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ABSTRACT

Temporal textures are textures with motion. Ex-
amples include wavy water, rising steam and fire. We
model image sequences of temporal textures using the
spatio-temporal autoregressive model (STAR). This model
expresses each pixel as a linear combination of sur-
rounding pixels lagged both in space and in time. The
model provides a base for both recognition and syn-
thesis. We show how the least squares method can
accurately estimate model parameters for large, causal
neighborhoods with more than 1000 parameters. Syn-
thesis results show that the model can adequately cap-
ture the spatial and temporal characteristics of many
temporal textures. A 95% recognition rate is achieved
for a 135 element database with 15 texture classes.

1. INTRODUCTION

Temporal textures are textures with motion. Good ex-
amples are fire, wavy water and leaves fluttering in the
wind. They are characterized by an indeterminate ex-
tent both in space and time [1]. This class of motions
can be contrasted with two others: activities are tem-
porally periodic but spatially restricted (such as a per-
son walking or swimming). Motion events are single
events that do not repeat in space or time (such as
opening a door or throwing a ball).

Temporal textures have previously been studied for
recognition applications (e.g. detecting forest fires) [1]
and for synthesis in computer graphics (e.g. artificial
fire and smoke). Unlike previous work, we focus on a
representation that can be acquired directly from image
sequences, and that is effective both for recognition and
synthesis.

Our representation is the linear spatio-temporal au-
toregressive model (STAR) [2]. It is a three-dimensional
extension of autoregressive models (AR), which are among
the best models for recognition and synthesis of image
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textures [3, 4]. Autoregressive models are also widely
used in speech modeling and time series analysis. The
STAR model has the form

s(x, y, t) =
p∑
i=1

φis(x+∆xi, y+∆yi, t+∆ti)+a(x, y, t).

We model the signal s(x, y, t) as a linear combination
of lagged values of itself plus a Gaussian white noise
process a(x, y, t). The lags ∆xi,∆yi and ∆ti specify
the neighborhood structure of the model. We have used
causal neighborhoods, since parameter estimation and
synthesis are easier to perform. Examples of causal
neighborhoods include nonsymmetric half-spaces, such
as the (x, y, t) subset defined by t < 0 ∨ (t = 0 ∧ y <
0) ∨ (t = 0 ∧ y = 0 ∧ x < 0).

The STAR model makes several assumptions. The
data should have a multivariate Gaussian distribution
and be wide-sense stationary (constant mean and co-
variance). Only first and second-order statistics are
exploited, hence curved lines cannot be modeled. The
noise process is assumed to be uncorrelated (if it is
not, use a STARMA model which has moving-average
terms). Fortunately, many temporal textures satisfy
these conditions approximately.

The neighborhood causality constraint is another
restriction that is somewhat unnatural for spatial pro-
cesses. It introduces an arbitrary directional bias, which
depends on the orientation of the nonsymmetric half-
space neighborhood (or any other causal neighborhood
used). For spatio-temporal processes, the spatial asym-
metry is not as severe as for purely spatial process.
The spatial asymmetry arises only from restrictions for
neighbors at t = 0, whereas neighbors at t < 0 can
be symmetric. In fact, the spatial asymmetry can be
completely eliminated by conditioning only on neigh-
bors at t < 0. Thus, we can trade off spatial asymmetry
against temporal asymmetry. Since time has a clear di-
rection, and the physical world is believed to be causal,
temporal asymmetry is easily justified.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time offset

x 
of

fs
et

Spatio−temporal ACF for river

20 40 60 80 100 120

10

20

30

40

50

60

70

80

Figure 1: Autocorrelation function for river sequence
(x-t slice, y=0). Note periodicity in time.

2. MODEL SELECTION

Before parameter estimation, we must select neighbor-
hood size and topology and ensure that the data is wide
sense stationary.

The autocorrelation function (ACF) is a useful tool
for analyzing the correlation structure of autoregres-
sive processes and for model identification [2]. Direct
computation of the ACF in the spatio-temporal domain
is not feasible due to the large amount of data in an
image sequence. Instead, the ACF is computed as the
inverse Fourier transform of the power spectrum. Fig. 1
shows the ACF of wavy water for an x-t slice at y = 0.
Note that there is structure along both the spatial and
temporal dimensions. Along the time axis, correlation
peaks occur for subsequent waves. Translation along
the x-axis is also evident. Thus, full spatio-temporal
modeling is necessary to capture all aspects of the sig-
nal; purely temporal or purely spatial analysis is not
sufficient.

Image data is often nonstationary due to nonuni-
form illumination of the image. These nonstationari-
ties can be removed using unsharp masking. One ap-
proach is to median-filter each frame and subtract the
filter output from the frame [3]. We used a purely spa-
tial 21× 21 median filter for all image sequences. The
illumination gradients were reduced and the ACF de-
cayed to zero exponentially instead of linearly (which
indicated nonstationarity).

Finding a good neighborhood size and topology is a
difficult task for STAR models. In traditional time se-
ries analysis, model selection is done by examining the
patterns of the ACF and PACF (partial autocorrelation
function). STAR models have large, three-dimensional
neighborhoods which generate very complex patterns

that cannot be identified easily [2]. Instead, we begin
by fitting a large STAR model to the texture. We got
the best synthesis results from causal half-sphere neigh-
borhoods with radius between 4 and 7 (with between
128 and 709 parameters). Other attempts included cu-
bic neighborhoods with side length 11 (1270 parame-
ters), and rays of length 21 radiating from the origin
in 12 different directions. Such long rays could capture
long distance correlations, but produced poor synthesis
results.

