on a
block not used to construct the tree. It averages the errors on each of the 10 blocks and plots them,
similarly to prune.misclass. Then it takes the tree size with lowest average errors and prunes the
provided tree to have that size, returning a new tree.

tr.pruned <- best.size.tree(tr)

Question 3: (a) Compare the cross-validation plot to the “ideal” pruning plot. Do
they prefer the same size trees? (b) Which tree, tr or tr.pruned, performs better on
the training set? Which performs better on the test set? (c) Which tree has a larger
discrepancy between its training accuracy and its test accuracy (i.e. is overfitting the
training set)?



Instead of splitting the training set into 10 blocks, best.size.tree can use any number of blocks,
e.g. just two:

tr.pruned <- best.size.tree(tr,2)

You will find that this runs a lot faster, since only two new trees are being constructed.

Question 4: Cross-validation is an inherently random process, because the splitting is
chosen randomly each time. Run cross-validation with 2 blocks multiple times, and com-
pare to using 10 blocks multiple times. (a) Which number of blocks is more stable? (b)
When there are 2 blocks, how much of the training data is used to build each of the 2
trees? When there are 10 blocks, how much of the training data is used to build each of
the 10 trees?

6 Nearest-neighbor classification

To build a nearest-neighbor classifier, use the function knn.model. It works the same way as tree,
and returns a knn object. This object can be given to misclass to compute misclassifications, just
like a tree object.

Cross-validation can also be used to improve a nearest-neighbor classifier. For each test point, a 1-
nearest-neighbor classifier answers the class of the nearest training point. This is the default. But
you can also make a 3-nearest-neighbor classifier; it finds the three nearest training points and votes
their classes. This often gives better performance than using one nearest neighbor. More generally, a
k-nearest-neighbor classifier finds the k nearest training points and votes their classes.

To illustrate the effect of k, the function test.k.knn evaluates different k’s on the test set:
test.k.knn(nn,x.te)

Here nn is a knn object from knn.model. You will find that the errors change in an irregular way as
you change k, though the overall dip shape should be similar to tree pruning. Of course, you can'’t
use the test set this way, but you can try to come close using cross-validation.

The function best.k.knn is similar to best.size.tree; it splits the training set into 10 blocks,
constructs 10 new nearest-neighbor classifiers, and tests each one on a block not used to construct the
classifier. When testing, it tries various different values for k, and reports the average error for each
one. Then it takes the k with lowest average errors and returns a new knn object which uses that
value of k.

Question 5: (a) Construct a 1-nearest-neighbor classifier from the training set and report
the accuracy rate on the test set. (b) Use cross-validation to choose a better k, and evaluate
this k£ on the test set. It is better than k¥ = 1?7 (c) Compare the cross-validation plot to
the “ideal” plot. Do they prefer the same value of k7



