36-350: Data Mining

Lab 10
Date: November 1, 2002 Due: end of lab

1 Introduction

This lab teaches you how to mine data for interactions between predictors of a response.

There are 4 questions. For each one, submit your commands and a response from R demonstrating
that they work. (Only hand in commands relevant to the question.) To submit a plot, click on the
plot window and select

File -> Save as -> Postscript...

This saves the plot to a file which can be printed, incorporated into a Word document, or mailed to
us as an attachment.

2 Starting R

Start R as in lab 1. On the class web page, go to “computer labs” and download the files for lab 10
into your work folder. Read the special functions into your running R application via the commands

source("lab10.r")

If this fails, check that the files were downloaded correctly.

3 The data

The dataset used in this lab is 196 weeks of grocery sales, similar to that used in class, but for a
different store. The variables are:
Price.1 DOLE PINEAPPLE ORANG 64 OZ
Price.2 FIVE ALIVE CTRUS BEV 64 OZ
Price.3 HH FRUIT PUNCH 64 OZ
Price.4 HH ORANGE JUICE 64 OZ
Price.5 MIN MAID O J CALCIUM 64 OZ
Price.6 MIN MAID O J PLASTIC 96 OZ
Price.7 MM PULP FREE 0OJ 64 OZ
Price.8 SUNNY DELIGHT FLA CI 64 OZ
Price.9 TREE FRESH O J REG 64 OZ
Price.10 TROP PURE PRM HOMEST 64 OZ
Price.11 TROP SB HOMESTYLE OJ 64 OZ
Sold.4 Number of units sold for HH ORANGE JUICE 64 OZ



Your job is to determine how the price variables interact in predicting Sold.4.
Load this data via

load("lab9.rda")

This defines a matrix called x.

4 Standardizing

The response variable Sold.4 should be transformed with a logarithm. Do this now.

Also, as you may have noticed from lab 9, Price.5 and Price.7 are highly correlated:
plot(x[,"Price.5"],x[,"Price.7"])
Since these products always have essentially the same price, let’s combine them into one average

predictor. With this change, the prices are relatively uncorrelated, which helps in searching for
interactions and interpreting the regression coefficients.

Question 1: Submit code to construct a new predictor Price.5.7 which is the average
of Price.5 and Price.7. The code should look like

x[,"Price.5.7"] = 777
where you have to fill in ?77?.

Use the following code to remove the old predictors:
x <- x[,setdiff(colnames(x),c("Price.5","Price.7"))]
Standardize the variables to have zero mean and unit variance. sx should end up with the standardized

data.

5 Linear regression to search for interactions

In lab 9, you constructed a linear model by adding predictors one by one. When searching for
interactions, it is a better idea to remove predictors (or predictor combinations) one by one using the
step function. First you construct a model with all predictors included:

fit <- 1Im(Sold.4 ~ .,sx)
The formula Sold.4 . is shorthand for Sold.4 Price.l + Price.2 + .... Next you want
to try expanding the model by including bilinear cross terms such as Price.1:Price.2, which is

simply the product of Price.1 and Price.2. These are also called ‘interaction terms’. The function
expand.cross helps you do this:

expand.cross(fit)



it returns a formula containing all possible cross terms. Give this formula to step, and it will auto-
matically add and remove predictors, returning a new model:

fit <- step(fit,expand.cross(fit))
summary (fit)

This model should have five interaction terms, which is a large reduction over the number of possible
interaction terms. The interactions which have been selected by step are good candidates for further
investigation.

The interaction terms can simply be viewed as additional predictors, and plotted using predict.plot.
A partial residual plot will show the importance of each predictor in the model, including the inter-
action terms:

predict.plot(fit,partial=T)

Question 2: (a) Which interaction term has the greatest weight in the model? Which
has the least weight? Does the plot agree? (b) One of the interaction terms has greater
importance than either of the individual predictors involved. Which is it? (You can use
the plot or the weights in the model to decide this.)

6 Interaction plots

The command interact.plot works similarly to predict.plot, except it plots the predictors in pairs
instead of one by one. For each pair, it shows a contour plot against the response, the residuals of a
model, or the partial residuals of a model. For example, this shows partial residuals:

interact.plot(fit,partial=T,1lwd=2,nlev=6)

The partial residuals for each square are computed using a smaller model which uses all predictors
except those two. Thus each square tells you what those two predictors contribute to predicting the
response, with the effect of the other predictors already taken into account (as if they were held fixed).
You should be able to see, for example, that Price.4 dominates Price.2 in its effect on Sold.4, when
other prices are held fixed. The interactions which are currently in the model are outlined in red.

Question 3: (a) Turn in the interaction plot described above and keep a copy for the home-
work. (b) Find the ‘strongest’ and ‘weakest’ interactions that you identified in question 2.
Does the interact.plot agree with that ranking? (Remember that a ‘weak’ interaction
has contours nearly straight, and a ‘strong’ interaction has contours very curved.)

7 Slice plots

Now that you’ve located the interactions, you’ll want to explain them. Some of the interactions can
be understood directly from the contour plot. Others are easier to understand from looking at slice
plots. Let’s focus on one, the interaction between Price.4 and Price.5.7. The first step is to get
the data that was plotted in that square:

r <- partial.residual.frame(fit,"Price.4*Price.5.7")



This sets r to a matrix with three columns: Price.4, Price.5.7, and Sold.4 (Sold.4 is the partial
residuals for that square). Notice that you put * between the variable names, not :

This repeats the contour plot for that square:
color.plot(loess(formula(r),r) ,nlevels=8,lwd=2)

To make a slice plot, use predict.plot as follows:
predict.plot(Sold.4 ~ Price.5.7 | Price.4, r, nlevels=2)

This slices the data based on Price.5.7, and plots Sold.4 versus Price.4 in each slice. The nlevels
number is the number of slices you want (default is 2). Generally 2 is sufficient but for very strong
interactions you may want to try nlevels=3.

In this plot, you should find that Price.4 controls the importance of Price.5.7. Price.5.7 is only
important when Price.4 is low. This suggests that a sale on products 5 and 7 will compete with
product 4 if product 4 is also on sale, but will have no effect on product 4 if product 4 is at its regular
price (which is 0 in standardized units).

Usually it is best to slice on the stronger predictor. You can determine which predictor is stronger by
looking at their individual weights in the linear model. Here Price.4 was stronger. This shows what
happens if you slice on the wrong one:

predict.plot(Sold.4 ~ Price.4 | Price.5.7, r, nlevels=2)

The slope of Sold.4 versus Price.4 is the same in both slices, so it looks as though there is no inter-
action between Price.5.7 and Price.4, which we know is false. This asymmetry in slice plots makes
them somewhat tricky to use, compared to contour plots which display both predictors symmetrically.

Question 4: The linear model should have 4 interaction terms besides the Price.4:Price.5.7
term analyzed above. For each one, make a slice plot in which you slice on the stronger
predictor. Turn in the plots and keep copies for the homework. (You do not actually need
these plots to complete the homework, but you will probably find them helpful. If you

do use them, be sure to include them with your homework solutions. You may also want

to make additional slice plots, beyond what are required here, to aid you in doing the
homework.)



