
24 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

G u e s t E d i t o r s ’ I n t r o d u c t i o n

The Semantic Web:
A Brain for Humankind
Dieter Fensel, Vrije Universiteit Amsterdam
Mark A. Musen, Stanford University

O riginally, the computer was intended as a device for computation. Then, in the 1980s,

the PC developed into a system for games, text processing, and PowerPoint pre-

sentations. Eventually, the computer became a portal to cyberspace—an entry point to a

worldwide network of information exchange and business transactions. Consequently,

technology that supports access to unstructured, het-
erogeneous, and distributed information and knowl-
edge sources is about to become as essential as pro-
gramming languages were in the 60s and 70s.

The Internet—especially World Wide Web tech-
nology—was what introduced this change. The Web is
an impressive success story, in terms of both its avail-
able information and the growth rate of human users.
It now penetrates most areas of our lives, and its suc-
cess is based on its simplicity. The restrictiveness of
HTTP and (early) HTML gave software developers,
information providers, and users easy access to new
media, helping this media reach a critical mass.

Unfortunately, this simplicity could hamper fur-
ther Web development. What we’re seeing is just the
first version of the Web. The next version will be even
bigger and more powerful—but we’re still figuring
out how to obtain this upgrade.

Growing complexity
Figure 1 illustrates the growth rate of current Web

technology. It started as an in-house solution for a
small group of users. Soon, it established itself as a
worldwide communication medium for more than

10 million people. In a few years, it will interweave
one billion people and penetrate not just computers
but also other devices, including cars, refrigerators,
coffee machines, and even clothes.

However, the current state of Web technology gen-
erates serious obstacles to its further growth. The
technology’s simplicity has already caused bottle-
necks that hinder searching, extracting, maintaining,
and generating information. Computers are only used
as devices that post and render information—they
don’t have access to the actual content. Thus, they
can only offer limited support in accessing and pro-
cessing this information. So, the main burden not only
of accessing and processing information but also of
extracting and interpreting it is on the human user.

The Semantic Web
Tim Berners-Lee first envisioned a Semantic Web

that provides automated information access based on
machine-processable semantics of data and heuristics
that use these metadata. The explicit representation of
the semantics of data, accompanied with domain the-
ories (that is, ontologies), will enable a Web that pro-
vides a qualitatively new level of service. It will weave

together an incredibly large network of human
knowledge and will complement it with
machine processability. Various automated ser-
vices will help the user to achieve goals by
accessing and providing information in a
machine-understandable form. This process
might ultimately create an extremely knowl-
edgeable system with various specialized rea-
soning services—systems that can support us in
nearly all aspects of our life and that will become
as necessary to us as access to electric power.

This gives us a completely new perspective
of the knowledge acquisition and engineering
and the knowledge representation communi-
ties. Some 20 years ago,AI researchers coined
the slogan “knowledge is power.” Quickly,
two communities arose:

• knowledge acquisition and engineering,
which deals with the bottleneck of acquir-
ing and modeling knowledge (the human-
oriented problem), and

• knowledge representation, which deals
with the bottleneck of representing knowl-
edge and reasoning about it (the computer-
oriented problem).

However, the results of both communities
never really hit the nail on the head. Knowl-
edge acquisition is too costly, and the knowl-
edge representation systems that were cre-
ated were mainly isolated, brittle, and small
solutions for minor problems.

With the Web and the Semantic Web, this
situation has changed drastically. We have
millions of knowledge “acquisitioners” work-
ing nearly for free, providing up to a billion
Web pages of information and knowledge.
Transforming the Web into a “knowledge
Web” suddenly put knowledge acquisition
and knowledge representation at the center of
an extremely interesting and powerful topic:
Given the amount of available online infor-

mation we already have achieved, this Knowl-
edge (or Semantic) Web will be extremely
useful and powerful. Imagine a Web that con-
tains large bodies of the overall human knowl-
edge and trillions of specialized reasoning
services using these bodies of knowledge.
Compared to the potential of the Semantic
Web, the original AI vision seems small and
old-fashioned, like an idea of the 19th cen-
tury. Instead of trying to rebuild some aspects
of a human brain, we are going to build a
brain of and for humankind.

In this issue
The work and projects described in this

special issue provide initial steps into such a
direction. We start with Michel Klein’s tuto-
rial, which introduces the current language
standards of the Semantic Web: XML,
XMLS, RDF, and RDFS.

James Hendler—who has already helped
us all by successfully initiating and running
a large DARPA-funded initiative on the
Semantic Web—reveals his vision of the
Semantic Web. On the basis of a standard
ontology language, he sees software agents
populating the Semantic Web, providing
intelligent services to their human users. In
“OIL: An Ontology Infrastructure for the
Semantic Web,” Dieter Fensel, Ian Horrocks,
Frank van Harmelen, Deborah L. McGuin-
ness, and Peter F. Patel-Schneider propose
such an ontology standard language. OIL and
DAML+OIL are the basis of a semantic
working group of the W3C that should soon
develop a standardization approach. Sheila
A. McIlraith, Tran Cao Son, and Honglei
Zeng, in “Semantic Web Services,” and Jeff
Heflin and James Hendler, in “A Portrait of
the Semantic Web in Action,” describe intel-
ligent services on top of such services, based
on query and reasoning support for the
Semantic Web.

A key technology for the Semantic Web is
ontologies. In “Creating Semantic Web Con-
tents with Protégé-2000,” Natalya F. Noy,
Michael Sintek, Stefan Decker, Monica
Crubézy, Ray W. Fergerson, and Mark A.
Musen provide excellent tool support for
manually building ontologies based on Pro-
tégé-2000. However, even with an excellent
tool environment, manually building ontolo-
gies is labor intensive and costly. Alexander
Maedche and Steffen Staab, in “Ontology
Learning for the Semantic Web,” try to
mechanize The ontology building process
with machine learning techniques.

MARCH/APRIL 2001 computer.org/intelligent 25

T h e A u t h o r s
Dieter Fensel is an
associate professor at
the Division of Math-
ematics and Computer
Science, Vrije Univer-
siteit, Amsterdam, and
a new department edi-
tor for Trends & Con-
troversies. After study-

ing mathematics, sociology, and computer
science in Berlin, he joined the Institute AIFB
at the University of Karlsruhe. His major subject
was knowledge engineering, and his PhD thesis
was on formal specification language for knowl-
edge-based systems. Currently, his focus is on
using ontologies to mediate access to heteroge-
neous knowledge sources and to apply them in
knowledge management and e-commerce. Con-
tact him at the Division of Mathematics and
Computer Science, Vrije Universiteit Amster-
dam, De Boelelaan 1081a, 1081 HV Amster-
dam, Netherlands; dieter@cs.vu.nl; www.cs.
vu.nl/~dieter.

Mark A. Musen is an
associate professor of
medicine (medical in-
formatics) and com-
puter science at Stan-
ford University and is
head of the Stanford
Medical Informatics
laboratory. He con-

ducts research related to knowledge acquisition
for intelligent systems, knowledge-system archi-
tecture, and medical-decision support. He has
directed the Protégé project since its inception in
1986, emphasizing the use of explicit ontologies
and reusable problem-solving methods to build
robust knowledge-based systems. He has an MD
from Brown University and a PhD from Stan-
ford. Contact him at Stanford Medical Informat-
ics, 251 Campus Dr., Stanford Univ., Stanford,
CA 94305; musen@smi.stanford.edu; www.
smi.stanford.edu/people/musen.

1990 1997

10 million users
worldwide

1 billion users
devicewide

2003

1,000 users
in-house solution

Figure 1. The growth rate of current Web technology.

By Michel Klein
Vrije Universiteit

T u t o r i a l : T h e S e m a n t i c W e b

26 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

Let’s start with XML
XML (eXtensible Markup Language) is a specification

for computer-readable documents. Markup means that
certain sequences of characters in the document contain
information indicating the role of the document’s content.
The markup describes the document’s data layout and logi-
cal structure and makes the information self-describing, in
a sense. It takes the form of words between pointy brack-
ets, called tags—for example, <name> or <h1>. In this
aspect, XML looks very much like the well-known lan-
guage HTML.

However, extensible indicates an important difference
and a main characteristic of XML. XML is actually a
metalanguage: a mechanism for representing other lan-
guages in a standardized way. In other words, XML only
provides a data format for structured documents, without
specifying an actual vocabulary. This makes XML univer-
sally applicable: you can define customized markup lan-
guages for unlimited types of documents. This has already
occurred on a massive scale. Besides many proprietary
languages—ranging from electronic order forms to appli-
cation file formats—a number of standard languages are
defined in XML (called XML applications). For example,
XHTML is a redefinition of HTML 4.0 in XML.

Let’s take a more detailed look at XML. The main
markup entities in XML are elements. They consist nor-
mally of an opening tag and a closing tag—for example,
<person> and </person>. Elements might contain other ele-
ments or text. If an element has no content, it can be
abbreviated as <person/>. Elements should be properly
nested: a child element’s opening and closing tags must be
within its parent’s opening and closing tags. Every XML

document must have exactly one root element. Elements
can carry attributes with values, encoded as additional
“word = value” pairs inside an element tag—for example,
<person name=“John”>. Here is a piece of XML:

<?xml version=“1.0”?>
<employees>

List of persons in company:
<person name=“John”>

<phone>47782</phone>
On leave for 2001.

</person>
</employees>

XML does not imply a specific interpretation of the
data. Of course, on account of the tag’s names, the mean-
ing of the previous piece of XML seems obvious to
human users, but it is not formally specified! The only
legitimate interpretation is that XML code contains named
entities with subentities and values; that is, every XML
document forms an ordered, labeled tree. This generality
is both XML’s strength and its weakness. You can encode
all kinds of data structures in an unambiguous syntax, but
XML does not specify the data’s use and semantics. The
parties that use XML for their data exchange must agree
beforehand on the vocabulary, its use, and its meaning.

Enter DTDs and XML Schemas
Such an agreement can be partly specified by Docu-

ment Type Definitions and XML Schemas. Although
DTDs and XML Schemas do not specify the data’s mean-
ing, they do specify the names of elements and attributes
(the vocabulary) and their use in documents. Both are
mechanisms with which you can specify the structure of
XML documents. You can then validate specific docu-
ments against the structure prescription specified by a
DTD or an XML Schema.

DTDs provide only a simple structure prescription: they
specify the allowed nesting of elements, the elements’
possible attributes, and the locations where normal text is
allowed. For example, a DTD might prescribe that every

Languages for representing data and knowledge are an

important aspect of the Semantic Web. And there are

a lot of languages around! Most languages are based on

XML or use XML as syntax; some have connections to

RDF or RDF Schemas. This tutorial will briefly introduce

XML, XML Schemas, RDF, and RDF Schemas.

XML, RDF, and Relatives

person element must have a name attribute
and may have a child element called phone
whose content must be text. A DTD’s syn-
tax looks a bit awkward, but it is actually
quite simple.

XML Schemas are a proposed successor
to DTDs. The XML Schema definition is
still a candidate recommendation from the
W3C (World Wide Web Consortium), which
means that, although it is considered stable,
it might still undergo small revisions. XML
Schemas have several advantages over
DTDs. First, the XML Schema mechanism
provides a richer grammar for prescribing
the structure of elements. For example, you
can specify the exact number of allowed
occurrences of child elements, you can
specify default values, and you can put
elements in a choice group, which means
that exactly one of the elements in that
group is allowed at a specific location. Sec-
ond, it provides data typing. In the example
in the previous paragraph, you could pre-
scribe the phone element’s content as five
digits, possibly preceded by another five
digits between brackets. A third advantage
is that the XML Schema definition pro-
vides inclusion and derivation mechanisms.
This lets you reuse common element defin-
itions and adapt existing definitions to new
practices.

A final difference from DTDs is that
XML Schema prescriptions use XML as
their encoding syntax. (XML is a metalan-
guage, remember?) This simplifies tool
development, because both the structure
prescription and the prescribed documents
use the same syntax. The XML Schema
specification’s developers exploited this
feature by using an XML Schema docu-
ment to define the class of XML Schema
documents. After all, because an XML
Schema prescription is an XML applica-
tion, it must obey rules for its structure,
which can be defined by another XML
Schema prescription. However, this recur-
sive definition can be a bit confusing.

RDF represents data about data
XML provides a syntax to encode data;

the resource description framework is a
mechanism to tell something about data. As
its name indicates, it is not a language but a
model for representing data about “things
on the Web.” This type of data about data is
called metadata. The “things” are resources
in RDF vocabulary.

RDF’s basic data model is simple:

besides resources, it contains properties
and statements. A property is a specific
aspect, characteristic, attribute, or relation
that describes a resource. A statement con-
sists of a specific resource with a named
property plus that property’s value for that
resource. This value can be another re-
source or a literal value: free text, basi-
cally. Altogether, an RDF description is a
list of triples: an object (a resource), an
attribute (a property), and a value (a re-
source or free text). For example, Table 1
shows the three triples necessary to state
that a specific Web page was created by
something with a name “John” and a phone
number “47782.”

You can easily depict an RDF model as a
directed labeled graph. To do this, you draw
an oval for every resource and an arrow for
every property, and you represent literal
values as boxes with values. Figure 1 shows
such a graph for the triples in Table 1.

These example notations reveal that
RDF is ignorant about syntax; it only pro-
vides a model for representing metadata.
The triple list is one possible representa-
tion, as is the labeled graph, and other syn-
tactic representations are possible. Of
course, XML would be an obvious candi-
date for an alternative representation. The
specification of the data model includes
such an XML-based encoding for RDF.

As with XML, an RDF model does not
define (a priori) the semantics of any appli-
cation domain or make assumptions about
a particular application domain. It just pro-
vides a domain-neutral mechanism to de-
scribe metadata. Defining domain-specific
properties and their semantics requires
additional facilities.

Defining an RDF vocabulary:
RDF Schema

Basically, RDF Schema is a simple type
system for RDF. It provides a mechanism
to define domain-specific properties and
classes of resources to which you can apply
those properties.

The basic modeling primitives in RDF
Schema are class definitions and subclass-
of statements (which together allow the
definition of class hierarchies), property
definitions and subproperty-of statements
(to build property hierarchies), domain and
range statements (to restrict the possible
combinations of properties and classes),
and type statements (to declare a resource
as an instance of a specific class). With
these primitives you can build a schema for
a specific domain. In the example I’ve been
using throughout this tutorial, you could
define a schema that declares two classes
of resources, Person and WebPage, and two
properties, name and phone, both with the
domain Person and range Literal. You could
use this schema to define the resource
http://www.w3.org/ as an instance of WebPage
and the anonymous resource as an instance
of Person. Together, this would give some
interpretation and validation possibilities to
the RDF data.

RDF Schema is quite simple compared to
full-fledged knowledge representation lan-
guages. Also, it still does not provide exact
semantics. However, this omission is partly
intentional; the W3C foresees and advo-
cates further extensions to RDF Schema.

Because the RDF Schema specification
is also a kind of metadata, you can use
RDF to encode it. This is exactly what
occurs in the RDF Schema specification

MARCH/APRIL 2001 computer.org/intelligent 27

http://www.w3.org/
name

phone

John

47782

created by

Figure 1. A directed labeled graph for the triples in Table 1.

Table 1. An RDF description consisting of three triples indicating that a specific Web page was created by something
with a name John and a phone number “47782.”

OBJECT ATTRIBUTE VALUE

http://www.w3.org/ created_by #anonymous_resource1
#anonymous_resource1 name “John”
#anonymous_resource1 phone “47782”

document. Moreover, the specification pro-
vides an RDF Schema document that de-
fines the properties and classes that the
RDF Schema specification introduced. As
with the XML Schema specification, such
a recursive definition of RDF Schema
looks somewhat confusing.

XML and RDF are different formalisms
with their own purposes, and their roles in
the realization of the Semantic Web vision
will be different. XML aims to provide an
easy-to-use syntax for Web data. With it,
you can encode all kinds of data that is
exchanged between computers, using XML
Schemas to prescribe the data structure.
This makes XML a fundamental language
for the Semantic Web, in the sense that
many techniques will probably use XML as
their underlying syntax.

XML does not provide any interpretation
of the data beforehand, so it does not con-
tribute much to the “semantic” aspect of
the Semantic Web. RDF provides a stan-
dard model to describe facts about Web
resources, which gives some interpretation
to the data. RDF Schema extends those
interpretation possibilities somewhat more.
However, to realize the Semantic Web

vision, it will be necessary to express even
more semantics of data, so further exten-
sions are needed. There are already some
initial steps in this direction—for example,
the DAML+OIL (DARPA Agent Markup
Language + Ontology Inference Layer)
language, which adds new modeling
primitives and formal semantics to
RDF Schema.

The “Further Reading” sidebar contains
pointers to more detailed explanations of
XML and RDF and lists the URLs of the
official homepages of XML, RDF, and the
Semantic Web Activity at the W3C. Through
those pages, you can find many projects and
applications related to these topics.

28 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

• The pages at www.w3.org/XML and
www.w3.org/RDF contain pointers
to the official definitions of the
languages that I covered in this
minitutorial.

• XML.com (www.xml.com) contains
technical introductions to both XML
and XML Schemas.

• Pierre-Antoine Champin provides
comprehensive tutorial on RDF
and RDF Schema at www710.

univ-lyon1.fr/~champin/rdf-tutorial.
• Robin Cover maintains a compre-

hensive online reference for XML
and related techniques at
www.oasis-open.org/cover.

• The vision of the Semantic Web is
sketched at www.w3.org/2001/
sw/Activity.

• The DAML+OIL extension to RDF
Schema lives at www.daml.org/
2001/03/daml+oil-index.

Further Reading

C o m i n g N e x t I s s u e

Wearable AI
Wearable artificial intelligence allows the use of AI in
situations where computing previously was severely limited,
even from palm computers. Wearable AI also promises to
provide nonintrusive access to intelligent systems. This issue
will spotlight leading research in this cutting-edge field.

Michel Klein is a PhD student at the Infor-
mation Management Group of the Vrije Uni-
versiteit in Amsterdam. His research interests
include ontology modeling, maintenance, and
integration, and representation and interoper-
ability issues of semistructured data. Contact
him at the Faculty of Sciences, Division of
Mathematics and Computer Science, Vrije
Universiteit, De Boelelaan 1081a, 1081 HV
Amsterdam, Netherlands; michel.klein@cs.
vu.nl; www.cs.vu.nl/~mcaklein.

22-MAR-2001

E X E C U T I V E C O M M I T T E E

PURPOSE The IEEE Computer Society is
the world’s largest association of comput-
ing professionals, and is the leading
provider of technical information in the
field.

C O M P U T E R
S O C I E T Y W E B S I T E
The IEEE Computer Society’s Web site, at
http://computer.org, offers information
and samples from the society’s publica-
tions and conferences, as well as a broad
range of information about technical
committees, standards, student activities,
and more.

C H A P T E R S Regular and student
chapters worldwide provide the oppor-
tunity to interact with colleagues, hear
technical experts, and serve the local
professional community.

O MBUDSMAN Members experiencing
problems—magazine delivery, member-
ship status, or unresolved complaints—
may write to the ombudsman at the
Publications Office or send an e-mail to
membership@computer.org.

AVAILABLE INFORMATION
To obtain more information on any
of the following, contact the Publi-
cations Office:

• Membership applications

• Publications catalog

• Draft standards and order forms

• Technical committee list

• Technical committee application

• Chapter start-up procedures

• Student scholarship information

• Volunteer leaders/staff directory

• IEEE senior member grade applica-
tion (requires 10 years practice and
significant performance in five of
those 10)

To check membership status or report
a change of address, call the IEEE toll-
free number, +1 800 678 4333. Direct
all other Computer Society-related
questions to the Publications Office.

P U B L I C A T I O N S A N D
A C T I V I T I E S
Computer. An authoritative, easy-to-
read magazine containing tutorial and in-
depth articles on topics across the com-
puter field, plus news, conferences, cal-
endar, industry trends, and product
reviews.

Periodicals. The society publishes 11
magazines and nine research transac-
tions. Refer to membership application
or request information as noted at left.

Conference Proceedings, Tutorial
Texts, Standards Documents.
The Computer Society Press publishes
more than 150 titles every year.

Standards Working Groups. More
than 200 of these groups produce IEEE
standards used throughout the industrial
world.

Technical Committees. Thirty TCs
publish newsletters, provide interaction
with peers in specialty areas, and direct-
ly influence standards, conferences, and
education.

Conferences/Education. The soci-
ety holds about 100 conferences each
year and sponsors many educational
activities, including computing science
accreditation.

ME M B E R S HI P Members receive the
monthly magazine COMPUTER, discounts,
and opportunities to serve (all activities
are led by volunteer members). Mem-
bership is open to all IEEE members,
affiliate society members, and others
interested in the computer field.

B O A R D O F G O V E R N O R S
Term Expiring 2001: Kenneth R. Anderson,
Wolfgang K. Giloi, Haruhisa Ichikawa, Lowell G.
Johnson, Ming T. Liu, David G. McKendry, Anneliese
Amschler Andrews

Term Expiring 2002: Mark Grant, James D. Isaak,
Gene F. Hoffnagle, Karl Reed, Kathleen M. Swigger,
Ronald Waxman, Akihiko Yamada

Term Expiring 2003: Fiorenza C. Albert-
Howard, Manfred Broy, Alan Clements, Richard A.
Kemmerer, Susan A. Mengel, James W. Moore,
Christina M. Schober

Next Board Meeting: 25 May 2001, Seattle,
Washington

E X E C U T I V E S T A F F
Acting Executive Director : ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Acting Director, Volunteer Services:
MARY-KATE RADA
Chief Financial Officer: VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE
Manager, Research & Planning: JOHN C. KEATON

C O M P U T E R S O C I E T Y O F F I C E S

Headquarters Office
1730 Massachusetts Ave. NW
Washington, DC 20036-1992
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
General Information:
Phone:+1 714 8218380
E-mail: membership@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657
Fax: +1 714 821 4641
E-mail: cs.books@computer.org

European Office
13, Ave. de L’Aquilon
B-1200 Brussels, Belgium
Phone: +32 2 770 21 98 • Fax: +32 2 770 85 05
E-mail: euro.ofc@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,Minato-ku,
Tokyo107-0062, Japan
Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org

I E E E
O F F I C E R S
President:
JOEL B. SNYDER

President-Elect:
RAYMOND D. FINDLAY

Executive Director:
DANIEL J. SENESE

Secretary:
DAVID J. KEMP

Treasurer:
DAVID A. CONNOR

VP, Educational Activities:
LYLE D. FEISEL

VP, Publications Activities:
MICHAEL S. ADLER

VP, Regional Activities:
ANTONIO BASTOS

VP, Standards Association:
DONALD C. LOUGHRY

VP, Technical Activities:
ROBERT A. DENT

President, IEEE-USA:
NED R. SAUTHOFF

President:
BENJAMIN W. WAH *

University of Illinois
Coordinated Sci Lab
1308 W Main St
Urbana, IL 61801-2307
Phone: +1 217 333 3516
Fax: +1 217 244 7175
b.wah@computer.org

President-Elect:
WILLIS K. KING *

Past President:
GUYLAINE M. POLLOCK*

VP, Educational Activities:
CARL K. CHANG (1ST VP)*

VP, Conferences and Tutorials:
GERALD L. ENGEL*

VP, Chapters Activities:
JAMES H. CROSS †

VP, Publications:
RANGACHAR KASTURI †

VP, Standards Activities:
LOWELL G. JOHNSON*

VP, Technical Activities:
DEBORAH K. SCHERRER (2ND VP)*

Secretary:
WOLFGANG K. GILOI*

Treasurer:
STEPHEN L. DIAMOND*

2000–2001 IEEE Division V
Director: DORIS L. CARVER †

2001–2002 IEEE Division VIII
Director: THOMAS W. WILLIAMS †

Acting Executive Director:
ANNE MARIE KELLY†

* voting member of the Board of Governors
† nonvoting member of the Board of Governors

30 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Agents and the
Semantic Web
James Hendler, University of Maryland

A t a colloquium I attended recently, a speaker described a “science fiction” vision

comprising agents running around the Web performing complex actions for

their users. The speaker argued that we are far from the day this vision would become

a reality because we don’t have the infrastructure to make it happen.

