36-350 Data Mining

Tom Minka

Day 1 What is data mining?

A different kind of statistics course

- Exploratory data analysis
- Non-parametric methods
- Model fitting to aid visualization

Data mining

- Why it exists
- What it is
- Pitfalls
- Motivation for course

Deluge of data

- Business
 - Customer info
 - Register logs
 - Phone call logs
 - Bank transactions
 - Direct sales(amazon.com)
- Government
 - Population, crime
 - Employment, economy
- Science & Medicine
 - Astronomy surveys
 - Remote sensing
 - Neurological activity
 - Gene expression
 - Adverse drug reactions

Register logs

Customer	Bread	Milk	Eggs	Cereal	Coupon?
14		X		X	
15	X	X	X		X
16		X		X	
17	X		X		X
18	X	X			

Phone call detail

From	То	Date	Time	Length
555-5478	555-1280	1/3/99	10:50	5
555-2387	555-5478	1/6/99	03:35	17
555-5478	555-1280	1/7/99	14:51	25
555-4387	555-0902	1/16/99	7:17	9
555-0902	555-2387	1/22/99	12:06	3

What is this data used for?

- Usually, not for much
- Collected for billing and inventory
- Filed away in "data tombs"
- Undervalued, conveniently ignored
- Waiting for someone to analyze it

Business applications

- · Targeted marketing
 - Who is likely to buy this product?
- Product/service recommendations
 - People who buy X often like Y as well
 - Grocery store coupons
- Assess loyalty of different groups
 - Who is likely to switch ("churn")?

Business applications cont'd

- Assess credit risk, insurance risk of different groups
 - Who will repay a loan?
- · Predict sales
 - Which items should we stock? In which stores?
- Identify fraud, inefficient practices
 - Anomalies, unexpected patterns

Scientific & medical applications

- New, interesting astronomical objects
- New geological formations, mineral deposits
- New insights into brain function, gene function
- Unexpected drug reactions

Gene expression microarrays

Red: above baseline

Green: below baseline

Problems with data

Most data is too complex for conventional tools:

- Too fragmented (phone calls)
- Too complex to model directly (neurons, genes, sky images)
- Too much spurious phenomena (register logs, drug reactions)
- Variation in amount of data per customer

Problems with statistical/machine learning algorithms

- · Too focused, blind
- Require predefined goal, modeling strategy
- Precise, automated answer to a specific question
 may overlook crucial aspects of data

Data mining

Utilization of statistics/machine learning methods within an exploratory framework

Emphasizes:

- Visualization
- Exploratory data analysis
- Non-parametric methods
- Serendipity

Visualization

VisualMine

MineSet

Data mining process

- Iteratively defocus one part to focus on another
- Defocus:
 - abstract data values (e.g. rounding, "large" vs. "small")
 - summarize batches (e.g. median, quartiles)
- Focus:
 - Subdivide (trees, clustering)Apply a model (curve fitting)
- · Always keep your options open

Data mining

- · Requires creativity
- Requires knowledge of option space
- Cannot be automated

Fundamental difficulties

- · Poor data quality
 - Collected for different purposes
 - Needs "cleaning"
- · Data is purely observational
 - Biased data selection
 - e.g. only people who shop here
 - True causes may be missing
 - Prolonged exploration may lead to overfitting

John W. Tukey

- Invented "Exploratory Data Analysis" (1977)
- · Viewed data analysis as a unique field
 - Bigger than statistics, requiring more general methods
 - $\ Esp. \ non-mathematical \ methods$
- Some methods incorporated into statistics classes (stemplot, boxplot, two-way plot, etc)

Why exploration is hard

- Modern software makes it easy to make lots of plots
- It does not give guidance about what you should plot
- Many (if not most) plots are useless, confusing
- Not same problem as graphic art

More data = better plot?

Why exploration is hard

It is hard to make a plot that:

- Isn't swamped by irrelevant influences, random variation
- Isn't misleading
- Clearly and fairly shows the size of an effect
- Answers an interesting question

Some good plots

Why so good?

Variables ordered by similarity, using linear model

Also:

- · Variables standardized
- Error bars

Good plots are guided by models

- Models suggest how data should be presented, simplified
- Models consolidate what we have seen in data, so that we may see farther
- Models define anomalies
- Even oversimplified models are useful

Balance

To do good visualization, you need modeling

To do good modeling, you need visualization

Structure of course

Wide variety of visualization and modeling techniques

- Overview of statistics and machine learning

Progression: Low dimension to high dimension Alternate: Continuous vs. discrete values Visualization and modeling together