36-350: Data Mining Homework 13 Date: November 20, 2002 Due: start of class November 25, 2002 1. An experiment was conducted to study how nitrogen treatment affects the growth of oats. A field was divided into six blocks, each block divided among three varieties of oats, and each variety split into four sub-plots receiving different levels of nitrogen treatment. The yield of each sub-plot was recorded, giving a data frame with entries like ``` Block Variety Nitrogen Yield 0.2cwt II Golden.rain 108 IV Golden.rain 0.0cwt 64 ΙV Marvellous 0.4cwt 104 VI Marvellous 0.6cwt 121 ΙV Victory 0.6cwt 122 ``` Below are row plots of Variety effect versus Nitrogen and Nitrogen effect versus Variety. To make these plots, the yields were transformed with a logarithm, and averaged over all blocks. - (a) If the predictors were additive, what would that tell us about the dependence of Yield on Variety and Nitrogen (in non-technical terms)? - (b) Describe, in a simple way, the interaction between Variety and Nitrogen in predicting Yield. - (c) Variety is a categorical variable in the above data frame. Give a new data frame which uses a numeric indicator code for Variety. - (d) Give a new data frame which uses a numeric effect code for Variety. 2. To improve advertising efficiency, a large survey was conducted to find out where people in different demographic groups are likely to get their news. The media categories were: | N_ NEWS | national newspaper | |---------------|--| | R_{-} NEWS | regional newspaper | | MAGAZ | ${ m magazines}$ | | TVMAG | TV magazines | | TV | TV news | | RADIO | radio news | The job categories were: | h_ manag | high-level manager | | | | | | |-----------------------|----------------------------|--|--|--|--|--| | i_{-} manag | intermediate-level manager | | | | | | | empl | employer | | | | | | | s_{-} busin | small business employee | | | | | | | skil | skilled labor | | | | | | | ${ m unsk}$ | unskilled labor | | | | | | | la_{-} Farmer | farmer | | | | | | | Nowork | ${ m unemployed}$ | | | | | | The results are summarized by the following contingency table of job versus media: | | job | | | | | | | | |--------|-----------|------------|---------|---------|------|------|------|--------| | media | la_Farmer | s_busin | h_manag | i_manag | empl | skil | unsk | Nowork | | RADIO | 96 | 122 | 193 | 360 | 511 | 385 | 156 | 1474 | | TV | 118 | 136 | 184 | 365 | 593 | 457 | 185 | 1931 | | N_NEWS | 2 | 11 | 74 | 63 | 57 | 42 | 8 | 181 | | R_NEWS | 71 | 76 | 63 | 145 | 217 | 174 | 69 | 852 | | MAGAZ | 50 | 49 | 103 | 141 | 172 | 104 | 42 | 642 | | TVMAG | 17 | 41 | 79 | 184 | 306 | 220 | 85 | 782 | Below is a row probability plot of this table, with "1.64" error bars: Note that columns are not ordered the same way in this plot as they are in the table. They have been ordered to make the curves smooth. - (a) If media were independent of job, what would this graph look like? - (b) Where are the three most significant deviations from independence? - (c) Describe the trend for national newspapers vs. regional newspapers. - (d) Describe the trend for magazines vs. TV magazines. - (e) To simplify the description for ad executives, we may want to merge some of the job categories. Find three job categories which could be merged into one, without losing much information about media. - 3. In the computer lab, you used slice plots to propose interaction terms for a linear regression. - (a) Which interactions ended up being used in the model? - (b) Interpret each coefficient in the linear model. What does it say about car safety?