Although I agree with his assessment about infra-
structure, his claim that we are “far from the day”
is too pessimistic. A crucial component of this infra-
structure, a standardized Web ontology language,
is emerging. This article offers a few pointers to this
emerging area and shows how the ontology
languages of the Semantic Web can lead directly
to more powerful agent-based approaches—that
is, to the realization of my colleague’s “science fic-
tion” vision.

What is an ontology, really?
There are a number of terms we sometimes abuse

in the AI community. These terms become even
more confusing when we interact with other com-
munities, such as Web toolkit developers, who also
abuse them. One such term is ontology, which the
Oxford English Dictionary defines as “the science
or study of being.” In AI, we usually attribute the
notion of ontology to, essentially, the specification
of a conceptualization—that is, defined terms and
relationships between them, usually in some formal
and preferably machine-readable manner.1 Even
more complicated is the relationship between
ontologies and logics. Some people treat ontology
as a subset of logic, some treat logic as a subset of
ontological reasoning, and others consider the terms
disjoint.

In this article, I employ the term as it is currently
being used in Semantic Web circles. I define ontol-
ogy as a set of knowledge terms, including the
vocabulary, the semantic interconnections, and some
simple rules of inference and logic for some partic-

ular topic. For example, the ontology of cooking and
cookbooks includes ingredients, how to stir and
combine the ingredients, the difference between
simmering and deep-frying, the expectation that the
products will be eaten or drunk, that oil is for cook-
ing or consuming and not for lubrication, and so
forth.

In practice, it is useful to consider more complex
logics and inference systems to be separate from an

Many challenges of

bringing communicating

multiagent systems to the

Web require ontologies.

The integration of

agent technology and

ontologies could

significantly affect the

use of Web services and

the ability to extend

programs to perform

tasks for users more

efficiently and with less

human intervention.

Trust

Proof

Logic

Ontology vocabuary

Rules

Data

Data

Self-
describing
document

XML + Name space + XML Schema

Unicode Universal resource
indicator

Di
gi

ta
l s

ig
na

tu
re

Resource Description
Framework + RDF Schema

Figure 1. The Semantic Web “layer cake”
presented by Tim Berners-Lee at the XML 2000
conference.

ontology. Figure 1, derived from a talk given
by Tim Berners-Lee at the recent XML 2000
conference, shows the proposed layers of the
Semantic Web with higher-level languages
using the syntax and semantics of lower lev-
els. This article focuses primarily on the
ontology language level and the sort of agent-
based computing that ontology languages
enable. Higher levels (with complex logics
and the exchange of proofs to establish trust
relationships) will enable even more inter-
esting functionality, but I’ve left those to be
discussed in other articles.

Semantic Web ontologies
The Semantic Web, as I envision it evolv-

ing, will not primarily consist of neat ontolo-
gies that expert AI researchers have carefully
constructed. I envision a complex Web of
semantics ruled by the same sort of anarchy
that rules the rest of the Web. Instead of a
few large, complex, consistent ontologies
that great numbers of users share, I see a
great number of small ontological compo-
nents consisting largely of pointers to each
other. Web users will develop these compo-
nents in much the same way that Web con-
tent is created.

In the next few years, almost every com-
pany, university, government agency, or ad
hoc interest group will want their Web
resources linked to ontological content
because of the many powerful tools that will
be available for using that content. Informa-
tion will be exchanged between applications,
letting programs collect and process Web
content and exchange information freely. On
top of this infrastructure, agent-based com-
puting will become much more practical.
Distributed computer programs interacting
with nonlocal Web-based resources might
eventually become the dominant way in
which computers interact with humans and
each other. Such interaction will also be a pri-
mary means of computation in the not-so-
distant future.

However, for this vision to become a real-
ity, a phenomenon similar to the Web’s early
days must occur. Web users will not mark up
their Web pages unless they perceive value in
doing so, and tools to demonstrate this value
will not be developed unless Web resources
are marked up. To help solve this chicken-
and-egg problem, DARPA is funding a set of
researchers to both develop freely available
tools and provide significant content for these
tools to manipulate. This should demonstrate
to the government and other parts of society

that the Semantic Web can be a reality.
But without some killer apps showing the

great power of Web semantics, it will still be
a long row to hoe. Although I don’t claim to
have all the answers, perhaps some ideas in
the remainder of this article will inspire the
creation of exciting Web-agent applications.
I will develop this vision one step at a time by
describing the creation of pages with onto-
logical information, the definition of services
in a machine-readable form, and the use of
logics and agents that provide important new
capabilities.

Markup for free
A crucial aspect of creating the Semantic

Web is to enable users who are not logic

experts to create machine-readable Web con-
tent. Ideally, most users shouldn’t even need
to know that Web semantics exist. Lowering
markup’s cost isn’t enough; for many users it
must be free. Semantic markup should be a
by-product of normal computer use. Much
like current Web content, a small number of
tool creators and Web ontology designers
will need to know the details, but most users
will not even know ontologies exist.

Consider any of the well-known products
for creating online slide shows. Several of
these products contain libraries of clippings
that you can insert into a presentation. Soft-
ware developers could mark these clippings
with pointers to ontologies. The save-as-
HTML feature could include linking these
products to their respective ontologies. So, a
presentation that had pictures of, for exam-
ple, a cow and a donkey would be linked to
barnyard animals, mammals, animals, and so
forth. While doing so would not guarantee
appropriate semantics—the cow might be the
mascot of some school or the donkey the icon

of some political party—retrieval engines
could use the markups as clues to what the
presentations contain and how they can be
linked to other ones. The user simply creates
a slide show, but the search tools do a better
job of finding results.

An alternative example is a markup tool
driven by one or more ontologies. Consider
a page-creation tool that represents hierar-
chical class relations as menus. Properties of
the classes could be tied to various types of
forms, and these made available through sim-
ple Web forms. A user could thus choose from
a menu to add information about a person,
and then choose a relative (as opposed to a
friend, professional acquaintance, and so
forth) and then a daughter. The system would
use the semantics to retrieve the properties of
daughters specified in the ontologies and to
display them to the user as a form to be filled
out with strings (such as name) or numbers
(age)—or to browse for related links (home-
page), online images (photo-of), and so forth.
The system would then lay these out using
appropriate Web page design tools while
recording the relevant instance information.

Because the tool could be driven by any
ontology, libraries of terms could be created
(and mixed) in many different ways. Thus, a
single easy-to-use tool would allow the cre-
ation of homepages (using ontologies on
people, hobbies, and so forth), professional
pages (using ontologies relating to specific
occupations or industries), or agency-specific
pages (using ontologies relating to specific
functions). In an easy, interactive way the
tool would help a user create a page and
would provide free markup. Also, mixtures
of the various ontologies and forms could be
easily created, thus helping to create the
Semantic Web of pages linking to many dif-
ferent ontologies, as I mentioned earlier.

Incremental ontology creation
Not only can pages be created with links to

numerous ontologies, but the ontologies can
also include links between them to reuse or
change terms. The notion of creating large
ontologies by combining components is not
unique to the Semantic Web vision.2 How-
ever, the ability to link and browse ontolog-
ical relations enabled by the Web’s use of
semantics will be a powerful tool for users
who do know what ontologies are and why
they should be used.

How will it all work? Consider Mary, the
Webmaster for a new business-to-consumer
Web site for an online pet shop. Browsing

MARCH/APRIL 2001 computer.org/intelligent 31

The ability to link and browse

ontological relations enabled by

the Web’s use of semantics will be

a powerful tool for users who do

know what ontologies are and why

they should be used.

through a Web ontology repository (such as
the one at www.daml.org/ontologies/), she
finds that many interesting ontologies are
available. Selecting a product ontology,
Mary uses a browser to choose the various
classes and relations that she wants to
include in her ontology. Several of these
might need to be further constrained depend-
ing on the properties of her particular busi-
ness. For example, Mary must define some
of these properties for the various animals
she will sell.

Searching further in the repository, Mary
finds a biological taxonomy that contains
many classes, such as feline, canine, mammal, and
animal. She finds that these ontologies contain
several properties relevant to her business, so
she provides links to them. She adds a new
descriptor field to animal called product shipping
type and sets it to default to the value alive (not
a standard property or default in the product
ontology she chose to extend).

Finally, she notices that although the
biological ontology contains several kinds
of felines, it didn’t use the categories she
wanted (popular pets, exotic pets, and so
forth), so she adds these classes as subclasses
of the ones in the parent ontology and defines
their properties. Saving this ontology on her
Web site, she can now use other ontology-
based tools to organize and manage her Web
site. Mary is motivated to add the semantics
to her site by both these tools and the other
powerful browsing and search tools that the
semantics enable.

The many ontology-based search and
browsing tools on the Web, when pointed at
her pages, can use this information to distin-
guish her site from the non-ontology-based
sites that her competitors run. This makes it

easy for her to extend her site to use various
business-to-business e-commerce tools that
can exploit Web ontologies for automated
business uses. In addition, she might submit
her ontology back into one of the reposito-
ries so that others in her profession can find
it and use it for their own sites. After all, the
power of the ontologies is in the sharing; the
more people using common terms with her,
the better.

Ontologies and services
Web services might be one of the most

powerful uses of Web ontologies and will be
a key enabler for Web agents. Recently,
numerous small businesses, particularly
those in supply chain management for busi-
ness-to-business e-commerce, have been dis-
cussing the role of ontologies in managing
machine-to-machine interactions. In most
cases, however, these approaches assume that
computer program constructors primarily use
ontologies to ensure that everyone agrees on
terms, types, constraints, and so forth. So, the
agreement is recorded primarily offline and
used in Web management applications. On
the Semantic Web, we will go much further
than this, creating machine-readable ontolo-
gies used by “capable” agents to find these
Web services and automate their use.

A well-known problem with the Web is
that finding the many available Web services
is difficult. For example, when I first started
writing this article, I wanted to send a Web
greeting card but didn’t know the name of
any companies offering such a service. Using
standard keyword-based searches did not
help much. The query “web greeting card”
turned up many links to sites displaying
greeting cards or using the terms on their

pages. In fact, for these three keywords, sev-
eral of the most common search engines did
not turn up the most popular Web greeting
card service provider in their top 20 sugges-
tions. A search on “eCards” would have
found the most popular site, but I didn’t hap-
pen to know this particular neologism.

As I’m finalizing this article, the search
engines are now actually finding the most
popular site with the “web greeting card” key-
words. However, if I want something more
complex—for example, an anniversary card
for my mother-in-law that plays “Hava Nag-
ila”—I’m still pretty much out of luck. As the
number of services grows and the specificity
of our needs increases, the ability of current
search engines to find the most appropriate
services is strained to the limit.

Several efforts are underway to improve
this situation. Some examples are the Uni-
versal Description, Discovery, and Integra-
tion specification (www.uddi.org); ebXML
(www.ebXML.org); and eSpeak (www.
e-speak.hp.com). These efforts focus on
service advertisements. By creating a con-
trolled vocabulary for service advertise-
ments, search engines could find these Web
services. So, Mary’s pet site (discussed
above) might have an annotation that it pro-
vides a “sell” service of object “pet,” which
would let pet buyers find it more easily. Sim-
ilarly, a Web greeting card site could regis-
ter as something such as “personal service,
e-mail, communications,” and a user could
more easily get to it without knowing the
term “eCard.”

Semantic Web techniques can—and must—
go much further. The first use of ontologies
on the Web for this purpose is straightfor-
ward. By creating the service advertisements
in an ontological language, you would be
able to use the hierarchy (and property
restrictions) to find matches through class
and subclass properties or other semantic
links. For example, someone looking to buy
roses might find florists (who sell flowers)
even if no exact match served the purpose.
Using description logic (or other inferential
means), the user could even find categoriza-
tions that weren’t explicit. So, for example,
specifying a search for animals that were of
“size = small” and “type = friendly,” the user
could end up finding the pet shop Mary is
working for, which happens to be overflow-
ing in hamsters and gerbils.

However, by using a combination of Web
pointers, Web markup, and ontology lan-
guages, we can do even better than just

32 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Query Processed:
• A satellite image taken yesterday at 10 AM is available on the Web at http://.…
• A new satellite image, to be taken today at 10 AM, will be available for $100—click here to

authorize transfer of funds and obtain image. (You will need a valid credit card number from
one of the following providers.…)

• In an emergency situation, a Coast Guard observer plane can be sent to any location within the
area you indicate. Service Note: You will be responsible for cost of flight if the situation does
not result in an emergency pickup. Click here for more information.

• A high-altitude observer can be sent to your location in 13 hours. Click here to initiate proce-
dure. (You will need to provide US military authorization, a valid military unit code, and the
name of the commanding officer. Abuse of this procedure can result in fine or imprisonment.)

• A service entitled commercial service for providing satellite images is advertised as becoming
available in 2004. See http://… for more information.

Figure 2. The results of processing a fictitious agent-based query from a fishing vessel
that finds itself in a difficult weather situation.

putting service advertisements into ontolo-
gies. By using these techniques we can also
include a machine-readable description of
a service (as to how it runs) and some
explicit logic describing the consequences
of using the service. Such service descrip-
tions and service logic will lead us to the
integration of agents and ontologies in some
exciting ways.

Agents and services
In an earlier article, I described a vision of

intelligent Web agents using the analogy of
travel agents.3 Rather than doing everything
for a user, the agents would find possible
ways to meet user needs and offer the user
choices for their achievement. Much as a
travel agent might give you a list of several
flights to take, or a choice of flying as
opposed to taking a train, a Web agent could
offer several possible ways to get you what
you need on the Web.

Consider a Web-enabled method for sav-
ing the doomed crew of The Perfect Storm.4

In this story, now a major motion picture, a
crew of fishermen is out at sea when weather
conditions conspire to create a storm of epic
proportions. For various reasons, the crew is
unable to get a detailed weather map, so they
miss that the storm is developing right in their
way. Instead of avoiding it, they end up at its
center, with tragic results.

How could Web agents have helped? As

the ship’s captain goes to call land, a wave
hits and his cell phone is swept overboard.
Luckily, he is a savvy Web user and has
brought his wireless Web device with him.
Checking the weather forecast from a stan-
dard weather site, he determines that a storm
is coming, but he does not find enough detail
for his needs. He goes to an agent-enabled
geographical server site and invokes the
query “Get me a satellite photo of this region
of the Atlantic,” and he draws a box on an
appropriate map.

The system comes back a little later with
the message shown in Figure 2. Options
range from a picture available on the Web
(possibly out of date) to other services (that
might need special resources) and even
future options being announced. The captain
now chooses an option on the basis of what
available resources he has and what criterion
he is willing to accept. Recognizing the grav-
ity of his situation, he invokes the Coast
Guard option, which creates a scheduled
overflight for his GPS location. Seeing the
emerging weather, the Coast Guard arranges
an emergency pickup at sea, and the sailors
can go on to fish again some other day.

Using the tools of the Semantic Web, we
can make this sort of thing routine and avail-
able to anyone who needs to use a Web ser-
vice for any purpose. We simply need to
make expressive service capability adver-
tisements available to, and usable by, Web

agents. Figure 3 depicts a complete instance
of a potential service class. Each service
class has three properties: a pointer to the ser-
vice advertisement as discussed above, a
pointer to a service description, and a declar-
ative service logic. I will discuss the service
logic later; I first want to concentrate on ser-
vice descriptions.

Consider visiting a current business-to-
consumer Web site, such as a book vendor.
When you are ready to order, you usually
have to fill out a form. When you click on the
Submit button, you’re taken to another form
or returned to the same form to provide miss-
ing information or to fix an error. When you
pass through the first form, you get directed
to a new form where the same might happen,
until eventually you provide the information
necessary to complete the order. Most other
Web services require similar interactions,
whether to buy an item, get directions to a
location, or find a particular image.

The most common way to develop these
systems is with the Common Gateway Inter-
face (CGI), in which procedural code is writ-
ten to invoke various functions of the Web
protocols. This code links the set of Web
pages to an external resource, which means
that the invocation procedure is represented
procedurally on the Web. Thus, an agent vis-
iting the page cannot easily determine the set
of information that must be provided or ana-
lyze other features of the code.

MARCH/APRIL 2001 computer.org/intelligent 33

Procedural
code

Universal resource indicator

External resource

Universal resource indicator

Universal resource indicator

Subclass

Display-Service
Type: Geographic
Format: Photo
Return: Display
Value: Weather

Service-Logic
 TransferOccurs(#cost,Service) :=
 Reached(ServState11),ServiceCost(#cost)

Class: WeatherService
 Property: Advertisement
 Value:
 Property: Description
 Value:
 Property: Logic
 Value:

Class:Service

Invocation-Description

Figure 3. A potential service class and its properties on the Semantic Web.

On the Semantic Web, solving this prob-
lem will be easy by using a declarative
framework. Eventually you might wish to
use some sort of Web-enabled logic lan-
guage, but there is a much simpler way to get
started. Figure 3 shows the invocation of the
procedural code through a simple finite-state
automaton. An ontology language such as
DAML+OIL (see the sidebar “DAML and
Other Languages”) could be easily used to
define an ontology—not of services but of
the terms needed to describe the invocation
of services.

Using the example of a finite-state machine
(FSM), we can see what this ontology would
contain. It would start with classes such as
State and Link and have special subclasses such
as StartState and EndState. Constraints and prop-
erties would be described to give links a head
and tail, to give states a list of the links that
lead out from them, and to give states a name,
URI (universal resource identifier), or other
identifying property. This would provide a
base ontology that specific types of service
providers could extend (much as Mary
extended a biological ontology in the earlier
example), and in which specialized ontolo-
gies could easily describe sets of terms for
general use.

For example, a “standard Web sale” could
be defined in some service ontology com-
prising a particular set of states and links. A

service provider could then simply say that a
particular part of a transaction was a standard
Web sale, which would then find the neces-
sary set of links and nodes through a pointer
on the Web.

Exciting capabilities arise through creat-
ing such ontologies. Because these ontolo-
gies are Web-enabled and declarative, agents
coming to a page containing a service
description could analyze the FSM found
there and would be able to determine the par-
ticular information needs for invoking the
service (and reaching an EndState). An agent
that had access to a set of information about
a user could analyze the FSM and determine
if that information would be sufficient for
using this service. If not, the agent could
inform the user as to what additional infor-
mation would be required or other action
taken.

While I’ve described primarily an FSM
approach, there is no reason this couldn’t be
done using any other declarative framework.
More expressive logic languages or other
declarative frameworks would extend the
capabilities of agents to analyze the informa-
tion needs, resource requirements, and pro-
cessing burden of the services so described.
As these languages are linked to CGI scripts
or other procedural techniques, the agents
could perform the procedural invocation.
This would let them actually run the services

(without user intervention), thus allowing a
very general form of agent interaction with
off-Web resources.

Service logics
By defining languages that let users define

structural ontologies, current projects (includ-
ing the DARPA DAML initiative) are explor-
ing the extension of Web ontologies to allow
rules to be expressed within the languages
themselves. These efforts vary in the com-
plexity of the rules allowed, and range from
description logics (as in the DAML+OIL
language mentioned earlier), to SHOE’s use
of Horn-clause-like rules,5 and even to first-
and higher-order logics in several exploratory
efforts.6–9

Whatever types of rules you use, they can
be particularly effective in connection with
the service classes, as Figure 3 shows. The
service class contains (in addition to the ser-
vice advertisement and service description)
a pointer to a URI containing associated ser-
vice logic. This logic can be used to express
information that goes beyond the informa-
tion contained in the service description.

For example, returning to the agent replies
in Figure 2, consider a case in which the ser-
vice offers an up-to-date picture (to be taken
tomorrow) at some particular cost. A rule
such as

TransferOccurs(#cost,Service) :=
Reached(ServState11), ServiceCost(#cost)

might represent the information that the
actual transfer of funds will occur upon
reaching a particular point in the service
invocation (ServState11 in this case). This infor-
mation would not be obvious from the state
machine itself but could be useful in several
kinds of e-commerce transactions. For exam-
ple, users often leave a site without com-
pleting a particular CGI script, and they can-
not always know whether they’ve actually
completed a transaction and incurred a credit
card charge. Using service logics, such things
could be made explicit.

More interesting transactional logics
might also be used. Figure 4 shows a poten-
tial interaction between two Web agents that
can use proof checking to confirm transac-
tions. An agent sends an annotated proof to
another agent. The annotations can be point-
ers to a particular fact on the Web or to an
ontology where a particular rule resides. The
agent receiving this proof can analyze it,
check the pointers (or decide they are trusted

34 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

You owe me $30.

Oh yeah? Prove it.

{Purchased(user1.book1.AOL);www.confirm.com#t1221122}
{Priceof (book1, $30);AOL-historyDB#t29293910}
{Purchase(a,b,c) & Priceof(b,d)->Owes(a,c,d);www.ont.com/prodont} The check is

in the email!

Figure 4. Agents exchanging simple proofs.

by some previous agreements), and check
that the ontology is one it can read and agree
with. This lets the agent recognize that a valid
transaction has occurred and allow the funds
to be transferred.

