36-350 Data Mining Tom Minka

Day 2 Viewing and summarizing batches of numbers

Questions

- Why should we summarize?
- Can we still compare batches fairly?
- Is there an advantage in changing units? Other transformations?

Strip charts

For an unordered batch:

- 1. Sort
- 2. Space according to size Result is a strip chart

Same principles apply to all graphs

Comparing batches example

Growing bigger plants

- Three groups of plants:
 - 10 had no treatment (control)
 - 10 had treatment 1
 - 10 had treatment 2
- Compare weights of plants

Defocusing

- Sometimes histograms are too complex
- Can we summarize further?
- Reduce to center, spread, skewness

Estimating "center"

- Mean $\overline{x} = \frac{1}{n} \sum_{i} x_{i}$ Minimizes $\sum_{i} (x_{i} \overline{x})^{2}$
- Median Middle number in sorted order $\text{Minimizes } \sum_i |x_i M|$

Mean vs. median

- Mean can be swayed by a single wild number
- Median is "resistant"
- Also depends on underlying source of variation
 - Mean is theoretically better for some sources, median for others

Estimating "spread"

- Standard deviation $s = \sqrt{\frac{1}{n} \sum_{i} (x_i \overline{x})^2}$
- Mean abs deviation $_{MAD = \frac{1}{n} \sum_{i} |x_i M|}$
- Interquartile range IQR = Q1 Q3 $Q1 = 25^{th}$ percentile $M = 50^{th}$ percentile $Q3 = 75^{th}$ percentile

Std dev vs. IQR

- IQR is resistant, standard dev is not
- Quartiles can measure symmetry

$$\frac{Q1 + Q3}{2} \approx M$$
 symmetric distribution

$$\frac{Q1+Q3}{2} < M$$
 skewed to **left**

$$\frac{Q1+Q3}{2} > M \qquad \text{skewed to } \mathbf{right}$$

Outsiders

- Fences are Q1-1.5IQR, Q3+1.5IQR
- "Outside" points are outside the fences
- Improbable, but not impossible
- Not necessarily corrupted values
- Often the most interesting points

Boxplot

- Box around (Q1,Q3), line at M
- Whiskers to outermost inside points (not fences)
- · Outsiders as dots

Boxplots

- Boxplots make interpretation easier
- while not hiding too much
- \bullet Cases where boxplots fail:
 - Distributions with multiple peaks
 - High amounts of skew

A highly skewed dataset

Transformation

- Original representation is not always the best one
- Transformation can remove skew, reduce number of "outside" points

Transformation

• It doesn't help to change units (e.g. temperature)

$$x_{new} = ax + b$$

• But nonlinear transformations may help

Roots/reciprocals: x_{new}

$$x_{new} = \frac{x^{p} - 1}{p}$$

if
$$p > 0$$
 or $p < 0$

Logarithms:

$$x_{new} = \log(x)$$

$$\lim p \to 0$$

Transformation to remove skew

- Reduces outside points, impact of outliers
- Allows sharper description of data
 - "uniform after transformation" vs. "skewed to right"
- · Can use standard methods on result
- May stabilize spread of different groups
- Simplifies so we can consider more

Extended example

What is the best spray for repelling bees?

- 8 different sprays
- Each tried 8 different times (8x8 design)
- "loss" of sugar solution reported for each
 - More loss = less repelling

Comparing response across more than one factor

Vitamin C supplements vs. OJ

- Guinea pigs were given Vitamin C either in OJ or as ascorbic acid
- Is there a difference in growth (e.g. tooth length)?

Divide by supplement, then dose?

Divide by dose, then supplement

Divide by major, less interesting effects first