The large number of parameters is a consequence of
modeling three dimensions, as opposed to one or two.
Fortunately, our data sets have extents 170×115×120.
Thus, there are at least 2000 data points per parameter,
reducing the risk for overfitting.

The large models are already useful, and can be im-
proved by pruning insignificant parameters. The prun-
ing algorithm [3] iteratively discards the least signif-
icant parameters as long as the Schwartz’s Bayesian
Criterion (SBC) decreases. Let |Ω| be the data set
size, p be the number of parameters, and σ̂2

a be the
estimated innovation variance. Then

SBC = |Ω| ln σ̂2
a + p ln |Ω|.

The significance of a parameter is determined by
the t-test (the parameter value divided by its standard
deviation). For static image textures, the pruning al-
gorithm typically reduces 80 parameter models to 50
parameters while maintaining the visual quality of the
simulated texture [3].

3. PARAMETER ESTIMATION

Parameters of the STAR model are determined by min-
imizing the mean square prediction error. We have
used the conditional least squares estimator (CLS). The
estimate is conditioned on the unknown values outside
the boundary. One can assume that the missing bound-
ary values are equal to the mean of the data (the cor-
relation method). Alternatively, one can use only the
inner portion of the data, so that all neighborhoods are
contained in the data (the covariance method). The
methods give significantly different results, probably
because most visual textures are close to nonstationar-
ity and hence are sensitive to initial conditions. The
covariance method gives more accurate estimates [5].

The system of normal equations is then solved using
Cholesky decomposition. The accuracy of the estima-
tion can be determined by first estimating parameters
from an image sequence, then synthesizing a texture
based on them, and finally estimating the parameters
of the synthesized texture. The two sets of estimates
should be similar. When this test is performed for the



1270 parameter model on a wavy water sequence, the
majority of the statistically significant parameters have
relative errors less than 20%.

4. SYNTHESIS

To examine how well the STAR model can capture tem-
poral textures, we synthesize textures based on param-
eters estimated from real sequences. The initial condi-
tions for the synthesis are Gaussian random noise, and
new values are recursively computed as a linear combi-
nation of past values plus Gaussian random noise. The
synthesized sequence is histogram-matched to the origi-
nal to get the same grey-level distribution. The percep-
tual quality of some textures is very good (Fig. 2). The
raw and synthesized image sequences are available on-
line at http://www-white.media.mit.edu/~szummer/
icip-96/. The examples of steam and boiling water
are convincing, and river is also fairly realistic. How-
ever, rotational motion (e.g. spiraling water flow of a
toilet) cannot be captured by the STAR model, because
it violates the stationarity assumption. The specularity
of water is also difficult to model.

The STAR model offers a very compact represen-
tation of temporal textures. For comparison, the se-
quences were compressed by taking the three-dimensional
DCT and discarding the smallest magnitude coefficients.
Then the sequences were reconstructed by the inverse
DCT. The DCT reconstruction looks like a blurry ver-
sion of the original. In contrast, the STAR model looks
like a somewhat noisy version of the original. When
the same number of coefficients are used in both repre-
sentations (for a 2000:1 compression ratio), the STAR
synthesis subjectively looks significantly better.

5. RECOGNITION

We tested recognition of temporal textures in a database
with 15 classes and 9 examples from each class, taken at
different times. We used still images of the textures and
applied a purely spatial autoregressive model (SAR)
at three different scales [4]. Thus, the recognition is
motion-invariant, which is desirable in many applica-
tions. For a given texture, we find other examples with
the most similar autoregressive parameters, according
to the Mahalanobis distance metric.

The recognition performance is very good. 95% of
the top 8 matches belong to the correct texture class.
In other words, we usually manage to retrieve all the
other 8 examples of a texture class when querying on
any instance of it. In addition to recognizing images
from the same class, the algorithm is also good at find-
ing other perceptually similar textures. Given water

with big waves, it also returns wavy water with smaller
waves. Similarly, for boiling water, it gets other boiling
water filmed from a different angle and illumination. A
query on steam first retrieves other steam and then the
next closest matches are smoke.

6. CONCLUSION AND FUTURE WORK

The STAR model can successfully represent several tem-
poral textures, and enables good synthesis and com-
pression. A subset of STAR (SAR) achieves excellent
recognition. As a general three-dimensional texture
model, STAR has a wealth of other applications, such
as segmentation of medical MRI imagery.

In future work, we hope to build a multi-scale STAR
model. The neighborhood would be hierarchically de-
composed, achieving the effect of very large neighbor-
hoods but with fewer parameters and less computa-
tion. However, the different scales are not necessarily
independent. Hence, estimation and synthesis must be
coordinated across scales.

For recognition applications, we must design fea-
tures invariant to motion direction and magnitude. One
possibility is to use features of STAR parameters, e.g.
averages of parameters at the same distance from the
origin [4].

A challenging problem is to model nonstationary
temporal textures. For this task, nonlinear models are
likely to be needed.
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Figure 2: Synthesis results displayed as xyt-volumes. Originals (left column) and synthesized (right). The sequences and
the size of neighborhoods are river (1270), boiling water (128), steam (1270) and spiraling water (128) (number of
parameters in parentheses).