Such service logics could serve many
other purposes as well. For example, Het-
erogeneous Agent Systems10 discusses the
use of deontic logics and agent programs for
multiagent systems. These logics, tied to the
appropriate service descriptions, can repre-
sent what an agent can do and when it can
or cannot do so. Logical descriptions of ser-
vices could also be used for automated
matchmaking and brokering, for planning a
set of services that together achieve a user’s
goal, and for other capabilities currently dis-
cussed (but not yet implemented) for multi-
agent systems.

Agent-to-agent communication
Of course, having pages, service descrip-

tions, and agent programs that are linked to
many ontologies, which might themselves
include links to still other ontologies and so
on, introduces some compelling issues. Fig-
ure 5 shows a representation of a small piece
of this ontological Web. The small boxes rep-
resent agents or other Web resources that use
the terms in Web ontologies represented by
the larger boxes. The arrows represent any
mechanism that provides a mapping (full or
partial) from one ontology to another. This
mapping can be as simple as inclusion of
terms or as complex as some sort of ad hoc
mapping program that simply reads in terms
from one and spits out terms of another. The
figure shows one DAG (directed acyclic
graph) that could be taken from the much
larger Web of ontologies.

Assuming agents are communicating with
each other using the terms in these ontolo-
gies for the content terms, it is relatively
straightforward for them to communicate. By

linking to these ontologies, the agents com-
mit to using the terms consistently with the
usage mandated in that ontology. If the ontol-
ogy specifies that a particular class has a par-
ticular property and that the property has
some restriction, then each agent can assume
that the other has legal values for that prop-
erty maintaining that restriction.

What is more interesting, agents that are
not using the same ontologies might still be
able to communicate. If all mappings were
perfect, then obviously any agent could com-
municate with any other by finding a com-
mon ontology they could both map into.
More likely, however, is that the ontologies
are only partially or imperfectly mapped.
This would happen, for example, with
Mary’s pet shop site. When Mary defined her
site’s ontology as linking back to the zoo’s
animal ontology, she changed some defini-
tions but left others untouched. Those terms
that were not modified, or were modified in

MARCH/APRIL 2001 computer.org/intelligent 35

The modern IT world is a dynamically changing environment
with an exponentially increasing ability to create and publish
data that rapidly swamps human abilities to process that data
into information. Agent-based computing can potentially help
us recognize complex patterns in this widely distributed, hetero-
geneous, uncertain information environment. Unfortunately,
this potential is hampered by the difficulty agents face in under-
standing and interacting with data that is either unprocessed or
in natural languages. The inability of agents to understand the
conceptual aspects of a Web page, their difficulty in handling
the semantics inherent in program output, and the complexity
of fusing sensor output information—to name but a few prob-
lems—truly keep the agent revolution from happening.

One potential solution is for humans to meet the com-
puter halfway. By using tools to provide markup annotations
attached to data sources, we can make information available
to agents in new and exciting ways. The goal of the DARPA
Agent Markup Language (DAML) program is to develop a lan-
guage aimed at representing semantic relations in machine-
readable ways that will be compatible with current and future
Internet technologies. The program is currently developing
prototype tools to show the potential of such markups to pro-
vide revolutionary capabilities that will change the way humans
interact with information.

To realize these goals, Internet markup languages must move
beyond the implicit semantic agreements inherent in XML and
community-specific controlled languages. DARPA is leading the
way with DAML, which will be a semantic language that ties
the information on a page to machine-readable semantics. The
language must allow for communities to extend simple ontolo-
gies for their own use, allowing the bottom-up design of mean-
ing while allowing sharing of higher-level concepts. In addition,
the language will provide mechanisms for the explicit represen-

tation of services, processes, and business models so as to allow
nonexplicit information (such as that encapsulated in programs
or sensors) to be recognized.

DAML will provide a number of advantages over current
markup approaches. It will allow semantic interoperability at
the level we currently have syntactic interoperability in XML.
Objects in the Web can be marked (manually or automatically)
to include descriptions of information they encode, descrip-
tions of functions they provide, and descriptions of data they
can produce. Doing so will allow Web pages, databases, pro-
grams, models, and sensors all to be linked together by agents
that use DAML to recognize the concepts they are looking for.
If successful, information fusion from diverse sources will
become a reality.

DARPA funds work in the development of DAML to help
the US military in areas of command and control and for use
in military intelligence. For example, one use of DAML is to
improve the organization and retrieval of large military infor-
mation stores such as those at the US Center for Army Lessons
Learned. With respect to intelligence, DAML is aimed at improv-
ing the integration of information from many sources to pro-
vide specific indications and warnings aimed at preventing ter-
rorist attacks on military targets such as last year's attack on the
USS Cole in Yemen.

Recently, an ad hoc group of researchers formed the Joint
US–EU committee on Agent Markup Languages and released a
new version of DAML called DAML+OIL. This language is based
on the Resource Description Framework (www.w3.org/rdf);
you can find discussion of RDF’s features on an open mailing
list archived at http://lists.w3.org/Archives/Public/www-rdf-
logic. For details of the language, a repository of numerous
ontologies and annotated Web pages, and a full description of
DAML and related projects see www.daml.org.

DAML and Other Languages

certain restricted ways, could be mapped
even if others couldn’t. So, those ontologies
made by combination and extension of oth-
ers could, in principle, be partially mapped
without too much trouble.

With this in mind, let’s reconsider the DAG
in Figure 5. Clearly, many of these agents
could be able to find at least some terms that
they could share with others. For agents such
as those pointing at ontologies C and E, the
terms they share might be some sort of sub-
set. In this case the agent at E might be able
to use only some of the terms in C (those that
were not significantly changed when E was
defined). Other agents, such as the ones point-
ing at F and G, might share partial terms from
another ontology that they both changed (D in
this case). In fact, all of the agents might share
some terms with all the others, although this
might take several mappings (and thus there
might be very few common terms, if any, in
some cases).

The previous discussion is purposely
vague regarding what these mappings are and
how they work. For certain kinds of restricted
mappings, we might be able to obtain some
interesting formal results. For example, if all
mappings are inclusion links—that is, the
lower ontology includes all the terms from
the upper one in Figure 5—and we can find
a rooted DAG among a set of agents, then we
could guarantee that all those agents will
share some terms with all others (although, in
the worst case, some might only share the
terms from the uppermost ontology). If the
mappings are more ad hoc—they might, for
example, be some sort of procedural maps
defined by hand—we might lose provable
properties but gain power or efficiency.

The research issues inherent in such ontol-
ogy mappings are quite interesting and chal-
lenging. Two agents that communicate often
might want to have maximal mappings or
even a merged ontology. Two agents that are
simply sending a single message (such as the
invocation of an online service) might want
some sort of quick on-the-fly translation lim-
ited to the terms in a particular message.
Another approach might be to use very large
ontologies, such as CYC,11 to infer mapping
terms between agents in other ontologies.
The possibilities are endless and are another
exciting challenge for researchers interested
in bringing agents to the Semantic Web.

Idid not intend this article to be a compre-
hensive technical tome. Rather, I hope that

I have convinced you that several strands of
research in AI, Web languages, and multi-
agent systems can be brought together in
exciting and interesting ways.

Many of the challenges inherent in bring-
ing communicating multiagent systems to the
Web require ontologies of the type being
developed in DARPA’s DAML program and
elsewhere. What is more important, the inte-
gration of agent technology and ontologies
might significantly affect the use of Web ser-
vices and the ability to extend programs to
perform tasks for users more efficiently and
with less human intervention.

Unifying these research areas and bring-
ing to fruition a Web teeming with complex,
intelligent agents is both possible and prac-
tical, although a number of research chal-
lenges still remain. The pieces are coming
together, and thus the Semantic Web of
agents is no longer a science fiction future.
It is a practical application on which to focus
current efforts.

Acknowledgments
This paper benefited from reviews by a wide

number of early readers. I especially thank Oliver
Selfridge, who offered a comprehensive review,
including the addition of several paragraphs. I also
thank David Ackley, Tim Berners-Lee, Dan Brick-
ley, Dan Connolly, Jeff Heflin, George Cybenko,
Ora Lassila, Deborah McGuinness, Sheila Mc-
Ilraith, Frank van Harmelen, Dieter Fensel, and

36 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Web sites
W3C Semantic Web Activity: www.w3.org/2001/sw
The DAML project: www.daml.org
The SHOE project: www.cs.umd.edu/projects/plus/SHOE
The Semantic Web Community Portal: www.semanticweb.org

Articles
J. Heflin, J. Hendler, and S. Luke, “Reading between the Lines: Using SHOE to

Discover Implicit Knowledge from the Web,” Proc. AAAI-98 Workshop AI and
Information Integration, AAAI Press, Menlo Park, Calif., 1998, www.cs.umd.edu/
projects/plus/SHOE/pubs/shoe-aaai98.ps.

S. McIlraith, “Modeling and Programming Devices and Web Agents,” to be pub-
lished in Proc. NASA Goddard Workshop Formal Approaches to Agent-Based Sys-
tems, Springer-Verlag, New York.

F. Zini and L. Sterling, “Designing Ontologies for Agents,” Proc. Appia-Gulp-
Prode 99: Joint Conf. Declarative Programming, 1999, pp. 29–42.

For Further Reading

Uses

A

Uses

Uses

Uses

Uses
Uses

Uses

E

Uses

B

F

D

C

G

Figure 5. Mappings between agents and the ontologies they use.

many participants in the CoABS, DAML, and
TASK DARPA initiatives who offered comments
on earlier drafts. Finally, I am indebted to an
anonymous reviewer who, shall we say, wasn’t
impressed by an earlier version of this article and
demanded copious changes. I made many of these
changes, which improved the article greatly.

References
1. T.R. Gruber, “A Translation Approach to

Portable Ontologies,” Knowledge Acquisition,
vol. 5, no. 2, 1993, pp. 199–220.

2. P. Clark and B. Porter, “Building Concept
Representations from Reusable Compo-
nents,” Proc. 14th Nat’l Conf. Artificial Intel-
ligence (AAAI-97), MIT Press, Cambridge,
Mass., 1997, pp. 369–376.

3. J. Hendler, “Is There an Intelligent Agent in
Your Future?” Nature, 11 Mar. 1999, www.
nature.com/nature/webmatters/agents/agents.
html (current 19 Mar. 2001).

4. S. Junger, The Perfect Storm: A True Story of
Men against the Sea, W.W. Norton and Co.,
London, 1997.

5. J. Heflin and J. Hendler, “Dynamic Ontolo-
gies on the Web,” Proc. 17th Nat’l Conf. Arti-
ficial Intelligence (AAAI 2000), MIT Press,

Cambridge, Mass., 2000, pp. 443–449.

6. A.W. Appel and E.W. Felten, “Proof-
Carrying Authentication,” Proc. 6th ACM Conf.
Computer and Communications Security,ACM
Press, New York, 1999; www.cs.princeton.
edu/~appel/papers/fpcc.pdf.

7. D. Fensel et al., “The Component Model of
UPML in a Nutshell,” Proc. 1st Working IFIP
Conf. Software Architecture (WICSA 1),
Kluwer Academic Publishers, 1999, ftp.aifb.
uni-karlsruhe.de/pub/mike/dfe/paper/
upml.ifip.pdf.

8. D. Fensel et al., “OIL in a Nutshell,” Proc.
12th European Workshop Knowledge Acqui-
sition, Modeling, and Management (EKAW-
00), Springer-Verlag, New York, 2000; www.
few.vu.nl/~frankh/postscript/EKAW00.pdf.

9. M. Genesereth et al., Knowledge Interchange
Format Version 3.0 Reference Manual, http://
logic.stanford.edu/kif/Hypertext/kif-manual.
html.

10. V.S. Subrahmanian et al., Heterogeneous Agent
Systems, MIT Press, Cambridge, Mass., 2000.

11. D. Lenat and R. Guha, Building Large Knowl-
edge-Based Systems: Representation and Infer-
ence in the CYC Project, Addison-Wesley,
Reading, Mass., 1990.

MARCH/APRIL 2001 computer.org/intelligent 37

T h e A u t h o r
James Hendler is the
Chief Scientist of
DARPA’s Information
Systems Office and
the program manager
responsible for agent-
based computing. He
is on leave from the
University of Mary-

land where he is a professor and head of both
the Autonomous Mobile Robots Laboratory and
the Advanced Information Technology Labora-
tory. He has joint appointments in the Depart-
ment of Computer Science, the Institute for
Advanced Computer Studies, the Institute for
Systems Research, and is also an affiliate of the
Electrical Engineering Department. He received
a PhD in artificial intelligence from Brown Uni-
versity. Hendler received a 1995 Fulbright Foun-
dation Fellowship, is a Fellow of the American
Association for Artificial Intelligence, and is a
member of the US Air Force Science Advisory
Board. Contact him at jhendler@darpa.mil;
www.cs.umd.edu/~hendler.

IEEE Intelligent Systems seeks papers on all
aspects of artificial intelligence, focusing on the

development of the latest research into practical,
fielded applications. Papers should range from
3,000 to 7,500 words, including figures, which

each count as 250 words.

Submit one double-spaced copy
and a cover letter or e-mail to

Magazine Assistant
IEEE Intelligent Systems

10662 Los Vaqueros Circle
PO Box 3014

Los Alamitos, CA 90720-1314
phone +1 714 821 8380; fax +1 714 821 4010

isystems@computer.org.

For author guidelines, see
http://computer.org/intelligent/author.htm

2001

Call for PapersCall for Papers

38 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

OIL: An Ontology
Infrastructure
for the Semantic Web
Dieter Fensel and Frank van Harmelen, Vrije Universiteit, Amsterdam
Ian Horrocks, University of Manchester, UK
Deborah L. McGuinness, Stanford University
Peter F. Patel-Schneider, Bell Laboratories

R esearchers in artificial intelligence first developed ontologies to facilitate knowl-

edge sharing and reuse. Since the beginning of the 1990s, ontologies have

become a popular research topic, and several AI research communities—including

knowledge engineering, natural language processing, and knowledge representation—

have investigated them. More recently, the notion of
an ontology is becoming widespread in fields such
as intelligent information integration, cooperative
information systems, information retrieval, elec-
tronic commerce, and knowledge management.
Ontologies are becoming popular largely because of
what they promise: a shared and common under-
standing that reaches across people and application
systems.

Currently, ontologies applied to the World Wide
Web are creating the Semantic Web.1 Originally, the
Web grew mainly around HTML, which provides a
standard for structuring documents that browsers can
translate in a canonical way to render those docu-
ments. On the one hand, HTML’s simplicity helped
spur the Web’s fast growth; on the other, its simplic-
ity seriously hampered more advanced Web appli-
cations in many domains and for many tasks. This
led to XML (see Figure 1), which lets developers
define arbitrary domain- and task-specific extensions
(even HTML appears as an XML application—
XHTML).

XML is basically a defined way to provide a seri-
alized syntax for tree structures—it is an important
first step toward building a Semantic Web, where

application programs have direct access to data
semantics. The resource description framework2

has taken an important additional step by defining
a syntactical convention and a simple data model
for representing machine-processable data seman-
tics. RDF is a standard for the Web metadata the
World Wide Web Consortium (www.w3c.org/rdf)
develops, and it defines a data model based on
triples: object, property, and value. The RDF
Schema3 takes a step further into a richer represen-
tation formalism and introduces basic ontological
modeling primitives into the Web. With RDFS, we
can talk about classes, subclasses, subproperties,
domain and range restrictions of properties, and so
forth in a Web-based context. We took RDFS as a
starting point and enriched it into a full-fledged
Web-based ontology language called OIL.4 We
included these aspects:

• A more intuitive choice of some of the modeling
primitives and richer ways to define concepts and
attributes.

• The definition of a formal semantics for OIL.
• The development of customized editors and infer-

ence engines to work with OIL.

Ontologies play a

major role in

supporting information

exchange across

various networks. A

prerequisite for such a

role is the development

of a joint standard for

specifying and

exchanging ontologies.

The authors present

OIL, a proposal for

such a standard.

Ontologies: A revolution
for information access and
integration

Many definitions of ontologies have sur-
faced in the last decade, but the one that in
our opinion best characterizes an ontology’s
essence is this: “An ontology is a formal,
explicit specification of a shared conceptual-
ization.”5 In this context, conceptualization
refers to an abstract model of some phenom-
enon in the world that identifies that phe-
nomenon’s relevant concepts. Explicit means
that the type of concepts used and the con-
straints on their use are explicitly defined, and
formal means that the ontology should be
machine understandable. Different degrees
of formality are possible. Large ontologies
such as WordNet (www.cogsci.princeton.
edu/~wn) provide a thesaurus for over
100,000 terms explained in natural language.
On the other end of the spectrum is CYC
(www.cyc.com), which provides formal
axiomating theories for many aspects of com-
monsense knowledge. Shared reflects the
notion that an ontology captures consensual
knowledge—that is, it is not restricted to
some individual but is accepted by a group.

The three main application areas of ontol-
ogy technology are knowledge management,
Web commerce, and electronic business.

Knowledge management
KM is concerned with acquiring, maintain-

ing, and accessing an organization’s knowl-
edge. Its purpose is to exploit an organization’s
intellectual assets for greater productivity, new
value, and increased competitiveness. Owing
to globalization and the Internet’s impact,
many organizations are increasingly geo-
graphically dispersed and organized around
virtual teams. With the large number of online
documents, several document management
systems have entered the market. However,
these systems have weaknesses:

• Searching information: Existing keyword-
based searches retrieve irrelevant informa-
tion that uses a certain word in a different
context; they might miss information when
different words about the desired content
are used.

• Extracting information: Current human
browsing and reading requires extracting
relevant information from information
sources. Automatic agents lack the com-
monsense knowledge required to extract
such information from textual representa-
tions, and they fail to integrate informa-

tion spread over different sources.
• Maintaining: Sustaining weakly struc-

tured text sources is difficult and time-
consuming when such sources become
large. Keeping such collections consis-
tent, correct, and up to date requires a
mechanized representation of semantics
and constraints that can help detect
anomalies.

• Automatic document generation: Adaptive
Web sites that enable dynamic reconfigu-
ration according to user profiles or other
relevant aspects could prove very useful.
The generation of semistructured infor-
mation presentations from semistructured
data requires a machine-accessible repre-
sentation of the semantics of these infor-
mation sources.

Using ontologies, semantic annotations
will allow structural and semantic definitions
of documents. These annotations could pro-
vide completely new possibilities: intelligent
search instead of keyword matching, query
answering instead of information retrieval,
document exchange between departments
through ontology mappings, and definitions
of views on documents.

Web commerce
E-commerce is an important and growing

business area for two reasons. First, e-com-
merce extends existing business models—it
reduces costs, extends existing distribution
channels, and might even introduce new dis-
tribution possibilities. Second, it enables com-
pletely new business models and gives them
a much greater importance than they had
before. What has up to now been a peripheral
aspect of a business field can suddenly receive
its own important revenue flow.

Examples of business field extensions are
online stores; examples of new business
fields are shopping agents and online mar-
ketplaces and auction houses that turn com-
parison shopping into a business with its
own significant revenue flow. The advan-
tages of online stores and their success sto-
ries have led to a large number of shopping
pages. The new task for customers is to find
a shop that sells the product they’re seek-
ing, getting it in the desired quality, quan-
tity, and time, and paying as little as possi-
ble for it. Achieving these goals through
browsing requires significant time and only
covers a small share of the actual offers.
Shopbots visit several stores, extract prod-
uct information, and present it to the cus-

tomer as an instant market overview. Their
functionality is provided through wrappers,
which use keyword search to find product
information together with assumptions on
regularities in presentation format and text
extraction heuristics. This technology has
two severe limitations:

• Effort: Writing a wrapper for each online
store is time-consuming, and changes in
store presentation or organization increase
maintenance.

• Quality: The extracted product informa-
tion is limited (it contains mostly price
information), error-prone, and incomplete.
For example, a wrapper might extract the
product price, but it usually misses indi-
rect costs such as shipping.

Most product information is provided in
natural language; automatic text recognition
is still a research area with significant
unsolved problems. However, the situation
will drastically change in the near future
when standard representation formalisms for
data structure and semantics are available.
Software agents will then understand prod-
uct information. Meta online stores will grow
with little effort, which will enable complete
market transparency in the various dimen-
sions of the diverse product properties.
Ontology mappings, which translate different
product descriptions, will replace the low-
level programming of wrappers, which is
based on text extraction and format heuris-
tics. An ontology will describe the various
products and help navigate and search auto-
matically for the required information.

Electronic business
E-commerce in the business-to-business

field (B2B) is not new—initiatives to sup-
port it in business processes between dif-
ferent companies existed in the 1960s. To
exchange business transactions electroni-
cally, sender and receiver must agree on a

MARCH/APRIL 2001 computer.org/intelligent 39

DAML-O OIL

RDFS

RDF

XMLHTML

XHTML

Figure 1. The layer language model for
the Web.

standard (a protocol for transmitting con-
tent and a language for describing content).
A number of standards arose for this pur-
pose—one of them is the UN initiative,
Electronic Data Interchange for Adminis-
tration, Commerce, and Transport (Edifact).
In general, the automation of business trans-
actions has not lived up to the propagan-
dists’ expectations, partly because of the
serious shortcomings of approaches such as
Edifact: It is a procedural and cumbersome
standard, making the programming of busi-
ness transactions expensive and error-prone,
and it results in large maintenance efforts.
Moreover, the exchange of business data
over extranets is not integrated with other
document exchange processes—Edifact is
an isolated standard.

Using the Internet’s infrastructure for
business exchange will significantly im-
prove this situation. Standard browsers can
render business transactions and transpar-
ently integrate them into other document
exchange processes in intranet and Internet
environments. However, the fact that HTML
does not provide a means for presenting rich
syntax and data semantics hampers this.
XML, which is designed to close this gap
in current Internet technology, drastically
changes the situation. We can model B2B
communication and data exchange with the
same means available for other data
exchange processes, we can render transac-
tion specifications on standard browsers,
and maintenance is cheap. However,
although XML provides a standard serial-
ized syntax for defining data structure and
semantics, it does not provide standard data
structures and terminologies to describe
business processes and exchanged products.
Therefore, XML-based e-commerce will

need ontologies in two important ways:

• Standard ontologies must cover the vari-
ous business areas. In addition to official
standards, vertical marketplaces (Internet
portals) could generate de facto stan-
dards—if they can attract significant
shares of a business field’s online trans-
actions. Examples include Dublin Core,
Common Business Library (CBL), Com-
merce XML (cXML), ecl@ss, Open
Applications Group Integration Specifi-
cation (OAGIS), Open Catalog Format
(OCF), Open Financial Exchange (OFX),
Real Estate Transaction Markup Lan-
guage (RETML), RosettaNet, UN/SPSC
(see www.diffuse.org), and UCEC.

• Ontology-based translation services must
link different data structures in areas
where standard ontologies do not exist or
where a particular client needs a transla-
tion from his or her terminology into the
standard. This translation service must
cover structural and semantic as well as
language differences (see Figure 2).

Ontology-based trading will significantly
extend the degree to which data exchange is
automated and will create completely new busi-
ness models in participating market segments.

Why OIL?
Effective, efficient work with ontologies

requires support from advanced tools. We
need an advanced ontology language to
express and represent ontologies. This lan-
guage must meet three requirements:

• It must be highly intuitive to the human
user. Given the success of the frame-based
and object-oriented modeling paradigm,

an ontology should have a frame-like look
and feel.

• It must have a well-defined formal seman-
tics with established reasoning properties
to ensure completeness, correctness, and
efficiency.

• It must have a proper link with existing
Web languages such as XML and RDF to
ensure interoperability.

Many of the existing languages such as
CycL,6 KIF,7 and Ontolingua8 fail. However,
OIL9 matches these criteria and unifies the
three important aspects that different com-
munities provide: epistemologically rich
modeling primitives as provided by the frame
community, formal semantics and efficient
reasoning support as provided by description
logics, and a standard proposal for syntacti-
cal exchange notations as provided by the
Web community.

Frame-based systems
The central modeling primitives of pred-

icate logic are predicates. Frame-based and
object-oriented approaches take a different
viewpoint. Their central modeling primi-
tives are classes (or frames) with certain
properties called attributes. These attributes
do not have a global scope but apply only
to the classes for which they are defined—
we can associate the “same” attribute (the
same attribute name) with different range
and value restrictions when defined for dif-
ferent classes. A frame provides a context
for modeling one aspect of a domain.
Researchers have developed many other
additional refinements of these modeling
constructs, which have led to this modeling
paradigm’s incredible success.

Many frame-based systems and lan-
guages have emerged, and, renamed as
object orientation, they have conquered the
software engineering community. OIL
incorporates the essential modeling primi-
tives of frame-based systems—it is based
on the notion of a concept and the defini-
tion of its superclasses and attributes. Rela-
tions can also be defined not as an attribute
of a class but as an independent entity hav-
ing a certain domain and range. Like
classes, relations can fall into a hierarchy.

Description logics
DL describes knowledge in terms of con-

cepts and role restrictions that can auto-
matically derive classification taxonomies.
Knowledge representation research’s main

40 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Product
catalogue

Product
catalogue

Business Business

Translation
server

Order
information

Bestell-
information

<Auto>
 <Name>Daimler 230 SE</Name>
 <Preis>40.000 DM</Preis>
</Auto>

<product>
 <type>Car</type>
 <name>Daimler 230 SE </name>
 <price> 23,000 $</price>
</product>

Figure 2. The translation of structure, semantics, and language.

thrust is to provide theories and systems for
expressing structured knowledge and for
accessing and reasoning with it in a princi-
pled way. In spite of the discouraging theo-
retical complexity of the results, there are
now efficient implementations for DL lan-
guages, which we explain later. OIL inher-
its from DL its formal semantics and the
efficient reasoning support.

Web standards: XML and RDF
Modeling primitives and their semantics

are one aspect of an ontology language, but
we still have to decide about its syntax.
Given the Web’s current dominance and
importance, we must formulate a syntax of
an ontology exchange language with exist-
ing Web standards for information repre-
sentation. First, OIL has a well-defined syn-
tax in XML based on a document type
definition and an XML Schema definition.
Second, OIL is an extension of RDF and
RDFS. With regard to ontologies, RDFS
provides two important contributions: a stan-
dardized syntax for writing ontologies and
a standard set of modeling primitives such
as instance-of and subclass-of relationships.

OIL’s layered architecture
A single ontology language is unlikely to

fulfill all the needs of the Semantic Web’s
large range of users and applications. We
therefore organized OIL as a series of ever-
increasing layers of sublanguages. Each
additional layer adds functionality and com-
plexity to the previous one. Agents (humans
or machines) that can only process a lower
layer can still partially understand ontolo-
gies expressed in any of the higher layers. A
first and very important application of this
principle is the relation between OIL and
RDFS. As Figure 3 shows, core OIL coin-
cides largely with RDFS (with the excep-
tion of RDFS’s reification features). This
means that even simple RDFS agents can
process OIL ontologies and pick up as much
of their meaning as possible with their lim-
ited capabilities.

Standard OIL aims to capture the neces-
sary mainstream modeling primitives that
provide adequate expressive power and are
well understood, thus precisely specifying
the semantics and making complete infer-
ence viable.

Instance OIL includes a thorough individ-
ual integration. Although the previous
layer—Standard OIL—includes modeling
constructs that specify individual fillers in

term definitions, Instance OIL includes a
full-fledged database capability.

Heavy OIL will include additional repre-
sentational (and reasoning) capabilities. A
more expressive rule language and metaclass
facilities seem highly desirable. We will
define these extensions of OIL in coopera-
tion with the DAML (DARPA Agent Markup
Language; www.daml.org) initiative for a
rule language for the Web.

OIL’s layered architecture has three
advantages:

• An application is not forced to work with
a language that offers significantly more
expressiveness and complexity than is
needed.

• Applications that can only process a lower
level of complexity can still catch some of
an ontology’s aspects.

• An application that is aware of a higher
level of complexity can still understand
ontologies expressed in a simpler ontol-
ogy language.

Defining an ontology language as an
extension of RDFS means that every RDFS
ontology is a valid ontology in the new lan-
guage (an OIL processor will also understand
RDFS). However, the other direction is also
possible: Defining an OIL extension as
closely as possible to RDFS allows maximal
reuse of existing RDFS-based applications
and tools. However, because the ontology
language usually contains new aspects (and
therefore a new vocabulary, which an RDFS
processor does not know), 100 percent com-
patibility is impossible. Let’s look at an
example. The following OIL expression
defines herbivore as a class, which is a sub-
class of animal and disjunct to all carnivores:

<rdfs:Class rdf:ID=”herbivore”>
<rdf:type

rdf:resource=”http://www.
ontoknowledge.org/oil/RDFS-

schema/#DefinedClass”/>
<rdfs:subClassOf rdf:resource=”#animal”/>
<rdfs:subClassOf>

<oil:NOT>
<oil:hasOperand rdf:resource=”

#carnivore”/>
</oil:NOT>

</rdfs:subClassOf>
</rdfs:Class>

An application limited to pure RDFS can
still capture some aspects of this definition:

<rdfs:Class rdf:ID=”herbivore”>
<rdfs:subClassOf rdf:resource=”#animal”/>
<rdfs:subClassOf>

…
</rdfs:subClassOf>

</rdfs:Class>

It encounters that herbivore is a subclass of
animal and a subclass of a second class, which
it cannot understand properly. This seems to
preserve complicated semantics for simpler
applications.

An illustration of the OIL
modeling primitive

An OIL ontology is itself annotated with
metadata, starting with such things as title,
creator, creation date, and so on. OIL follows
the W3C Dublin Core Standard on biblio-
graphical meta date for this purpose.

Any ontology language’s core is its hier-
archy of class declarations, stating, for exam-
ple, that DeskJet printers are a subclass of
printers. We can declare classes as defined,
which indicates that the stated properties are
not only necessary but also sufficient condi-
tions for class membership. Instead of using
single types in expressions, we can combine
classes in logical expressions indicating
intersection, union, and complement of
classes.

We can declare slots (relations between
classes) together with logical axioms, stating
whether they are functional (having at most
one value), transitive, or symmetric, and stat-
ing which (if any) slots are inverse. We can
state range restrictions as part of a slot decla-
ration as well as the number of distinct values
that a slot may have. We can further restrict
slots by value-type or has-value restrictions. A
value-type restriction demands that every
value of the property must be of the stated

MARCH/APRIL 2001 computer.org/intelligent 41

Heavy OIL
(possible future extensions)

Standard OIL

Core OIL
(Standard OIL ^ RDFS)

Instance OIL
(Standard OIL + RDFS) RDFS

Reification

Figure 3. OIL’s layered language model.

42 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

type; has-value restrictions require the slot to
have at least values from the stated type.

A crucial aspect of OIL is its formal
semantics.10 An OIL ontology is given a for-
mal semantics by mapping each class into a
set of objects and each slot into a set of pairs
of objects. This mapping must obey the con-
straints specified by the definitions of the
classes and slots. We omit the details of this

formal semantics, but it must exist and be
consulted whenever necessary to resolve dis-
putes about the meaning of language con-
structions. It is an ultimate reference point
for OIL applications.

Figure 4 shows a very simple example of
an OIL ontology provided by SemanticEdge
(www.interprice.com). It illustrates OIL’s
most basic constructs.

This defines a number of classes and
organizes them in a class hierarchy (for
example, HPProduct is a subclass of Product).
Various properties (or slots) are defined,
together with the classes to which they
apply (such as a Price is a property of any
Product, but a PrintingResolution can only be
stated for a Printer, an indirect subclass of
Product). For certain classes, these proper-
ties have restricted values (for example, the
price of any HPLaserJet1100se is restricted
to $479). In OIL, we can also combine
classes by using logical expressions—for
example, an HPPrinter is both an HPProduct
and a Printer (and consequently inherits the
properties from both classes).

OIL tools
OIL has strong tool support in three areas:

• ontology editors, to build new ontologies;
• ontology-based annotation tools, to link

unstructured and semistructured informa-
tion sources with ontologies; and

• reasoning with ontologies, which enables
advanced query-answering services, sup-
ports ontology creation, and helps map
between different ontologies.

Ontology editors
Ontology editors help human knowledge

engineers build ontologies—they support the
definition of concept hierarchies, the defini-
tion attributes for concepts, and the defini-
tion of axioms and constraints. They must
provide graphical interfaces and conform to
existing standards in Web-based software
development. They enable the inspecting,
browsing, codifying, and modifying of
ontologies, and they support ontology devel-
opment and maintenance tasks. Currently,
two editors for OIL are available, and a third
is under development:

• OntoEdit (see Figure 5) is an ontology-
engineering environment developed at the
Knowledge Management Group of the
University of Karlsruhe, Institute AIFB
(http://ontoserver.aifb.uni-karlsruhe.de/

ontoedit). Currently, OntoEdit supports
Frame-Logic, OIL, RDFS, and XML. It is
commercialized from Ontoprise (www.
ontoprise.de).

• OILed is a freely available and customized
editor for OIL implemented by the Uni-
versity of Manchester and sponsored by
the Vrije Universiteit, Amsterdam, and
SemanticEdge (see http://img.cs.man.ac.
uk/oil). OILed aims to provide a simple
freeware editor that demonstrates—and
stimulates interest in—OIL. OILed is not
intended to be a full ontology development
environment—it will not actively support
the development of large-scale ontologies,
the migration and integration of ontolo-
gies, versioning, argumentation, and many
other activities that are involved in ontol-
ogy construction. Rather, it is a NotePad
for ontology editors that offers just enough
functionality to let users build ontologies
and demonstrate how to check them for
consistency.

• Protégé11 lets domain experts build knowl-
edge-based systems by creating and mod-
ifying reusable ontologies and problem-
solving methods (see www.smi.stanford.
edu/projects/protege). Protégé generates
domain-specific knowledge acquisition
tools and applications from ontologies.
More than 30 countries have used it. It is
an ontology editor that can define classes
and class hierarchy, slots and slot-value
restrictions, and relationships between
classes and properties of these relation-
ships. The instances tab is a knowledge
acquisition tool that can acquire instances
of the classes defined in the ontology. Pro-
tégé, built at Stanford University, currently
supports RDF—work on extending it to
OIL is starting.

Ontology-based annotation tools
Ontologies can describe large instance

populations. In OIL’s case, two tools cur-
rently aid such a process. First, we can derive
an XML DTD and an XML Schema defini-
tion from an ontology in OIL. Second, we
can derive an RDF and RDFS definition for
instances from OIL. Both provide means to
express large volumes of semistructured
information as instance information in OIL.
More details appear elsewhere.4,12,13

Reasoning with ontologies: Instance
and schema inferences

Inference engines for ontologies can rea-
son about an ontology’s instances and

class-def Product
slot-def Price

domain Product
slot-def ManufacturedBy

domain Product
class-def PrintingAndDigitalImagingProduct

subclass-of Product
class-def HPProduct

subclass-of Product
slot-constraint ManufacturedBy

has-value “Hewlett Packard”
class-def Printer

subclass-of PrintingAndDigitalImagingProduct
slot-def PrinterTechnology

domain Printer
slot-def Printing Speed

domain Printer
slot-def PrintingResolution

domain Printer
class-def PrinterForPersonalUse

subclass-of Printer
class-def HPPrinter

subclass-of HPProduct and Printer
class-def LaserJetPrinter

subclass-of Printer
slot-constraint PrintingTechnology

has-value “Laser Jet”
class-def HPLaserJetPrinter

subclass-of LaserJetPrinter and HPProduct
class-def HPLaserJet1100Series

subclass-of HPLaserJetPrinter and PrinterFor
PersonalUse

slot-constraint PrintingSpeed
has-value “8 ppm”

slot-constraint PrintingResolution
has-value “600 dpi”

class-def HPLaserJet1100se
subclass-of HPLaserJet1100Series
slot-constraint Price

has-value “$479”
class-def HPLaserJet1100xi

subclass-of HPLaserJet1100Series
slot-constraint Price

has-value “$399”

Figure 4. A small printer ontology in OIL.

schema definition. For example, they can
automatically derive the right position of a
new concept in a given concept hierarchy.
Such reasoners help build ontologies and
use them for advanced information access
and navigation. OIL uses the FaCT (Fast
Classification of Terminologies, www.cs.
man.ac.uk/~horrocks/FaCT) system to pro-
vide reasoning support for ontology design,
integration, and verification. FaCT is a DL
classifier that can provide consistency
checking in modal and other similar logics.
FaCT’s most interesting features are its
expressive logic, its optimized tableaux
implementation (which has now become the
standard for DL systems), and its Corba-
based client–server architecture. FaCT’s
optimizations specifically aim to improve
the system’s performance when classifying
realistic ontologies. This results in perfor-
mance improvements of several orders of
magnitude compared with older DL sys-
tems. This performance improvement is
often so great that it is impossible to mea-
sure precisely because nonoptimized sys-
tems are virtually nonterminating with
ontologies that FaCT can easily deal with.14

For example, for a large medical terminol-
ogy ontology developed in the GALEN pro-
ject,15 FaCT can check the consistency of
all 2,740 classes and determine the com-
plete class hierarchy in approximately 60
seconds of CPU (450-MHz Pentium III)
time. FaCT can be accessed through a Corba
interface.

Applications of OIL
Earlier, we sketched three application

areas for ontologies: knowledge manage-
ment, Web commerce, and e-business. Not
surprisingly, we find applications of OIL in
all three areas. On-To-Knowledge (www.
ontoknowledge.org)16 extends OIL to a full-
fledged environment for knowledge man-
agement in large intranets and Web sites.
Unstructured and semistructured data is auto-
matically annotated, and agent-based user
interface techniques and visualization tools
help users navigate and query the informa-
tion space. Here, On-To-Knowledge contin-
ues a line of research that began with
SHOE17 and Ontobroker:18 using ontologies
to model and annotate the semantics of infor-
mation resources in a machine-processable
manner. On-To-Knowledge is carrying out
three industrial case studies to evaluate the
tool environment for ontology-based knowl-
edge management.

Swiss Life: Organizational memory
Swiss Life19 (www.swisslife.ch) imple-

ments an intranet-based front end to an
organizational memory with OIL. The start-
ing point is the existing intranet informa-
tion system, called ZIS, which has consid-
erable drawbacks. Its great flexibility
allows for its evolution with actual needs,
but this also makes finding certain infor-
mation difficult. Search engines help only
marginally. Clearly, formalized knowledge
is connected with weakly structured back-
ground knowledge here—experience shows
that this is extremely bothersome and error-
prone to maintain. The only way out is to
apply content-based information access so
that we no longer have a mere collection of
Web pages but a full-fledged information
system that we can rightly call an organi-
zational memory.

British Telecom: Call centers
Call centers are an increasingly impor-

tant mechanism for customer contact in
many industries. What will be required in
the future is a new philosophy in customer
interaction design. Every transaction should
emphasize the uniqueness of both the cus-
tomer and the customer service person—
this requires effective knowledge manage-
ment (see www.bt.com/innovations), in-
cluding knowledge about the customer and
about the customer service person, so that
customers are directed to the correct person
in a meaningful and timely way. Some of
BT’s call centers are targeted to identify
opportunities for effective knowledge man-
agement. More specifically, call center
agents tend to use a variety of electronic
sources for information when interacting
with customers, including their own spe-
cialized systems, customer databases, the
organization’s intranet, and, perhaps most
important, case bases of best practices. OIL
provides an intuitive front-end tool to these

heterogeneous information sources to en-
sure smooth transfer to others.

EnerSearch: Virtual enterprise
EnerSearch is a virtual organization

researching new IT-based business strate-
gies and customer services in deregulated
energy markets (www.enersearch.se).20

EnerSearch is a knowledge creation com-
pany—knowledge that must transfer to its
shareholders and other interested parties.
Its Web site is one of the mechanisms for
this, but finding information on certain top-
ics is difficult—the current search engine
supports free-text search rather than con-
tent-based search. So, EnerSearch applies
the OIL toolkit to enhance knowledge
transfer to researchers in the virtual orga-
nization in different disciplines and coun-
tries and specialists from shareholding
companies interested in getting up-to-date
R&D information.

O IL has several advantages: it is prop-
erly grounded in Web languages such

as XML Schemas and RDFS, and it offers
different levels of complexity. Its inner lay-
ers enable efficient reasoning support based
on FaCT, and it has a well-defined formal
semantics that is a baseline requirement for
the Semantic Web’s languages. Regarding its
modeling primitives, OIL is not just another
new language but reflects certain consensus
in areas such as DL and frame-based sys-
tems. We could only achieve this by includ-
ing a large group of scientists in OIL’s devel-
opment. OIL is also a significant source of
inspiration for the ontology language

MARCH/APRIL 2001 computer.org/intelligent 43

Figure 5. A screen shot of OntoEdit.

DAML+OIL (www.cs.man.ac.uk/~horrocks/
DAML-OIL), developed through the DAML
initiative. The next step is to start on a W3C
working group on the Semantic Web, taking
DAML+OIL as a starting point.

Defining a proper language is an impor-
tant step to expanding the Semantic Web.
Developing new tools, architectures, and
applications is the real challenge that will
follow.

Acknowledgments
We thank Hans Akkermans, Sean Bechhofer,

Jeen Broekstra, Stefan Decker,Ying Ding, Michael
Erdmann, Carole Goble, Michel Klein, Alexander
Mädche, Enrico Motta, Borys Omelayenko, Stef-
fen Staab, Guus Schreiber, Lynn Stein, Heiner
Stuckenschmidt, and Rudi Studer, all of whom
were involved in OIL’s development.

References

1. T. Berners-Lee, Weaving the Web, Orion Busi-
ness Books, London, 1999.

2. O. Lassila and R. Swick, Resource Descrip-
tion Framework (RDF) Model and Syntax
Specification, W3C Recommendation, World
Wide Web Consortium, Boston, 1999, www.
w3.org/TR/REC-rdf-syntax (current 6 Dec.
2000).

3. D. Brickley and R.V. Guha, Resource
Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recom-
mendation, World Wide Web Consortium,
Boston, 2000, www.w3.org/TR/rdf-schema
(current 6 Dec. 2000).

4. J. Broekstra et al., “Enabling Knowledge Rep-
resentation on the Web by Extending RDF
Schema,” Proc. 10th Int’l World Wide Web
Conf., Hong Kong, 2001.

5. T.R. Gruber, “A Translation Approach to
Portable Ontology Specifications,” Knowl-
edge Acquisition, vol. 5, 1993, pp. 199–220.

6. D.B. Lenat and R.V. Guha, Building Large
Knowledge-Based Systems: Representation
and Inference in the Cyc Project, Addison-
Wesley, Reading, Mass., 1990.

7. M.R. Genesereth, “Knowledge Interchange
Format,” Proc. Second Int’l Conf. Principles
of Knowledge Representation and Reasoning
(KR 91), J. Allenet et al., eds., Morgan Kauf-

mann, San Francisco, 1991, pp. 238–249;
http://logic.stanford.edu/kif/kif.html (current
9 Mar. 2001).

8. A. Farquhar, R. Fikes, and J. Rice, “The
Ontolingua Server: A Tool for Collaborative
Ontology Construction,” Int’l. J. Human–
Computer Studies, vol. 46, 1997, pp. 707–728.

44 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Dieter Fensel’s biography appears in the Guest Editors’ Introduction on page 25.

Ian Horrocks is a lecturer in computer science with the Information Man-
agement Group at the University of Manchester, UK. His research interests
include knowledge representation, automated reasoning, optimizing rea-
soning systems, and ontological engineering, with particular emphasis on
the application of these techniques to the World Wide Web. He received a
PhD in computer science from the University of Manchester. He is a mem-
ber of the OIL language steering committee and the Joint EU/US Commit-
tee on Agent Markup Languages, and is coeditor of the DAML+OIL lan-
guage specification. Contact him at the Dept. of Computer Science, Univ. of
Manchester, Oxford Rd., Manchester, M13 9PL, UK; horrocks@cs.man.ac;
www.cs.man.ac.uk/~horrocks.

Frank van Harmelen is a senior lecturer in the AI Department at Vrije Uni-
versiteit in Amsterdam. His research interests include specification languages
for knowledge-based systems, using languages for validation and verification
of KBS, developing gradual notions of correctness for KBS, and verifying
weakly structured data. He received a PhD in artificial intelligence from the
University of Edinburgh. Contact him at Dept. of AI, Faculty of Sciences,
Vrije Universiteit Amsterdam de Boelelaan 1081a, 1081HV Amsterdam,
Netherlands; frank.van.harmelen@cs.vu.nl; www.cs.vu.nl/~frankh.

Deborah L. McGuinness is the associate director and senior research sci-
entist for the Knowledge Systems Laboratory at Stanford University. Her
main research areas include ontologies, description logics, reasoning sys-
tems, environments for building and maintaining information, knowledge-
enhanced search, configuration, and intelligent commerce applications. She
also runs a consulting business dealing with ontologies and artificial intelli-
gence for business applications and serves on several technology advisory
boards and academic advisory boards. She received a PhD from Rutgers Uni-
versity in reasoning systems. Contact her at the Knowledge Systems Labo-
ratory, Stanford Univ., Stanford, CA 94305; dlm@ksl.stanford.edu;
www.ksl.stanford.edu/people/dm.

Peter F. Patel-Schneider is a member of the technical staff at Bell Labs
Research. His research interests center on the properties and use of descrip-
tion logics. He is also interested in rule-based systems, including standard sys-
tems derived from OPS as well as newer formalisms such as R++. He received
his PhD from the University of Toronto. Contact him at Bell Labs Research,
600 Mountain Ave., Murray Hill, NJ 07974; pfps@research.bell-labs.com;
www.bell-labs.com/user/pfps.

T h e A u t h o r s

9. D. Fensel et al., “OIL in a Nutshell,” Proc.
European Knowledge Acquisition Confer-
ence (EKAW 2000), R. Dieng et al., eds.,
Lecture Notes in Artificial Intelligence, no.
1937, Springer-Verlag, Berlin, 2000, pp.
1–16.

10. I. Horrocks et al., The Ontology Inference
Layer OIL, tech. report, Vrije Universiteit
Amsterdam; www.ontoknowledge.org/oil/
TR/oil.long.html (current 9 Mar. 2001).

11. W.E. Grosso et al., “Knowledge Modeling at
the Millennium (The Design and Evolution
of Protege-2000),” Proc. 12th Workshop
Knowledge Acquisition, Modeling, and Man-
agement, 1999.

12. M. Klein et al., “The Relation between
Ontologies and Schema-Languages: Trans-
lating OIL Specifications to XML Schema,”
Proc. Workshop on Applications of Ontolo-
gies and Problem-Solving Methods, 14th
European Conf. on Artificial Intelligence,
Berlin, 2000.

13. M. Erdmann and R. Studer, “How to Struc-
ture and Access XML Documents with
Ontologies,” Data and Knowledge Eng., vol.
36, no. 3, 2001.

14. I. Horrocks and P.F. Patel-Schneider, “Opti-
mizing Description Logic Subsumption,” J.
Logic and Computation, vol. 9, no. 3, June
1999, pp. 267–293.

15. A.L. Rector, W.A. Nowlan, and A. Glowin-
ski, “Goals for Concept Representation in the
GALEN Project,” Proc. 17th Ann. Symp.
Computer Applications in Medical Care
(SCAMC 93), McGraw-Hill, New York,
1993, pp. 414–418.

16. D. Fensel et al., “On-To-Knowledge: Ontol-
ogy-based Tools for Knowledge Manage-
ment,” Proc. eBusiness and eWork 2000
Conf. (EMMSEC 2000), 2000.

17. S. Luke, L. Spector, and D. Rager, “Ontol-
ogy-Based Knowledge Discovery on the
World Wide Web,” Proc. 13th Nat’l Conf.
Artificial Intelligence (AAAI 96), Ameri-
can Association for Artificial Intelligence,
Menlo Park, Calif., 1996.

18. D. Fensel et al., “Lessons Learned from
Applying AI to the Web,” J. Cooperative
Information Systems, vol. 9, no. 4, Dec. 2000,
pp. 361–382.

19. U. Reimer et al., eds., Proc. Second Int’l Conf.
Practical Aspects of Knowledge Management
(PAKM 98), 1998.

20. F. Ygge and J.M. Akkermans, “Decentralized
Markets versus Central Control: A Compara-
tive Study,” J. Artificial Intelligence Research,
vol. 11, July–Dec. 1999, pp. 301–333.

MARCH/APRIL 2001 computer.org/intelligent 45

IN BIOLOGY
MOTIVATION

Biology is rapidly becoming a data-rich science owing to recent
massive data generation technologies, while our biological colleagues
are designing cleverer and more informative experiments owing to
recent advances in molecular science. These data and these experi-
ments hold the keys to the deepest secrets of biology and medicine,
but cannot be analyzed fully by humans because of the wealth and
complexity of the information available. The result is a great need for
intelligent systems in biology.

Intelligent systems probably helped design the last drug your doc-
tor prescribed, and intelligent computational analysis of the human
genome will drive medicine for at least the next half-century. Even as
you read these words, intelligent systems are working on gene expres-
sion data to help understand genetic regulation, and thus ultimately
the regulated control of all life processes including cancer, regenera-
tion, and aging. Modern intelligent analysis of biological sequences
results today in the most accurate picture of evolution ever achieved.
Knowledge bases of metabolic pathways and other biological net-
works presently make inferences in systems biology that, for example,
let a pharmaceutical program target a pathogen pathway that does
not exist in humans, resulting in fewer side effects to patients. Intelli-
gent literature-access systems exploit a knowledge flow exceeding
half a million biomedical articles per year, while machine-learning sys-
tems exploit heterogeneous online databases whose exponential
growth mimics Moore’s law. Knowledge-based empirical approaches
are the most successful method known for general protein structure
prediction, a problem that has been called the “Holy Grail of molecu-
lar biology” and “solving the second half of the genetic code.”

This announcement seeks papers and referees for a special issue
on Intelligent Systems in Biology. Preferred papers will describe an
implemented intelligent system that produces results of significance in
biology or medicine. Systems that
extend or enhance the intelligence of
human biologists are especially wel-
come. Referees are solicited from
experts in the field who do not intend
to submit a paper.

Special Issue, IEEE Intelligent Systems, Sept./Oct. 2001

GUEST EDITOR
Richard H. Lathrop
Dept. of Information and
Computer Science
Univ. of California, Irvine
Irvine, CA 92697-3425
Phone: +1 949 824 4021
Fax: +1 949 824 4056
rickl@uci.edu
www.ics.uci.edu/~ricklSUBMISSION

GUIDELINES
IEEE Intelligent Systems is a scholarly
peer-reviewed publication intended for a broad
research and user community. An informal, direct, and
lively writing style should be adopted. The issue will con-
tain a tutorial and an overview of the field, but explicitly biolog-
ical terms or concepts should be explained concisely. Manuscripts should
be original and should have between 6 and 10 magazine pages (not more
than 7,500 words) with up to 10 references. Send manuscripts in PDF format to
rickl@uci.edu by 25 May, 2001. Potential referees and general inquiries should con-
tact rickl@uci.edu directly.

46 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Semantic Web Services

Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng, Stanford University

The Web, once solely a repository for text and images, is evolving into a provider

of services—information-providing services, such as flight information providers,

temperature sensors, and cameras, and world-altering services, such as flight-booking

programs, sensor controllers, and a variety of e-commerce and business-to-business

applications. Web-accessible programs, databases,
sensors, and a variety of other physical devices real-
ize these services. In the next decade, computers will
most likely be ubiquitous, and most devices will have
some sort of computer inside them. Vint Cerf, one
of the fathers of the Internet, views the population
of the Internet by smart devices as the harbinger of
a new revolution in Internet technology.

Today’s Web was designed primarily for human
interpretation and use. Nevertheless, we are seeing
increased automation of Web service interoperation,
primarily in B2B and e-commerce applications. Gen-
erally, such interoperation is realized through APIs that
incorporate hand-coded information-extraction code to
locate and extract content from the HTML syntax of a
Web page presentation layout. Unfortunately, when a
Web page changes its presentation layout, the API must
be modified to prevent failure. Fundamental to having
computer programs or agents1 implement reliable,
large-scale interoperation of Web services is the need to
make such services computer interpretable—to create
a Semantic Web2 of services whose properties, capa-
bilities, interfaces, and effects are encoded in an unam-
biguous, machine-understandable form.

The realization of the Semantic Web is underway
with the development of new AI-inspired content
markup languages, such as OIL,3 DAML+OIL
(www.daml.org/2000/10/daml-oil), and DAML-L (the
last two are members of the DARPA Agent Markup
Language (DAML) family of languages).4 These lan-
guages have a well-defined semantics and enable the
markup and manipulation of complex taxonomic and
logical relations between entities on the Web. A fun-

damental component of the Semantic Web will be the
markup of Web services to make them computer-inter-
pretable, use-apparent, and agent-ready. This article
addresses precisely this component.

We present an approach to Web service markup that
provides an agent-independent declarative API cap-
turing the data and metadata associated with a service
together with specifications of its properties and capa-
bilities, the interface for its execution, and the prereq-
uisites and consequences of its use. Markup exploits
ontologies to facilitate sharing, reuse, composition,
mapping, and succinct local Web service markup. Our
vision is partially realized by Web service markup in a
dialect of the newly proposed DAML family of Seman-
tic Web markup languages.4 Such so-called semantic
markup of Web services creates a distributed knowl-
edge base. This provides a means for agents to populate
their local KBs so that they can reason about Web ser-
vices to perform automatic Web service discovery, exe-
cution, and composition and interoperation.

To illustrate this claim, we present an agent tech-
nology based on reusable generic procedures and
customizing user constraints that exploits and show-
cases our Web service markup. This agent technol-
ogy is realized using the first-order language of the
situation calculus and an extended version of the
agent programming language ConGolog,5 together
with deductive machinery.

Figure 1 illustrates the basic components of our
Semantic Web services framework. It is composed of
semantic markup of Web services, user constraints, and
Web agent generic procedures. In addition to the
markup, our framework includes a variety of agent tech-

The authors propose the

markup of Web services

in the DAML family of

Semantic Web markup

languages. This markup

enables a wide variety of

agent technologies for

automated Web service

discovery, execution,

composition, and

interoperation. The

authors present one

such technology for

automated Web service

composition.

nologies—specialized services that use an
agent broker to send requests for service to
appropriate Web services and to dispatch ser-
vice responses back to the agent.

Automating Web services
To realize our vision of Semantic Web ser-

vices, we are creating semantic markup of
Web services that makes them machine
understandable and use-apparent. We are also
developing agent technology that exploits this
semantic markup to support automated Web
service composition and interoperability. Dri-
ving the development of our markup and
agent technology are the automation tasks that
semantic markup of Web services will enable
—in particular, service discovery, execution,
and composition and interoperation.

Automatic Web service discovery involves
automatically locating Web services that pro-
vide a particular service and that adhere to
requested properties. A user might say, for
example, “Find a service that sells airline tick-
ets between San Francisco and Toronto and
that accepts payment by Diner’s Club credit
card.” Currently, a human must perform this
task, first using a search engine to find a service
and then either reading the Web page associ-
ated with that service or executing the service
to see whether it adheres to the requested prop-
erties. With semantic markup of services, we
can specify the information necessary for Web
service discovery as computer-interpretable
semantic markup at the service Web sites, and
a service registry or (ontology-enhanced)
search engine can automatically locate appro-
priate services.

Automatic Web service execution involves
a computer program or agent automatically
executing an identified Web service. A user
could request, “Buy me an airline ticket from
www.acmetravel.com on UAL Flight 1234
from San Francisco to Toronto on 3 March.”
To execute a particular service on today’s
Web, such as buying an airline ticket, a user
generally must go to the Web site offering that
service, fill out a form, and click a button to
execute the service. Alternately, the user might
send an http request directly to the service
URL with the appropriate parameters en-
coded. Either case requires a human to under-
stand what information is required to execute
the service and to interpret the information the
service returns. Semantic markup of Web ser-
vices provides a declarative, computer-inter-
pretable API for executing services. The
markup tells the agent what input is necessary,
what information will be returned, and how to

execute—and potentially interact with—the
service automatically.

Automatic Web service composition and
interoperation involves the automatic selec-
tion, composition, and interoperation of
appropriate Web services to perform some
task, given a high-level description of the
task’s objective. A user might say, “Make the
travel arrangements for my IJCAI 2001 con-
ference trip.” Currently, if some task requires
a composition of Web services that must inter-
operate, then the user must select the Web ser-
vices, manually specify the composition, en-
sure that any software for interoperation is
custom-created, and provide the input at
choice points (for example, selecting a flight
from among several options). With semantic
markup of Web services, the information nec-
essary to select, compose, and respond to ser-
vices is encoded at the service Web sites. We
can write software to manipulate this markup,
together with a specification of the task’s
objectives, to achieve the task automatically.
Service composition and interoperation lever-
age automatic discovery and execution.

Of these three tasks, none is entirely real-
izable with today’s Web, primarily because of
a lack of content markup and a suitable
markup language. Academic research on Web
service discovery is growing out of agent
matchmaking research such as the Lark sys-
tem,6 which proposes a representation for
annotating agent capabilities so that they can
be located and brokered. Recent industrial

efforts have focused primarily on improving
Web service discovery and aspects of service
execution through initiatives such as the Uni-
versal Description, Discovery, and Integration
(UDDI) standard service registry; the XML-
based Web Service Description Language
(WSDL), released in September 2000 as a
framework-independent Web service descrip-
tion language; and ebXML, an initiative of the
United Nations and OASIS (Organization for
the Advancement of Structured Information
Standards) to standardize a framework for
trading partner interchange.

E-business infrastructure companies are
beginning to announce platforms to support
some level of Web-service automation. Exam-
ples of such products include Hewlett-Packard’s
e-speak, a description, registration, and dynamic
discovery platform for e-services; Microsoft’s
.NET and BizTalk tools; Oracle’s Dynamic Ser-
vices Framework; IBM’s Application Frame-
work for E-Business; and Sun’s Open Network
Environment. VerticalNet Solutions, anticipat-
ing and wishing to accelerate the markup of
services for discovery, is building ontologies
and tools to organize and customize Web ser-
vice discovery and—with its OSM Platform—
is delivering an infrastructure that coordinates
Web services for public and private trading
exchanges.

What distinguishes our work in this arena
is our semantic markup of Web services in an
expressive semantic Web markup language
with a well-defined semantics. Our semantic

MARCH/APRIL 2001 computer.org/intelligent 47

Web procedures
ontologies

Semantic markup of
personal or company

constraints and preferences

Semantic-markup-enabled
agent technology

Web service
ontologies

Semantic markup of
Web service sites

Agent broker

Email ...

Knowledge
base

Figure 1. A framework for Semantic Web services.

markup provides a semantic layer that should
comfortably sit on top of efforts such as
WSDL, enabling a richer level of description
and hence more sophisticated interactions and
reasoning at the agent or application level. To
demonstrate this claim, we present agent
technology that performs automatic Web ser-
vice composition, an area that industry is not
yet tackling in any great measure.

Semantic Web service markup
The three automation tasks we’ve described

are driving the development of our semantic
Web services markup in the DAML family of
markup languages. We are marking up

• Web services, such as Yahoo’s driving
direction information service or United
Airlines’ flight booking service;

• user and group constraints and preferences,
such as a user’s—let’s say Bob’s—sched-
ule, that he prefers driving over flying if the
driving time to his destination is less than
three hours, his use of stock quotes exclu-
sively from the E*Trade Web service, and
so forth; and

• agent procedures, which are (partial) com-
positions of existing Web services, designed
to perform a particular task and marked up
for sharing and reuse by groups of other
users. Examples include Bob’s business
travel booking procedure or his friend’s
stock assessment procedure.

Our DAML markup provides a declarative
representation of Web service and user con-
straint knowledge. (See the “The Case for
DAML” sidebar to learn why we chose the
DAML family of markup languages.) A key
feature of our markup is the exploitation of
ontologies, which DAML+OIL’s roots in
description logics and frame systems support.

We use ontologies to encode the classes
and subclasses of concepts and relations per-
taining to services and user constraints. (For
example, the service BuyUALTicket and Buy-
LufthansaTicket are subclasses of the service
BuyAirlineTicket, inheriting the parameters cus-
tomer, origin, destination, and so forth). Domain-
independent Web service ontologies are aug-
mented by domain-specific ontologies that
inherit concepts from the domain-indepen-
dent ontologies and that additionally encode
concepts that are specific to the individual
Web service or user. Using ontologies
enables the sharing of common concepts, the
specialization of these concepts and vocab-
ulary for reuse across multiple applications,

the mapping of concepts between different
ontologies, and the composition of new con-
cepts from multiple ontologies. Ontologies
support the development of succinct service-
or user-specific markup by enabling an indi-
vidual service or user to inherit much of its
semantic markup from ontologies, thus
requiring only minimal markup at the Web
site. Most importantly, ontologies can give
semantics to markup by constraining or
grounding its interpretation. Web services
and users need not exploit Web service
ontologies, but we foresee many domains
where communities will want to agree on a
standard definition of terminology and
encode it in an ontology.

DAML markup of Web services
Collectively, our markup of Web services

provides

• declarative advertisements of service
properties and capabilities, which can be
used for automatic service discovery;

• declarative APIs for individual services
that are necessary for automatic service
execution; and

• declarative specifications of the prerequi-
sites and consequences of individual ser-
vice use that are necessary for automatic
service composition and interoperation.

The semantic markup of multiple Web ser-
vices collectively forms a distributed KB of
Web services. Semantic markup can populate
detailed registries of the properties and capa-
bilities of Web services for knowledge-based
indexing and retrieval of Web services by
agent brokers and humans alike. Semantic
markup can also populate individual agent
KBs, to enable automated reasoning about
Web services.

Our Web service markup comprises a num-
ber of different ontologies that provide the
backbone for our Web service descriptions. We
define the domain-independent class of ser-
vices, Service, and divide it into two subclasses,
PrimitiveService and ComplexService. In the context
of the Web, a primitive service is an individ-
ual Web-executable computer program, sen-
sor, or device that does not call another Web
service. There is no ongoing interaction
between the user and a primitive service. The
user or agent calls the service, and the service
returns a response. An example of a primitive
service is a Web-accessible program that
returns a postal code, given a valid address. In
contrast, a complex service is composed of

multiple primitive services, often requiring an
interaction or conversation between the user
and services, so that the user can make deci-
sions. An example might be interacting with
www.amazon.com to buy a book.

Domain-specific Web service ontologies
are subclasses of these general classes. They
enable an individual service to inherit
shared concepts, and vocabulary in a partic-
ular domain. The ontology being used is spec-
ified in the Web site markup and then simply
refined and augmented to provide service-
specific markup. For example, we might
define an ontology containing the class Buy,
with subclass BuyTicket, which has subclasses
BuyMovieTicket, BuyAirlineTicket, and so forth. Buy-
AirlineTicket has subclasses BuyUALTicket, Buy-
LufthansaTicket, and so on. Each service is either
a PrimitiveService or a ComplexService. Associated
with each service is a set of Parameters. For
example, the class Buy will have the parame-
ter Customer. BuyAirlineTicket will inherit the Cus-
tomer parameter and will also have the para-
meters Origin, Destination, DepartureDate, and so on.
We constructed domain-specific ontologies
to describe parameter values. For example,
we restricted the values of Origin and Destination
to instances of the class Airport. BuyUALTicket
inherits these parameters, further restricting
them to Aiports whose property Airlines includes
UAL. These value restrictions provide an
important way of describing Web service
properties, which supports better brokering
of services and simple type checking for our
declarative APIs. In addition, we have used
these restrictions in our agent technology to
create customized user interfaces.

Markup for Web service discovery. To auto-
mate Web service discovery, we associate
properties with services that are relevant to
automated service classification and selec-
tion. In the case of BuyUALTicket, these would
include service-independent property types
such as the company name, the service URL,
a unique service identifier, the intended use,
and so forth. They would also include service-
specific property types such as valid methods
of payment, travel bonus plans accepted, and
so forth. This markup, together with certain of
the properties specified later, collectively pro-
vides a declarative advertisement of service
properties and capabilities, which is computer
interpretable and can be used for automatic
service discovery.

Markup for Web service execution. To auto-
mate Web service execution, markup must

48 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

enable a computer agent to automatically
construct and execute a Web service request
and interpret and potentially respond to the
service’s response. Markup for execution
requires a dataflow model, and we use both
a function metaphor and a process or con-
versation model to realize our markup. Each
primitive service is conceived as a function
with Input values and potentially multiple
alternative Output values. For example, if the
user orders a book, the response will differ
depending on whether the book is in stock,
out of stock, or out of print.

Complex services are conceived as a com-
position of functions (services) whose output

might require an exchange of information
between the agent and an individual service.
For example, a complex service that books a
flight for a user might involve first finding
flights that meet the user’s request, then sus-
pending until the user selects one flight. Com-
plex services are composed of primitive or
complex services using typical programming
languages and business-process modeling
language constructs such as Sequence, Iteration,
If-then-Else, and so forth. This markup provides
declarative APIs for individual Web services
that are necessary for automatic Web service
execution. It additionally provides a process
dataflow model for complex services. For an

agent to respond automatically to a complex
service execution—that is, to automatically
interoperate with that service—it will require
some of the information encoded for auto-
matic composition and interoperation.

Markup for Web service composition. The
function metaphor used for automatic Web ser-
vice execution provides information about data
flow, but it does not provide information about
what the Web service actually does. To auto-
mate service composition, and for services and
agents to interoperate, we must also encode
how the service affects the world. For exam-
ple, when a user visits www.amazon.com and

MARCH/APRIL 2001 computer.org/intelligent 49

In recent years, several markup languages have been devel-
oped with a view to creating languages that are adequate for
realizing the Semantic Web. The construction of these lang-
uages is evolving according to a layered approach to language
development.1

XML was the first language to separate the markup of Web
content from Web presentation, facilitating the representa-
tion of task- and domain-specific data on the Web. Unfortu-
nately, XML lacks semantics. As such, computer programs can-
not be guaranteed to determine the intended interpretation
of XML tags. For example, a computer program would not be
able to identify that <SALARY> data refers to the same informa-
tion as <WAGE> data, or that the <DUE-DATE> specified at a Web
service vendor’s site might be different from the <DUE-DATE> at
the purchaser’s site.

The World Wide Web Consortium developed the resource
description framework (RDF)2 as a standard for metadata.
The goal was to add a formal semantics to the Web, defined
on top of XML, to provide a data model and syntax convention
for representing the semantics of data in a standardized inter-
operable manner. It provides a means of describing the relation-
ships among resources (basically anything nameable by a URI)
in terms of named properties and values. The RDF working
group also developed RDF Schema, an object-oriented type sys-
tem that can be effectively thought of as a minimal ontology-
modeling language. Although RDF and RDFS provide good
building blocks for defining a Semantic Web markup language,
they lack expressive power. For example, you can’t define prop-
erties of properties, necessary and sufficient conditions for class
membership, or equivalence and disjointness of classes. Further-
more, the only constraints expressible are domain and range
constraints on properties. Finally, and perhaps most importantly,
the semantics remains underspecified.

Recently, there have been several efforts to build on RDF
and RDFS with more AI-inspired knowledge representation
languages such as SHOE,3 DAML-ONT,4 OIL,5 and most recently
DAML+OIL. DAML+OIL is the second in the DAML family of
markup languages, replacing DAML-ONT as an expressive ontol-
ogy description language for markup. Building on top of RDF
and RDFS, and with its roots in AI description logics, DAML+OIL
overcomes many of the expressiveness inadequacies plaguing
RDFS and most important, has a well-defined model-theoretic
semantics as well as an axiomatic specification that determines
the language’s intended interpretations. DAML+OIL is unam-
biguously computer-interpretable, thus making it amenable to

agent interoperability and automated-reasoning techniques,
such as those we exploit in our agent technology.

In the next six months, DAML will be extended with the addi-
tion of DAML-L, a logical language with a well-defined seman-
tics and the ability to express at least propositional Horn clauses.
Horn clauses enable compact representation of constraints and
rules for reasoning. Consider a flight information service that
encodes whether a flight shows a movie. One way to do this is
to create a markup for each flight indicating whether or not it
does. A more compact representation is to write the constraint
flight-over-3-hours → movie and to use deductive reasoning to infer if a
flight will show a movie. This representation is more compact,
more informative, and easier to modify than an explicit enumer-
ation of individual flights and movies. Similarly, such clauses can
represent markup constraints, business rules, and user prefer-
ences in a compact form.

DAML+OIL and DAML-L together will provide a markup lan-
guage for the Semantic Web with reasonable expressive power
and a well-defined semantics. Should further expressive power
be necessary, the layered approach to language development
lets a more expressive logical language extend DAML-L or act
as an alternate extension to DAML+OIL. Because DAML-L has
not yet been developed, our current Web service markup is in a
combination of DAML+OIL and a subset of first-order logic. Our
markup will evolve as the DAML family of languages evolves.

References

1. D. Fensel, “The Semantic Web and Its Languages,” IEEE Intelligent
Systems, vol. 15, no. 6, Nov./Dec. 2000, p. 67–73.

2. O. Lassila and R. Swick, Resource Description Framework (RDF)
Model and Syntax Specification, W3C Recommendation, World
Wide Web Consortium, Feb. 1999; www.w3.org/TR/REC-rdf-syntax
(current 11 Apr. 2001).

3. S. Luke and J. Heflin, SHOE 1.01. Proposed Specification,
www.cs.umd.edu/projects/plus/SHOE/spec1.01.html, 2000 (current
20 Mar. 2001).

4. J. Hendler and D. McGuinness, “The DARPA Agent Markup
Language,” IEEE Intelligent Systems, vol. 15, no. 6, Nov./Dec. 2000,
pp. 72–73.

5. F. van Harmelen and I. Horrocks, “FAQs on OIL: The Ontology Infer-
ence Layer,” IEEE Intelligent Systems, vol. 15, no. 6, Nov./Dec. 2000,
pp. 69–72.

The Case for DAML

successfully executes the BuyBook service, she
knows she has purchased a book, that her credit
card will be debited, and that she will receive
a book at the address she provided. Such con-
sequences of Web service execution are not
part of the markup nor part of the function-
based specification provided for automatic
execution. To automate Web service composi-
tion and interoperation, or even to select an
individual service to meet some objective, we
must encode prerequisites and consequences
of Web service execution for computer use.

Our DAML markup of Web services for
automatic composition and interoperability is
built on an AI-based action metaphor. We con-
ceive each Web service as an action—either a
PrimitiveAction or a ComplexAction. Primitive actions
are in turn conceived as world-altering actions
that change the state of the world, such as deb-
iting the user’s credit card, booking the user a
ticket, and so forth; as information-gathering
actions that change the agent’s state of knowl-
edge, so that after executing the action, the
agent knows a piece of information; or as
some combination of the two.

An advantage of exploiting an action
metaphor to describe Web services is that it lets
us bring to bear the vast AI research on rea-
soning about action, to support automated rea-
soning tasks such as Web service composition.
In developing our markup, we choose to remain
agnostic with respect to an action representa-
tion formalism. In the AI community, there is
widespread disagreement over the best action
representation formalism. As a consequence,
different agents use very different internal rep-
resentations for reasoning about and planning
sequences of actions. The planning community
has addressed this lack of consensus by devel-
oping a specification language for describing
planning domains—Plan Domain Description
Language (PDDL).7 We adopt this language
here, specifying each of our Web services in
terms of PDDL-inspired Parameters, Preconditions,
and Effects. The Input and Output necessary for
automatic Web service execution also play the
role of KnowledgePreconditions and KnowledgeEffects for
the purposes of Web service composition and
interoperation. We assume, as in the planning
community, that users will compile this gen-
eral representation into an action formalism that
best suits their reasoning needs. Translators
already exist from PDDL to a variety of differ-
ent AI action formalisms.

Complex actions, like complex services, are
compositions of individual services; however,
dependencies between these compositions are
predicated on state rather than on data, as is

the case with the execution-motivated markup.
Complex actions are composed of primitive
actions or other complex actions using typi-
cal programming languages and business-
process modeling-language constructs such
as Sequence, Parallel, If-then-Else, While, and so forth.

DAML markup of user constraints
and preferences

Our vision is that agents will exploit users’
constraints and preferences to help customize
users’requests for automatic Web service dis-
covery, execution, or composition and inter-
operation. Examples of user constraints and
preferences include user Bob’s schedule, his
travel bonus point plans, that he prefers to drive
if the driving time to his destination is less than

three hours, that he likes to get stock quotes
from the E*Trade Web service, that his com-
pany requires all domestic business travel to
be with a particular set of carriers, and so forth.
The actual markup of user constraints is rela-
tively straightforward, given DAML-L. We can
express most constraints as these Horn clauses
(see the sidebar), and ontologies let users clas-
sify, inherit, and share constraints. Inheriting
terminology from Web service ontologies
ensures, for example, that Bob’s constraint
about DrivingTime is enforced by determining the
value of DrivingTime from a service that uses the
same notion of DrivingTime. More challenging
than the markup itself is the agent technology
that will appropriately exploit it.

DAML-enabled agent technology
Our semantic markup of Web services

enables a wide variety of agent technologies.
Here, we present an agent technology we are
developing that exploits DAML markup of
Web services to perform automated Web ser-
vice composition.

Consider the example task given earlier:
“Make the travel arrangements for my IJCAI
2001 conference trip.” If you were to perform
this task using services available on the Web,
you might first find the IJCAI 2001 confer-
ence Web page and determine the confer-
ence’s location and dates. Based on the loca-
tion, you would choose the most appropriate
mode of transportation. If traveling by air, you
might then check flight schedules with one or
more Web services, book flights, and so on.

Although the entire procedure is lengthy
and somewhat tedious to perform, the aver-
age person could easily describe how to make
your travel arrangements. Nevertheless, it’s
not easy to get someone else to make the
arrangements for you. What makes this task
difficult is not the basic steps but the need to
make decisions to customize the generic pro-
cedure to enforce the traveler’s constraints.
Constraints can be numerous and conse-
quently difficult for another person to keep in
mind and satisfy. Fortunately, enforcing com-
plex constraints is something a computer does
well.

Our objective is to develop agent technol-
ogy that will perform these types of tasks auto-
matically by exploiting DAML markup of
Web services and of user constraints and pref-
erences. We argue that many of the activities
users might wish to perform on the Semantic
Web, within the context of their workplace or
home, can be viewed as customizations of
reusable, high-level generic procedures. Our
vision is to construct such reusable, high-level
generic procedures and to represent them as
distinguished services in DAML using a sub-
set of the markup designed for complex ser-
vices. We also hope to archive them in
sharable generic procedures ontologies so that
multiple users can access them. Generic pro-
cedures are customized with respect to users’
constraints, using deductive machinery.

Generic procedures and customiz-
ing user constraints

We built our research on model-based pro-
gramming8 and on research into the agent
programming language Golog and its vari-
ants, such as ConGolog.5 Our goal was to
provide a DAML-enabled agent program-
ming capability that supports writing generic
procedures for Web service-based tasks.

Model-based programs comprise a model—
in this case, the agent’s KB—and a program—
the generic procedure we wish to execute. We
argue that the situation calculus (a logical lan-
guage for reasoning about action and change)

50 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Our vision is that agents will exploit

users’ constraints and preferences

to help customize users’ requests

for automatic Web service

discovery, execution, or

composition and interoperation.

and ConGolog5 provide a compelling language
for realizing our agent technology. When a user
requests a generic procedure, such as a generic
travel arrangements procedure, the agent pop-
ulates its local KB with the subset of the PDDL-
inspired DAML Web service markup that is rel-
evant to the procedure. It also adds the user’s
constraints to its KB. Exploiting our action
metaphor for Web services, the agent KB pro-
vides a logical encoding of the preconditions
and effects of the Web service actions in the
language of the situation calculus.

Model-based programs, such as our generic
procedures, are written in ConGolog without
prior knowledge of what specific services the
agent will use or of how exactly to use the avail-
able services. As such, they capture what to
achieve but not exactly how to do it. They use
procedural programming language constructs
(if-then-else, while, and so forth) composed with
concepts defined in our DAML service and
constraints ontologies to describe the proce-
dure. The agent’s model-based program is not
executable as is. We must deductively instanti-
ate it in the context of the agent’s KB, which
includes properties of the agent and its user,
properties of the specific services we are using,
and the state of the world. We perform the
instantiation by using deductive machinery. An
instantiated program is simply a sequence of
primitive actions (individual Web services),
which ConGolog interprets and sends to the
agent broker as a request for service. The great
advantage of these generic procedures is that
the same generic procedure, called with differ-
ent parameters and user constraints, can gen-
erate very different sequences of actions.

ConGolog
ConGolog is a high-level logic programming

language developed at the University of
Toronto. Its primary use is for robot program-

ming and to support high-level robot task
planning. ConGolog is built on top of situ-
ation calculus. In situation calculus, the
world is conceived as a tree of situations,
starting at an initial situation, S0, and evolv-
ing to a new situation through the perfor-
mance of an action a (for example, Web
services such as BuyUALTicket(origin,dest, date)).
Thus, a situation s is a history of the actions
performed from S0. The state of the world
is expressed in terms of relations and func-
tions (so-called fluents) that are true or false
or have a particular value in a situation, s
(for example, flightAvailable(origin,dest, date,s)).

Figure 2 illustrates the tree of situations
induced by a situation calculus theory with
actions a1, …,an (ignore the ×’s for the time
being). The tree is not actually computed, but
it reflects the search space the situation cal-
culus KB induces. We could have performed
deductive plan synthesis to plan sequences
of Web service actions over this search space,
but instead, we developed generic procedures
in ConGolog.

ConGolog provides a set of extralogical
procedural programming constructs for
assembling primitive and complex situation
calculus actions into other complex actions.5

Let δ1 and δ2 be complex actions, and let ϕ
and a be so-called pseudo fluents and pseudo
actions, respectively—that is, a fluent or
action in the language of situation calculus
with all its situation arguments suppressed.
Figure 3a shows a subset of the constructs in
the ConGolog language.

A user can employ these constructs to
write generic procedures, which are complex
actions in ConGolog. The instruction set for
these complex actions is simply the general
Web services (for example, BookAirlineTicket) or
other complex actions. Figure 3b gives exam-
ples of ConGolog statements.

To instantiate a ConGolog program in the

context of a KB, the abbreviation Do(δ,s,s′) is
defined. It says that Do(δ,s,s′) holds when-
ever s′ is a terminating situation following
the execution of complex action δ, starting in
situation s. Given the agent KB and a generic
procedure δ, we can instantiate δwith respect
to the KB and the current situation S0 by
entailing a binding for the situation variable
s. Because situations are simply the history
of actions from S0, the binding for s defines a
sequence of actions that leads to successful
termination of the generic procedure δ:

KB ❘= (∃ s).Do(δ, S0, s)

It is important to observe that ConGolog pro-
grams—and hence our generic procedures—
are not programs in the conventional sense.
Although they have the complex structure of
programs—including loops, if-then-else state-
ments, and so forth—they differ in that they are
not necessarily deterministic. Rather than nec-
essarily dictating a unique sequence of actions,
ConGolog programs serve to add temporal con-
straints to the situation tree of a KB, as Figure
2 depicts. As such, they eliminate certain
branches of the situation tree (designated by the
×’s), reducing the size of the search space of
situations that instantiate the generic procedure.

MARCH/APRIL 2001 computer.org/intelligent 51

aj

. . .

a1 an

S0

.
aja1 an aja1 an

. . .
aja1 an

.
aja1 an

Figure 2. The tree of situations.

Figure 3. (a) A subset of the constructs in the
ConGolog language. (b) Examples of
ConGolog statements.

Primitive action: a
Test of truth: ϕ?
Sequence: (δ1; δ2)
Nondeterministic choice between actions: (δ1 | δ2)
Nondeterministic choice of arguments: πx.δ
Nondeterministic iteration: δ *
Conditiona: if ϕ then δ1 else δ2 endIf
Loop: while ϕ do δ endWhile
Procedure: proc P(v) δ endProc

(a)

while ∃ x.(hotel(x)∧ goodLoc(x,dest)) do
checkAvailability(x,dDate,rDate)

endWhile

if ¬ hotelAvailable(dest,dDate,rDate) then
BookB&B(cust,dest,dDate,rDate)

endIf

proc Travel(cust,origin,dest,dDate,rDate,purpose);
If registrationRequired then Register endlf;
BookTranspo(cust,origin,dest,dDate,rDate);
BookAccommodations(cust,dest,dDate,rDate);
UpdateExpenseClaim(cust);
Inform(cust)

endProc

(b)

The Desirable predicate, Desirable(a,s),
which we introduced into ConGolog to incor-
porate user constraints, also further reduces the
tree to those situations that are desirable to the
user. Because generic procedures and cus-
tomizing user constraints simply serve to con-
strain the possible evolution of actions, depend-
ing on how they are specified, they can play
different roles. At one extreme, the generic pro-
cedure simply constrains the search space
required in planning. At the other extreme,
a generic procedure can dictate a unique
sequence of actions, much in the way a tradi-
tional program might. We leverage this nonde-
terminism to describe generic procedures that
have the leeway to be relevant to a broad range
of users, while at the same time being cus-
tomizable to reflect the desires of individual
users.We contrast this to a traditional procedural
program that would have to be explicitly mod-
ified to incorporate unanticipated constraints.

Implementation
To implement our agent technology, we

started with an implementation of an online
ConGolog interpreter in Quintus Prolog 3.2.5

We augmented and extended this interpreter
in a variety of ways (discussed further else-
where9). Some of the issues we dealt with were
balancing the offline search for an instantia-
tion of a generic procedure with online execu-
tion of information-gathering Web services,
because they help to further constrain the
search space of possible solutions. We added
new constructs to the ConGolog language to
enable more flexible encoding of generic pro-
cedures, and we incorporated users’ cus-
tomizing constraints into ConGolog by adding
the Desirable predicate mentioned earlier.

We also modified the interpreter to com-
municate with the Open Agent Architecture
agent brokering system.10 OAA sends requests
to appropriate Web services and dispatches
responses to the agents. When the Semantic
Web is a reality, Web services will communi-
cate through DAML. Currently, we must
translate our markup (DAML+OIL and a sub-
set of first-order logic) back and forth to
HTML through a set of Java programs. We
use an information extraction program, World
Wide Web Wrapper Factory (http://db.cis.
upenn.edu/W4F), to extract the information
Web services currently produce in HTML. All
information-gathering services are performed
this way. For obvious practical and financial
reasons, world-altering aspects of services are
not actually executed.

Example
Here, we illustrate the execution of our

agent technology with a generic procedure
for making travel arrangements. Let’s say
Bob wants to travel from San Francisco to
Monterey on Knowledge Systems Lab busi-
ness with the DARPA-funded DAML re-
search project. He has two constraints—one
personal and one inherited from the KSL, to
which he belongs. He wishes to drive rather
than fly, if the driving time is less than three
hours, and as a member of the KSL, he has
inherited the constraint that he must use an
American carrier for business travel.

In reality, our demo doesn’t provide much
to see. The user makes a request to the agent
through a user interface that is automatically
created from our DAML+OIL agent proce-
dures ontology, and the agent emails the user
the travel itinerary when it is done. For the pur-

poses of illustration, Figure 4 provides a win-
dow into what is happening behind the scenes.
It is a trace from the run of our augmented and
extended ConGolog interpreter, operating in
Quintus Prolog. The agent KB is represented
in a Prolog encoding of the situation calculus,
a translation of the Semantic Web service
markup relevant to the generic travel procedure
being called, together with Bob’s user con-
straint markup. We have defined a generic pro-
cedure for travel not unlike the one illustrated
in Figure 3b.

Arrow 1 points to the call to the ConGolog
procedure travel(user,origin,dest,dDate,rDate,purpose),
with the parameters instantiated as noted.
Arrow 2 shows the interpreter contacting OAA,
which sends a request to Yahoo Maps to exe-
cute the getDrivingTime(San Franciso,Monterey) service
Yahoo Maps provides. Yahoo Maps indicates
that the driving time between San Francisco
and Monterey is two hours. Because Bob has a
constraint that he wishes to drive if the driving
distance is less than three hours, booking a
flight is not desirable. Consequently, as de-
picted at Arrow 3, the agent elects to search for
an available car rental at the point of origin, San
Francisco. A number of available cars are re-
turned, and because Bob has no constraints that
affect car selection, the first car is selected at
Arrow 4. Arrow 5 depicts the call to OAA for
a hotel at the destination point, and so on. Our
agent technology goes on to complete Bob’s
travel arrangements, creating an expense claim
form for Bob and filling in as much informa-
tion as was available from the Web services.
The expense claim illustrates the agent’s abil-
ity to both read and write Semantic Web
markup. Finally, the agent sends an email mes-
sage to Bob, notifying him of his agenda.

To demonstrate the merits of our approach,
we often contrast such an execution of the
generic travel procedure with one a different
user called, with different user constraints.
The different user and constraints produce a
different search space, thus yielding a dif-
ferent sequence of Web services.

Related work
Our agent technology broadly relates to the

plethora of work on agent-based systems.
Three agent technologies that deserve men-
tion are the Golog family of agent technolo-
gies referenced earlier, the work of researchers
at SRI on Web agent technology,11 and the
softbot work developed at the University of
Washington.12 The last also used a notion of
action schemas to describe actions on the
Internet that an agent could use to achieve a

52 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

| ?– travel (‘Bob Chen‘, ‘09/02/00‘, ‘San Francisco‘, ‘Monterey‘, ‘DAML‘).
Contacting Web Service Broker:
 Request Driving Time [San Francisco] – [Monterey]
Result 2

Contacting Web Service Broker:
 Request Car Info in [San Francisco]
Result
 HERTZShuttle to Car CounterEconomy Car Automati…
 ACEOff Airport, Shuttle ProvidedEconomy Car Aut…
 NATIONALShuttle to Car CounterEconomy Car Auto…
 FOXOff Airport, Shuttle ProvidedMini Car Automa…
 PAYLESSOff Airport, Shuttle ProvidedMini Car Au…
 ALL INTLOff Airport, Shuttle ProvidedEconomy Ca…
 HOLIDAYOff Airport, Shuttle ProvidedEconomy Car…
 ABLE RENTOff Airport, Shuttle ProvidedCompact C…

Select
 HERTZ (San Francisco Airport), Location: Shuttle to Car Counter, Economy C
ar Automatic with Air Conditioning, Unlimited Mileage

Contact Web Service Broker:
 Request Hotel Info in [Monterey]
Result
 TravelodgeMonterey, CA55 Rooms / 2 FloorsNo…
 EconolodgesMonterey, CA47 Rooms / 2 Floors 1…
 Lexington SerciesMonterey, CA52 RoomsNot A…
 Ramada InnsMonterey, CA47 RoomsNot Availabl…
 Best Western IntlMonterey, CA43 Rooms / 3 Floo…
 Motel 6Monterey, CA52 Rooms / 2 FloorsNot A…
 Villager LodgeMonterey, CA55 Rooms / 2 Floors<…
 Best Western IntlMonterey, CA34 Rooms / 2 Flo…

1
xterm

2

3

4

5

Figure 4. Agent interacting with Web services through OAA.

goal. Also of note is the Ibrow system, an intel-
ligent brokering service for knowledge-com-
ponent reuse on the Web.13 Our work is simi-
lar to Ibrow in the use of an agent brokering
system and ontologies to support interaction
with the Web. Nevertheless, we are focusing
on developing and exploiting Semantic Web
markup, which will provide us with the KB
for our agents. Our agent technology performs
automated service composition based on this
markup. This is a problem the Ibrow commu-
nity has yet to address.

The DAML family of semantic Web
markup languages will enable Web

service providers to develop semantically
grounded, rich representations of Web services
that a variety of different agent architectures
and technologies can exploit to a variety of dif-
ferent ends. The markup and agent technology
presented in this article is but one of many pos-
sible realizations. We are building on the mark-
up presented here to provide a core set of
Web service markup language constructs in a
language we’re calling DAML-S. We’re work-
ing in collaboration with SRI, Carnegie Mel-
lon University, Bolt Baranek and Newman,
and Nokia, and we’ll eventually publish the
language at www.daml.org. Our agent tech-
nology for automating Web service composi-
tion and interoperation is also fast evolving.
We’ll publicize updates at www.ksl.stanford.
edu/projects/DAML/webservices.

Acknowledgments
We thank Richard Fikes and Deborah McGuin-

ness for useful discussions related to this work; Ron
Fadel and Jessica Jenkins for their help with ser-
vice ontology construction; and the reviewers,
Adam Cheyer and Karl Pfleger for helpful com-
ments on a draft of this article. We also thank the
Cognitive Robotics Group at the University of
Toronto for providing an initial ConGolog inter-
preter that we have extended and augmented, and
SRI for the use of the Open Agent Architecture soft-
ware. Finally, we gratefully acknowledge the finan-
cial support of the US Defense Advanced Research
Projects Agency DAML Program #F30602-00-2-
0579-P00001.

References

1. J. Hendler, “Agents and the Semantic Web,”
IEEE Intelligent Systems, vol. 16, no. 2,
Mar./Apr. 2001, pp. 30–37.

2. T. Berners-Lee, M. Fischetti, and T. M. Der-
touzos, Weaving the Web: The Original
Design and Ultimate Destiny of the World
Wide Web by its Inventor, Harper, San Fran-
cisco, 1999.

3. F. van Harmelen and I. Horrocks, “FAQs on
OIL: The Ontology Inference Layer,” IEEE
Intelligent Systems, vol. 15, no. 6, Nov./Dec.
2000, pp. 69–72.

4. J. Hendler and D. McGuinness, “The DARPA
Agent Markup Language,” IEEE Intelligent Sys-
tems, vol. 15, no. 6, Nov./Dec. 2000, pp. 72–73.

5. G. De Giacomo, Y. Lesperance, and H.
Levesque, “ConGolog, a Concurrent Pro-
gramming Language Based on the Situation
Calculus,” Artificial Intelligence, vols. 1–2,
no. 121, Aug. 2000, pp. 109–169.

6. K. Sycara et al., “Dynamic Service Match-
making among Agents in Open Information
Environments,” J. ACM SIGMOD Record,
vol. 28, no. 1, Mar. 1999, pp. 47–53.

7. M. Ghallab et al., PDDL: The Planning
Domain Definition Language, Version 1.2,
tech. report CVC TR–98–003/DCS TR–1165,
Yale Center for Computational Vision and
Control,Yale Univ., New Haven, Conn., 1998.

8. S. McIlraith, “Modeling and Programming
Devices and Web Agents,” to be published in
Proc. NASA Goddard Workshop Formal

Approaches to Agent-Based Systems, Lecture
Notes in Computer Science, Springer-Verlag,
New York, 2001.

9. S. McIlraith and T.C. Son, “Adapting Golog
for Programming the Semantic Web,” to be
published in Proc. 5th Symp. on Logical For-
malizations of Commonsense Reasoning
(Common Sense 2001), 2001.

10. D.L. Martin, A.J. Cheyer, and D.B. Moran,
“The Open Agent Architecture:A Framework
for Building Distributed Software Systems,”
Applied Artificial Intelligence, vol. 13, nos.
1–2, Jan.–Mar. 1999, pp. 91–128.

11. R. Waldinger, “Deductive Composition of
Web Software Agents,” to be published in
Proc. NASA Goddard Workshop Formal
Approaches to Agent-Based Systems, Lecture
Notes in Computer Science, Springer-Verlag,
New York, 2001.

12. O. Etzioni and D. Weld, “A Softbot-Based
Interface to the Internet,” Comm. ACM, July
1994, Vol. 37, no. 7, pp. 72–76.

13. V. R. Benjamins et al., “IBROW3: An Intel-
ligent Brokering Service for Knowledge-
Component Reuse on the World Wide Web,”
Proc. 11th Banff Knowledge Acquisition for
Knowledge-Based System Workshop (KAW
’98), Banff, Canada, 1998; http://spuds.cpsc.
ucalgary.ca/KAW/KAW98/KAW98Proc.
html (current 20 Mar. 2001).

MARCH/APRIL 2001 computer.org/intelligent 53

Sheila A. McIlraith is a research scientist in Stanford University’s Knowl-
edge Systems Laboratory and the project lead on the KSL’s DAML Web Ser-
vices project. Her research interests include knowledge representation and
reasoning techniques for the Web, for modeling, diagnosing, and controlling
static and dynamical systems, and for model-based programming of devices
and agents. She received her PhD in computer science from the University
of Toronto. Contact her at sam@ksl.stanford.edu.

Tran Cao Son is an assistant professor in the Department of Computer Sci-
ence at New Mexico State University. His research interests include knowl-
edge representation, autonomous agents, reasoning about actions and changes,
answer set programming and its applications in planning and diagnosis, model
based reasoning, and logic programming. Contact him at tson@cs.nmsu.edu.

Honglei Zeng is a graduate student in the Department of Computer Science
at Stanford University. He is also a research assistant in the Knowledge Sys-
tems Laboratory. His research interests include the Semantic Web, knowl-
edge representation, commonsense reasoning, and multiple agents systems.
Contact him at hlzeng@ksl.stanford.edu.

T h e A u t h o r s

54 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

A Portrait of the
Semantic Web in
Action
Jeff Heflin and James Hendler, University of Maryland

The Web’s phenomenal growth rate makes it increasingly difficult to locate, orga-

nize, and integrate the available information. To cope with the enormous quan-

tity of data, we need to hand off portions of these tasks to machines. However, because

natural-language processing is still an unsolved problem, machines cannot understand

the Web pages to the extent required to perform the
desired tasks.

An alternative is to change the Web to make it
more understandable by machines, thereby creating
a Semantic Web. Many researchers believe the key to
building this new Web lies in the development of
semantically enriched languages. Early languages,
such as the resource description framework,1 Sim-
ple HTML Ontology Extensions (SHOE),2 and
Ontobroker,3 have led to more recent efforts, such as
the Defense Advanced Research Projects Agency’s
Agent Markup Language (DAML). Some say that
languages such as these will revolutionize the Web.
If so, how will the new Web work?

In this article, we put a Semantic Web language
through its paces and try to answer questions about
how people can use it, such as:

• How do authors generate semantic descriptions?
• How do agents discover these descriptions?
• How can agents integrate information from dif-

ferent sites?
• How can users query the Semantic Web?

We present a system that addresses these ques-
tions and describe tools that help users interact with
the Semantic Web. We motivate the design of our
system with a specific application: semantic markup
in the computer science domain.

Producing semantic markup
Describing a set of Web pages using a Semantic

Web language can be challenging. (For an overview
of Semantic Web languages, see the related sidebar.)
The first step is to consider the pages’ domain and
choose an appropriate ontology. As Semantic Web
languages evolve, knowledge engineers will likely
provide huge ontology libraries, as well as numerous
search mechanisms to help users find relevant ontolo-
gies. Meanwhile, some of the common languages
provide starter ontology libraries. (Knowledge engi-
neering, which covers the difficult process of design-
ing ontologies, is outside this article’s scope.)

Our running example uses the SHOE language,
which has served as a testbed for Semantic Web ideas
over the past five years, although technically the dis-
cussion could apply to any Semantic Web language.
SHOE has a computer science department ontology
that includes classes such as Student, Faculty, Course,
Department, Publication, and Research, and relations such
as publicationAuthor, member, emailAddress, and advisor. This
ontology’s scope makes it relevant to faculty and stu-
dent homepages, department Web pages, research
project Web pages, and publication indices. Authors
can use a number of methods to produce SHOE
markup for these pages.

Authoring tools
As with HTML, authors can use a text editor to

Without semantically

enriched content, the

Web cannot reach its

full potential. The

authors discuss tools

and techniques for

generating and

processing such

content, thus setting a

foundation upon

which to build the

Semantic Web.

add semantic markup to a page. However,
unlike HTML processors, Semantic Web
processors are not very forgiving, and errors
can result in the processors ignoring large
portions of the annotations. One solution is to
provide authoring tools that let authors cre-
ate markup by making selections and filling
in forms. For the SHOE project, we devel-
oped the Knowledge Annotator (see Figure
1) to perform this function.

In SHOE, a document references a set of
ontologies that provide the vocabulary used
to describe entities (called instances). Each
assertion about an instance is called a claim,
to denote that it may not necessarily be true.

The Knowledge Annotator has an interface
that displays instances, ontologies, and claims,
and a user can add, edit, or remove any of
these objects. When creating a new object, the
Knowledge Annotator prompts the user for
the necessary information. In the case of
claims, the user can choose the source ontol-
ogy from a list and then choose categories or
relations defined in that ontology from another
list. The available relations are automatically
filtered based on whether the instances entered
can fill the argument positions.

Users have access to various methods for
viewing the knowledge in the document.
These include a view of the source HTML, a

logical notation view, and a view that orga-
nizes claims by subject and describes them
using simple English. In addition to prompt-
ing the user for inputs, the tool performs error
checking to ensure correctness and converts
the inputs into legal SHOE syntax. For these
reasons, only a rudimentary understanding
of SHOE is necessary to mark up Web pages.
If developers enhance contemporary Web
authoring tools with semantic markup
authoring capabilities, adding semantic
markup could become a regular activity in
the Web-page design process.

Members of our research group provided
markup for their homepages and those of the

MARCH/APRIL 2001 computer.org/intelligent 55

Unlike Extensible Markup Language (XML), which uses a
name or prose description to imply meaning in documents, a
Semantic Web language must describe meaning in a machine-
readable way. Therefore, the language needs not only the
ability to specify a vocabulary, but also to formally define the
vocabulary so that it will work in automated reasoning. As
such, the subfield of AI known as knowledge representation
greatly influences Semantic Web languages.

However, to meet the needs of the Web, Semantic Web lan-
guages must also differ from traditional KR languages. The
most obvious difference is syntactical: Language designers
base Semantic Web syntaxes on existing standards such as
Hypertext Markup Language (HTML) or XML so that integra-
tion with other Web technologies is possible. Other differences
depend on the nature of the Web.

Because the Web is decentralized, the language must allow
for the definition of diverse—and potentially conflicting—
vocabularies. To handle the Web’s rapid evolution, the lan-
guage must let the vocabularies evolve as human understand-
ing of their use improves. Finally, the Web’s size requires that
scalability play a role in any solution.

An author can formally specify a Semantic Web vocabulary
using an ontology or a schema. Such ontologies and schemas
are also typically sharable (so users can agree to use the same
definitions) and extensible (so users can agree on some common
set of definitions but add terms and definitions as necessary).
Researchers expect that ontology hierarchies will develop, with
top-level abstract ontologies at the root and domain-specific
ontologies at the leaves. Thus, automatic interoperability
between a pair of ontologies exists to the degree that they
share a common ancestor. The language’s expressivity deter-
mines the potential richness of an ontology’s definitions. Most
languages let ontologies define class taxonomies so that it is
possible to say, for example, a car is a type of vehicle. They also
allow for the definition of properties for each class and relation-
ships between multiple classes. Some languages might also
allow the formation of more complex definitions, using axioms
from some form of logic.

Major differences exist between the leading Semantic Web
languages. The resource description framework (RDF) Schema1

is the least expressive. It is based on a semantic network

model, with special links for defining category and property
taxonomies and links for applying domain and range
constraints to properties. Simple HTML Ontology Extensions
(SHOE)2 is based on a frame system but also allows Horn clause
axioms (essentially, simple if–then rules), which authors can use
to define things not possible in RDF. More so than its peers,
SHOE focuses on dealing with the problems of a dynamic, dis-
tributed environment.3 The Ontology Inference Layer (OIL),
based on a frame system augmented with description logic,
lets authors express different kinds of definitions.4 The
Defense Advanced Research Projects Agency Agent Markup
Language (DAML) is a language under development with the
intent to combine the best features of RDF, SHOE, and OIL.

Although ontologies are crucial to making a Semantic Web
language work, they merely serve to standardize and provide
interpretations for Web content. To make this content machine
understandable, the Web pages must contain semantic
markup—that is, descriptions which use the terminology that
one or more ontologies define. The semantic markup might
state that a particular entity is a member of a class, an entity has
a particular property, or two entities have some relationship
between them. By committing to an ontology, the semantic
markup sanctions inferences based on the ontology definitions
and lets agents conclude things that the markup implies.

References

1. O. Lassila, “Web Metadata: A Matter of Semantics,” IEEE Internet
Computing, vol. 2, no. 4, July 1998, pp. 30–37.

2. S. Luke et al., “Ontology-Based Web Agents,” Proc. First Int’l Conf.
Autonomous Agents, ACM Press, New York, 1997.

3. J. Heflin and J. Hendler, “Dynamic Ontologies on the Web,” Proc.
17th Nat’l Conf. AI (AAAI-2000), MIT–AAAI Press, Menlo Park,
Calif., 2000, pp. 443–449.

4. S. Decker et al., “Knowledge Representation on the Web,” Proc.
2000 Int’l Workshop on Description Logics (DL2000), Sun SITE
Central Europe (CEUR), Aachen, Germany, 2000, http://sunsite.
informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-33/.

Overview of Semantic Web languages

group’s Web site. Most used the Knowledge
Annotator, but some preferred a text editor.
Although we produced detailed markup for
a set of pages, the set is too small to be of use
for anything but controlled demos.

Generating markup on a large
scale

For semantic markup to be really useful,
it needs to be ubiquitous, but using an author-
ing tool to generate a lot of markup is tedious.
Detractors of the Semantic Web language
approach often cite the difficulty of produc-
ing markup as the main reason it won’t work.
Fortunately, there are automatic and semi-
automatic approaches for generating seman-
tic markup.

Running SHOE. Some Web pages have reg-
ular structure, with labeled fields, lists, and
tables. Often, an analyst can map these struc-
tures to an ontology and write a program to
translate portions of the Web page into the
semantic markup language. We developed
Running SHOE (see Figure 2), a tool that
helps users specify how to extract SHOE
markup from these kinds of Web pages. The
user selects a page to markup and creates a
wrapper for it by specifying a series of delim-
iters that describe how to extract interesting
information. These delimiters indicate the
start of a list (so that the program can skip
header information) and end of a list (so that
it can ignore trailing information); the start
and end of a record; and for each field of

interest, a pair of start and end delimiters.
A fundamental problem in distributed sys-

tems is knowing when markup from different
people describes the same entity. If we are to
integrate descriptions about such an entity,
we must use a common identifier (or key)
when referring to it. A URL can often serve
as this key because it identifies exactly one
Web page, which a single person or organi-
zation owns. The regular pages that work best
with Running SHOE tend to have lists of
things, and each item in each list typically
contains a hyperlink to a thing’s homepage.
However, these hyperlinks often use relative
URLs, which are not unique. To handle this
problem, the user can specify that a particu-
lar field is a URL, so that when the program
extracts the data, it expands all relative URLs
using the page’s URL as a base.

After the user has specified the delimiters,
the tool can display a table with a row for
each record and a column for each field.
Irregularities in a page’s HTML code can
often cause the program to extract fields or
records improperly; this table lets the user
verify the results before proceeding. The next
step is to convert the table into SHOE
markup. In the top-right panel, the user can
specify ontology information and a series of
templates for SHOE classification and rela-
tion declarations.

For each classification or relation argu-
ment, the user can specify a literal value or
reference a field. At the user’s command, the
tool can then iterate through these templates

and the table of records to create a series of
SHOE statements. Using this tool, a trained
user can extract substantial markup from a
Web page in minutes. Furthermore, because
Running SHOE lets users save and retrieve
templates, it is easy to regenerate new SHOE
markup if the page’s content changes.

Computer science department Web sites
often have faculty, project, course, and user
lists that have ideal formats for Running
SHOE. Each item in each list contains an <A>
tag that provides the URL of the item’s home-
page, and this element’s content is often the
name of the entity being linked to, providing
us with a value for the “name” relation. Other
properties of the instance often follow and are
delimited by punctuation, emphasis, or spe-
cial spacing. With this tool, a single user can
create SHOE markup about the faculty,
courses, and projects of 15 major computer
science departments in a day.

Although there are many pages for which
Running SHOE is useful, there are other
important resources from which it cannot
extract information. An example of such a site
is CiteSeer (http://citeseer.nj.nec.com/cs), an
index of online computer science publications
that we wanted to integrate with our depart-
ment Web pages. Interaction with CiteSeer
involves issuing a query to one page, view-
ing a results page, and then selecting a result
to get a page about a particular publication.
This multistep process prevents Running
SHOE from extracting markup from the Cite-
Seer site.

Publication SHOE Maker. To extract SHOE
from CiteSeer, we built a tool called Publi-
cation SHOE Maker. PSM issues a query to
get publications likely to be from a particu-
lar institution and retrieves a fixed number
of publication pages from the results. The
publication pages contain the publication’s
title, authors, year, links to online copies, and
occasionally additional BibTex information.
Each publication page’s layout is very simi-
lar, so PSM can extract the values of the
desired fields easily.

An important issue is how to link the
author information with the faculty instances
extracted from the department Web pages.
Fortunately, CiteSeer includes homepage
information, which HomePageSearch (http://
hpsearch.uni-trier.de) generates for each
author. By using these URLs (as opposed to
the authors’names), PSM can establish links
to the appropriate instances.

Running SHOE and PSM are only two

56 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Figure 1. The Knowledge Annotator. Here, the interface is being used to view semantic
markup about a Simple HTML Ontology Extensions (SHOE) publication.

examples of tools with which authors can
generate markup. Other extraction tools
might include machine-learning4,5 or natural-
language-processing techniques. As Exten-
sible Markup Language becomes ubiquitous
on the Web, generating wrappers will
become easier, and authors will be able to
use style sheets to transform a simple XML
vocabulary into a semantically enriched one.

If a Web page’s provider is willing to
include semantic markup, the process can be
even easier. For example, databases hold
much of the Web’s data, and scripts produce
Web pages from that data. Because databases
are structured resources, an analyst can deter-
mine the semantics of a database schema,
map the schema to an ontology, and modify
the scripts that produce the Web pages to
include the appropriate semantic markup.

Integrating resources
After authors have described a number of

diverse Web sites with semantic markup, the
next problem is determining how to integrate
the information. Information integration sys-
tems, such as Ariadne,6 can be useful when
developing an application that combines data
from a finite number of predetermined
sources, but are less helpful when integrat-
ing information “on the fly” is necessary.
One solution mirrors the operation of con-
temporary search engines by crawling the
Web and storing the information in a central
repository.

Exposé
Exposé is a Web crawler that searches for

Web pages with SHOE markup and interns
the knowledge. A Web crawler essentially
performs a graph traversal where the nodes
are Web pages and the arcs are the hypertext
links between them. When Exposé discovers
a new URL, it assigns the page a cost and
uses this cost to schedule when it will load
that page. Thus, the cost function determines
a traversal order. We assume SHOE pages
will tend to be localized and interconnected.
Therefore, we use a cost function that
increases with distance from the start node,
where paths through nonSHOE pages are
more expensive than those through SHOE
pages, and paths that stay within the same
directory on the same server are cheaper than
those that do not.

Exposé parses each Web page, and if a
page references an ontology that Exposé is
unfamiliar with, it loads the ontology also.
To update its list of pages to visit, Exposé

identifies all of the hypertext links, category
instances, and relation arguments within the
page and evaluates each new URL as we dis-
cussed. Finally, the agent stores SHOE cat-
egory and relation statements and any new
ontology information in a knowledge base.

This KB will determine the system’s query
capabilities, and thus we must choose an
appropriate knowledge representation sys-
tem. Our SHOE tools all use a generic appli-
cation programming interface for interaction
with the KB, letting us easily use different
backends. We have implemented versions of
this API for Parka, a high-performance frame
system;7 XSB, a deductive database;8 and
Open Knowledge Base Connectivity-com-
pliant KBs.9

By changing the back-end knowledge rep-
resentation system, we get varying trade-offs
between query response time and the degree
to which the system uses inference to com-
pute answers. For example, Parka answers
recognition queries on large KBs (contain-
ing millions of assertions) in seconds, and
when used on parallel machines, it provides
even better performance. However, Parka’s
only inferential capabilities are class mem-
bership and inheritance, so it cannot use the
extra Horn clause rules that SHOE allows.
However, XSB can reason with these rules

but is not as efficient as Parka. Alternately,
the KB could be a relational or object data-
base, providing the greatest scalability and
best query response times but sacrificing the
ability to infer additional answers. Clearly,
the choice of the back-end system depends
on the application’s expected query needs.

We let Exposé crawl the various computer
science Web pages described earlier, and it
was able to gather approximately 40,000
assertions. The crawler stored these asser-
tions in both Parka and XSB KBs. Techni-
cally we did not need a Web crawler for our
example, because we knew the locations of
all the relevant pages a priori. However, in
an ideal Semantic Web situation, the markup
is the product of many individuals working
independently, and users could not easily
locate it without a crawler.

Querying the Semantic Web
Both general-purpose and domain-specific

query tools can access the SHOE knowledge
after it has been loaded into the KB. The
SHOE Search tool (see Figure 3) is a gen-
eral-purpose tool that gives users a new way
to browse the Web by letting them submit
structured queries and open documents by
clicking on the URLs in the results. The user
first chooses an ontology against which to

MARCH/APRIL 2001 computer.org/intelligent 57

Figure 2. Running SHOE. A user can specify delimiters for recognizing fields and
records, verify that they are extracted correctly, then create templates that translate
the data into SHOE format.

issue the query (which essentially establishes
a context for the query).

The user then chooses the desired object’s
class from a hierarchical list and is presented
with a list of all properties that could apply to
that object. After entering desired values for
one or more of these properties, the user
issues a query and receives a set of results in
a table. If the user double-clicks on a bind-
ing that is a URL, the corresponding Web
page will open in a new browser window.
Thus, the user can browse the Semantic Web.

If SHOE markup does not describe all of
the relevant Web pages, SHOE Search’s stan-
dard query method will not be able to return an
answer or might only return partial answers.
Therefore, we also have a Web Search feature
that translates the user’s query into a similar
search engine query and submits it to any of a
number of popular search engines. Using
SHOE Search in this way has two advantages
over using the search engines directly:

• By prompting the user for values of prop-
erties, it increases the chance that the user
will provide distinguishing information for
the desired results.

• By automatically creating the query, it can
exploit helpful features that users often
overlook, such as quoting phrases or using
the plus sign to indicate a mandatory term.

We build a query string that comprises a
quoted short name for the selected category

and, for each property value that the user
specifies, a short phrase describing the prop-
erty. The user’s value, which we quote and
precede with a plus sign to indicate that it is
a mandatory phrase, follows the phrase
describing the property.

With SHOE Search, a user can submit
many queries pertinent to our computer sci-
ence domain. Figure 3 shows a sample query
to locate University of Washington faculty
members and their publications. The com-
puter science ontology serves as a unifying
framework for integrating information from
the university’s faculty page with publication
information from CiteSeer. Furthermore, the
ontology lets the query system recognize that
anyone declared a Professor is also Faculty.

Sample queries to the KB exposed one
problem with the system: Sometimes it didn’t
integrate information from a department Web
page and CiteSeer as expected. These sites
occasionally use different URLs to refer to
the same person. This is a fundamental prob-
lem with using URLs as keys in a Semantic
Web system: Multiple URLs can refer to the
same Web page because of multiple host
names for a given IP address, default pages
for a directory URL, host-dependent short-
cuts such as a tilde for the users directory,
symbolic links within the host, and so on.
Additionally, some individuals might have
multiple URLs that make equally valid keys
for them, such as the URLs of both profes-
sional and personal homepages. These prob-

lems would be partially alleviated if the lan-
guage included the ability to specify identifier
equivalence—a feature absent from SHOE
but present in DAML.

We created a search engine called Se-
mantic Search that is based on the tech-
nologies we describe. Semantic Search
uses the SHOE Search tool as a query inter-
face and provides utilities for authors,
including links to an ontology library, the
Knowledge Annotator, an online SHOE
validation form, and a form for submitting
new pages to the repository. We encourage
readers to add markup to their own Web
pages and submit them. Semantic Search
is available at http://www.cs.umd.edu/
projects/plus/SHOE/search/.

We have described a simple archi-
tecture for a Semantic Web system

that parallels the way contemporary Web
tools and search engines work. As Figure 4
shows, authors use various tools to add
markup to Web pages, and a Web crawler dis-
covers the information and stores it in a
repository, which other tools can then query.
Generally, authors need not produce all
markup by hand; in many cases, simple
extraction tools can generate accurate mark-
up with minimal human effort. Although the
tools that comprise this architecture are
designed for use with the SHOE language,
developers can create similar tools for other
Semantic Web languages. Because any num-
ber of tools can produce and process the
semantic markup on a Web page, other archi-
tectures are also possible. For example,
developers could create an agent that queries
pages directly as opposed to issuing queries
to a Web-crawler-constructed repository.

If we achieve the Semantic Web vision,
locating useful information on the Internet
will be easier, and integrating diverse
resources will be simpler. The first step is to
design languages that we can use to express
explicit semantics. The next step is to
improve the systems and tools we describe,
so users can naturally provide and receive
information on the Semantic Web. Obvi-
ously, we must still overcome some obsta-
cles: We need better schemes for ensuring
interoperability between independently
developed ontologies and approaches for
determining who and what to trust. However,

58 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Figure 3. SHOE Search. With this tool, a user issues a query by choosing an ontology,
choosing a category from that ontology, and then filling in desired values for proper-
ties that instances of that category might have.

these challenges do not appear to be insur-
mountable, and the Semantic Web could be
just around the corner.

Acknowledgments
The US Air Force Research Laboratory sup-

ported this work under grant F306029910013.

References

1. O. Lassila, “Web Metadata: A Matter of
Semantics,” IEEE Internet Computing, vol.
2, no. 4, July 1998, pp. 30–37.

2. S. Luke et al., “Ontology-Based Web
Agents,” Proc. First Int’l Conf. Autonomous
Agents, ACM Press, New York, 1997, pp.
59–66.

3. D. Fensel et al., “Ontobroker: How to
Enable Intelligent Access to the WWW,”
AAAI-98 Workshop on AI and Information
Integration, AAAI Press, Menlo Park,
Calif., 1998, pp. 36–42.

4. D. Freitag, “Information Extraction from
HTML: Application of a General Machine
Learning Approach,” Proc. 15th Nat’l Conf.
AI (AAAI-98), MIT–AAAI Press, Menlo
Park, Calif., 1998, pp. 517–523.

5. N. Kushmerick, D. Weld, and R.
Doorenbos, “Wrapper Induction for
Information Extraction,” Proc. 15th Int’l
Joint Conf. AI, Morgan Kaufmann, San
Francisco, 1997, pp. 729–735.

6. C. Knoblock et al., “Modeling Web Sources
for Information Integration,” Proc. 15th
Nat’l Conf. AI (AAAI-98), MIT–AAAI
Press, Menlo Park, Calif., 1998, pp.
211–218.

7. K. Stoffel, M. Taylor, and J. Hendler,
“Efficient Management of Very Large
Ontologies,” Proc. 14th Nat’l Conf. AI
(AAAI-97), MIT–AAAI Press, Menlo Park,
Calif., 1997.

8. K. Sagonas, T. Swift, and D. Warren, “XSB
as an Efficient Deductive Database
Engine,” Proc. 1994 ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD’94),
ACM Press, New York, 1994, pp. 442–453.

9. V. Chaudhri et al., “OKBC: A Programmatic
Foundation for Knowledge Base Inter-
operability,” Proc. 15th Nat’l Conf. AI
(AAAI-98), MIT–AAAI Press, Menlo Park,
Calif., 1998, pp. 600–607.

MARCH/APRIL 2001 computer.org/intelligent

Knowledge
base

Domain
interfaces

SHOE
search

Exposé
Web

pages

User interfaces

Text
editor

Knowledge
annotator

Annotation

Figure 4. A simple Semantic Web system based on the tools we describe.

T h e A u t h o r s
Jeff Heflin is a PhD
candidate in the Com-
puter Science Depart-
ment at the University
of Maryland. His re-
search interests in-
clude Semantic Web
languages, ontologies,
Internet agents, and

knowledge representation. He has worked in
the computer consulting industry for four years
as a data modeler, database designer, and data-
base administrator. He received a BS in com-
puter science from the College of William and
Mary and an MS in computer science from the
University of Maryland. He is currently a mem-
ber of the Joint US–EU Ad hoc Agent Markup
Language Committee. Contact him at the Uni-
versity of Maryland, Dept. of Computer Sci-
ence, College Park, MD 20742; heflin@cs.
umd.edu.

James Hendler’s biography appears on p. 37.

computer.org/internet/

IEEE Internet Computing
reports emerging tools,
technologies, and
applications implemented
through the Internet to
support a worldwide
computing environment.

In 2001, we’ll look at
• Embedded systems
• Virtual markets
• Internet engineering for

medical applications
• Distributed data storage
• Web server scaling
• Personalization

... and more!

60 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Creating Semantic
Web Contents with
Protégé-2000
Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson, and
Mark A. Musen, Stanford University

B ecause we can process only a tiny fraction of information available on the Web,

we must turn to machines for help in processing and analyzing its contents. With

current technology, machines cannot understand and interpret the meaning of the infor-

mation in natural-language form, which is how most Web information is represented

today. We need a Semantic Web to express informa-
tion in a precise, machine-interpretable form, so soft-
ware agents processing the same set of data share an
understanding of what the terms describing the data
mean.1

Consequently, we’ve recently seen an explosion
in the number of Semantic Web languages devel-
oped. Because researchers and developers haven’t
yet reached a consensus on which language is the
most suitable, which features each language must
have, or which syntax is the most appropriate, we are
likely to see even more languages emerge. We need
to develop tools that will let us experiment with these
new languages so we can compare their expressive-
ness and features, change language specifications,
and select a suitable language for a specific task.

In this article, we describe Protégé-2000, a graph-
ical tool for ontology editing and knowledge acqui-
sition that we can adapt to enable conceptual model-
ing with new and evolving Semantic Web languages.
Protégé-2000 lets us think about domain models at a
conceptual level without having to know the syntax
of the language ultimately used on the Web. We can
concentrate on the concepts and relationships in the
domain and the facts about them that we need to
express. For example, if we are developing an ontol-
ogy of wines, food, and appropriate wine–food com-
binations, we can focus on Bordeaux and lamb
instead of markup tags and correct syntax.

Naturally, designing a new tool specifically for a
new language could be better than adapting an exist-
ing tool. We can offer several reasons, however, for

adapting an existing tool at the stage where no sin-
gle language has emerged as the winner. First, we
can experiment with emerging languages without
committing enormous amounts of resources to cre-
ating tools that are custom-tailored for these lan-
guages—only to decide later that the languages are
not suitable. Second, Protégé-2000 already provides
considerable functionality that a new tool will need
to replicate, both at the modeling and user-interface
levels. Third, using different customizations of the
same tool to edit ontologies in different languages
gives us most of the translation among the models
in the languages “for free.” Translating a model from
one language to another becomes as easy as select-
ing a “save as…” item from a menu.

Semantic Web languages
AI researchers have used ontologies for a long

time to express formally a shared understanding of
information. An ontology is an explicit specification
of the concepts in a domain and the relations among
them, which provides a formal vocabulary for infor-
mation exchange. Specific instances of the concepts
defined in the ontologies—instance data—paired
with ontologies constitute the basis of the Semantic
Web. In recent experiments to prototype the Seman-
tic Web, members of different communities with dif-
ferent backgrounds and goals in mind have created
a multitude of languages for representing ontologies
and instance data on the Web (see Table1). Typically,
a Semantic Web language for describing ontologies
and instance data contains a hierarchical description

As researchers continue

to create new languages

in the hope of developing

a Semantic Web, they still

lack consensus on a

standard. The authors

describe how Protégé-

2000—a tool for

ontology development

and knowledge

acquisition—can be

adapted for editing

models in different

Semantic Web

languages.

of important concepts in a domain (classes).
Individuals in the domain are instances of
these classes, and properties (slots) of each
class describe various features and attributes
of the concept. Logical statements describe
relations among concepts. For example, con-
sider an ontology describing wines, food, and
appropriate wine–food combinations. Some
of the classes describing this domain are Wine,
Wineries, and different types of Food. Some
properties of the Wine class include the wine’s
flavor, body, sugar level, and the winery that pro-
duced it.

These notions are present in many Seman-
tic Web languages existing today including
SHOE, Topic Maps, XOL, RDF and RDFS,
and DAML+OIL.

The SHOE (Simple HTML Ontology
Extensions) language, developed at the Uni-
versity of Maryland, introduces primitives to
define ontology and instance data on Web
pages. Classes are called categories in SHOE.
Categories constitute a simple is-a hierarchy,
and slots are binary relations. SHOE also
allows relations among instances or instances
and data to have any number of arguments
(not just binary relations). Horn clauses
express intensional definitions in SHOE.

The Hytime community developed Topic
Maps, a recent ISO standard (ISO/IEC
13250). Topic Maps aim to annotate docu-
ments with conceptual information. Topics
correspond to classes in other ontology lan-
guages and can be linked to documents. Top-
ics are instances of Topic Types (other topics),
which can be related to one another with Asso-
ciations. Associations correspond closely to
slots in other ontology languages. Associa-
tions belong to Association Types, which are
again Topics. Topic Maps do not have a spe-
cialized primitive for representing instances.
Any instance of a topic type can act as a topic
type itself.

The bioinformatics community designed
XOL for the exchange of ontologies in the
field of bioinformatics. It evolved to become
a general language for interchange of ontol-
ogy and instance data. Being an interchange
language, XOL includes primitives found in
many knowledge-representation systems,
object databases, and relational databases. It
provides means to define classes, a class hier-
archy, slots, facets, and instances.

RDF (resource description framework)
provides a graph-based data model, consist-
ing of nodes and edges. Nodes correspond to

objects or resources and the edges to prop-
erties of these objects. The labels on the
nodes and edges are Uniform Resource Iden-
tifiers (URIs). However, RDF itself does not
define any primitives for creating ontologies.
It is the basis for several other ontology-def-
inition languages such as RDFS and
DAML+OIL.

RDF Schema2 defines the primitives for
creating ontologies. Figure 1 shows an exam-
ple of a graph representing our ontology of
wines as an RDFS. In RDFS, there are
classes of concepts, which constitute a hier-
archy with multiple inheritance. For exam-
ple, the class Wine is a subclass of the class
Drink. Classes typically have instances (for
example, a specific red wine is an instance
of the Red Wine class) and a resource can be an
instance of more than one class (for exam-
ple, Romariz Port is an instance of both the Red
Wine and the Dessert Wine classes). Resources
have properties associated with them (for
example, Wine has flavor). Properties describe
attributes of a resource or a relation of a
resource to another resource. RDFS defines
a property’s domain—resources that can be
subjects of the property—and a property’s
range—resources that can be objects of the

MARCH/APRIL 2001 computer.org/intelligent 61

Table 1. A selection of Semantic Web languages.

Language Description URL

XOL XML-based ontology-exchange language www.ai.sri.com/~pkarp/xol

Topic Maps ISO standard for describing knowledge structures www.topicmaps.org

SHOE Simple HTML Ontology Extensions www.cs.umd.edu/projects/plus/SHOE

RDF and Resource description framework and www.w3.org/RDF
RDFS RDF Schema

DAML+OIL DARPA Agent Markup Language + www.daml.org
Ontology Inference Layer

rdf:type

rdfs:subClassOf

rdfs:subClassOf

rdf:type

rdf:type
rdf:type rdf:type rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdfs:range
rdfs:range

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

rdfs:domain

rdfs:domain

rdf:Property

d:White_wine d:Dessert_wine

d:Drink d:maker

d:grape

rdfs:Class

d:Wine

d:Winery

d:Red_wine d:Rose_wine

d:Wine_grape

Figure 1. An RDF Schema graph representing the Wine ontology.

property. For example, the property maker
may have a class Wine as its domain and a
class Winery as its range.

DAML+OIL (DARPA Agent Markup lan-
guage + Ontology Inference Layer)3 takes a
different approach to defining classes and
instances. In addition to defining classes and
instances declaratively, DAML+OIL and
other description-logics languages let us cre-
ate intensional class definitions using Boolean
expressions and specify necessary, or neces-
sary and sufficient, conditions for class mem-
bership. These languages rely on inference
engines (classifiers) to compute a class hier-
archy and to determine class membership of
instances based on the properties of classes
and instances. For example, we can define a
class of Bordeaux wines as “a class of wines
produced by a winery in the Bordeaux region.”
In DAML+OIL, we can also specify global
properties of classes and slots. For example,
we can say that the location slot is transitive: if
a winery is located in the Bordeaux region and
the Bordeaux region is located in France, then
the winery is in France. We will describe
DAML+OIL in more detail later.

We can see from this discussion that
Semantic Web languages for representing
ontologies and instance data have many fea-
tures in common. At the same time, there are
significant differences stemming from dif-
ferent design goals for the languages. In
adapting Protégé-2000 as an editor for these
languages, we build on the similarities
among them and custom-tailor the tool to
account for the individual differences.

Protégé-2000
For many years now, experts in domains

such as medicine and manufacturing have
used Protégé-2000 for domain modeling. We
show not only how we adapt Protégé-2000
to the new world of the Semantic Web—
reusing its user interface, internal represen-
tation, and framework—but also how our
changes enable conceptual modeling with the
new Semantic Web languages.

Protégé-2000 is highly customizable,
which makes its adaptation as an editor for a
new language faster than creating a new edi-
tor from scratch. The following features
make this customization possible:

• An extensible knowledge model. We can
redefine declaratively the representational
primitives the system uses.

• A customizable output file format. We can
implement Protégé-2000 components that
translate from the Protégé-2000 internal
representation to a text representation in
any formal language.

• A customizable user interface. We can
replace Protégé-2000 user-interface com-
ponents for displaying and acquiring data
with new components that fit the new lan-
guage better.

• An extensible architecture that enables
integration with other applications. We
can connect Protégé-2000 directly to
external semantic modules, such as spe-
cific reasoning engines operating on the
models in the new language.

Protégé-2000 knowledge model
Protégé-2000’s representational primi-

tives—the elements of its knowledge
model4—are very similar to those of the
Semantic Web languages that we described
earlier. Protégé-2000 has classes, instances

62 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

The tabs representing different
views of a knowledge base and the

configuration information

The class hiearchy The slot definition

The facets

Figure 2. A snapshot of the ontology representing wines. The tree on the left represents a class hierarchy. The form on the right
shows the definition of the Wine class.

of these classes, slots representing attributes
of classes and instances, and facets express-
ing additional information about slots.

Figure 2 shows an example definition of a
class, which is part of an ontology describing
wines, food, and desirable wine–food com-
binations. In the figure, the tree on the left
represents a class hierarchy. The class of Pauil-
lac wines, for instance, is a subclass of the
class of Médoc wines. In other words, each
Pauillac wine is a Médoc wine. The class of Médoc
wines is, in turn, a subclass of Red Bordeaux
wines and so on. The form on the right in Fig-
ure 2 represents the definition of the selected
class (Wine). There is the name of the class,
its documentation, a list of possible con-
straints, and definitions of slots that the
instances of this class will have. Instances of
the class Wine will have slots describing their
flavor, body, sugar level, the winery that produced
the wine, and so on.

The form in Figure 3 displays an instance
of the class Pauillac representing Château Lafite
Rothschild Pauillac, and the fields display the slot
values for that instance. Therefore, we know
that Château Lafite Rothschild Pauillac has a
full body and strong flavor among other
properties. Both the class-definition forms
(the right-hand side in Figure 2) and the
instance-definition forms (Figure 3) are
knowledge-acquisition forms in Protégé-
2000. The fields on the knowledge-acquisi-
tion forms correspond to slot values, and we
define classes and instances by filling in slot
values in these fields. Protégé-2000 gener-
ates knowledge-acquisition forms automati-
cally based on the types of the slots and
restrictions on their values.

The Protégé-2000 user interface (Figure
2) consists of several tabs for editing differ-
ent elements of a knowledge base and cus-
tom tailoring the layout of the knowledge-
acquisition forms, such as the forms in
Figures 2 and 3. The Classes tab defines
classes and slots, and the Instances tab
acquires specific instances. The Forms tab
allows us to change the layout and the con-
tents of the knowledge-acquisition forms.

We can customize almost all of the Pro-
tégé-2000 features we have described to fit
a specific domain or task by

• changing declaratively the standard class
and slot definitions;

• changing the content and the layout of the
knowledge-acquisition forms; and

• developing plug-ins using the Protégé-
2000 application-programming interface.5

Let’s look at how we can customize Pro-
tégé-2000 and then see how we can use this
flexibility to create Protégé-based editors for
new Semantic Web languages.

Changing the notion of classes
and slots

The definition of the Wine class in Figure 2
is a standard class definition in Protégé-2000,
with a class name, documentation, list of
slots, and so on. What if we need to add more
attributes to a class definition, or change how
a class looks, or change the default definition
of a class in the system? For instance, we
might want to add a list of a few best winer-
ies for each type of wine in the hierarchy.
Such a list is a property of a class (such as
Pauillac wines) rather than a property of spe-
cific instances of the class (such as Château
Lafite Rothschild Pauillac). The list of the best
wineries for a class is not inherited by its sub-
classes: The best wineries producing red Bor-
deaux are not necessarily the same as the best
Médoc or Pauillac wineries (although, they
may overlap). Therefore, this list must
become a part of a class definition the same
way as documentation is a part of a class def-
inition. The Protégé-2000 metaclass archi-
tecture lets us do just that.4,5

Metaclasses are templates for classes in
the same way that classes are templates for
instances. We can define our own meta-
classes and effectively change a definition of
what a class is, in the same way we would
define a new class. The default Protégé-2000
template (the standard metaclass) defines the
fields that we see in Figure 2. We can extend
declaratively this standard definition of what

a class is with new fields of any type by
defining a new metaclass, which simply
becomes a part of the knowledge base. Fig-
ure 4 shows a definition of the Red Bordeaux
class that includes the additional field with a
list of the best Bordeaux wineries.

Similarly, we can define new metaslots as
user-defined templates for new slots. If slot
definitions in our system must have fields in
addition to the ones that Protégé-2000 has,
we simply define new templates where we
describe these new fields.

Custom-tailoring slot widgets for
value acquisition

The look and behavior of the fields on the
knowledge-acquisition forms in Figures 2
and 3 depend on the types of the values that
the fields can take. A field for a string value,
such as a class name, has a simple text win-
dow. A field that contains a list of complex
values is a list box with buttons to add and
remove values and to create new values.
These fields are called slot widgets. They not
only display the values appropriately, but also
help to ensure that the values are correct
based on the slot definitions in the ontology.
For example, the maker of a wine must be a
winery—an instance of the Winery class. The
slot widget for the maker slot in Figure 3 lets
us set the value only to a Winery instance.

Developers can extend Protégé-2000 by
implementing their own slot widgets that are
tailored to acquire and verify particular kinds
of values. Suppose we wanted to be more
precise about the sugar level in wine and to
mark it on a scale rather than simply choos-
ing among three values—dry, sweet, or off-dry.

MARCH/APRIL 2001 computer.org/intelligent 63

Figure 3. An instance of the class Pauillac representing the Château Lafite Rothschild Pauillac. This
wine has a full body, a strong flavor, and a moderate tannin level, among other properties.

We could store the value as a number in the
sugar slot. We could use a slot widget that
would let us select the value on a slider rather
than enter a number (see Figure 5). When we
customize knowledge-acquisition forms, we
choose not only the layout of the fields on
the form, but also the slot widgets that must
be used for different fields. The slot widgets
we choose do not usually affect the contents
of the knowledge base itself, but their use can
make the look and feel of the tool much more
suitable for a particular domain or language.
Slot widgets also can help ensure the internal
consistency of a knowledge base by check-
ing, for example, that an integer value that
we enter is between the allowed maximum
and minimum for that slot.

Using a back-end plug-in to
generate the right output

When we develop a domain model in Pro-
tégé-2000, we do not need to think about the
specific file format that Protégé-2000 will use

to save our work. We think about our domain
at the conceptual level and create classes, slots,
facets, and instances using the graphical user
interface. Protégé-2000 then saves the result-
ing domain models in its own file format.
Developers can change this file format in the
same way they plug in slot widgets. Back-end
plug-ins let developers substitute the Protégé-
2000 text file format with any other file for-
mat. For example, suppose we wanted to use
XML to publish the wine ontology and other
domain models we create using Protégé-2000.
We would then need to create an XML back
end that substitutes files in the Protégé-2000
format with the files in XML. A back end cre-
ates a mapping between the in-memory rep-
resentation of a Protégé-2000 knowledge base
and the file output in the required format. The
back end also enables us to import the files in
that format into Protégé-2000. The new file
format has the same status as the Protégé-2000
native file format, and the users can choose
either format for their files.

Editing Semantic Web languages
with Protégé-2000

Armed with the arsenal of tools to custom-
tailor Protégé-2000 quickly and easily, let’s
look at what is involved in creating a Protégé-
2000 editor for a new Semantic Web language.
We will use the Protégé-RDFS editor devel-
oped in our laboratory as an example, but the
ideas are the same for any new language.

We start creating a Protégé-2000 editor for
our new language by determining the differ-
ences between the knowledge models of the
two languages: the knowledge model of Pro-
tégé-2000 and the knowledge model under-
lying our language of choice. We then decide
which of the available tools—metaclasses,
custom user-interface components, or a cus-
tom back end—we will use to reconcile the
differences or to hide them from the user.

In practice, the overlap between the knowl-
edge models underlying the Semantic Web
languages available today is very large. The
models might use different terminology for

64 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

The field in the
 new template

Figure 4. A class definition that uses a nonstandard template. We added the best wineries slot to the standard class-definition template.

the same notion (for example, slots in Pro-
tégé-2000 and properties in RDFS). How-
ever, the structure of the concepts, the under-
lying semantics, and the restrictions are often
similar.

When we compare the two knowledge
models, we identify four categories of con-
cepts (see Figure 6):

1. Concepts that are exactly the same in the
two languages (possibly with different
names). Usually, classes, inheritance,
instances, slots as properties of classes and
instances, and many of the slot restrictions
fall into this category.

2. Concepts that are the same but expressed
differently in the two languages. For
example, Protégé-2000 associates slots
with classes by attaching a slot to a class.
RDFS defines essentially the same rela-
tionship by defining a domain of a property.

3. Concepts in our language of choice that
do not have an equivalent in Protégé-2000.
For example, RDFS allows an instance to
have more than one type, whereas in Pro-
tégé-2000 each instance has a unique direct
type.

4. Concepts that Protégé-2000 supports and
our language of choice does not. For exam-
ple, Protégé-2000 allows a slot to have

more than one allowed class for its values,
whereas the range of a property in RDFS
is limited to a single class.

Naturally, we can express all the features
of our language that fall into the first category
directly in Protégé-2000. We deal with the dif-
ferences in the other three categories by defin-
ing appropriate metaclasses and metaslots and
by resolving the remaining changes in the
back end. We hide the differences from the
user behind custom-tailored slot widgets.

The second item on the list, the concepts
that do not have a direct equivalent in Protégé-
2000 but that can be mapped to native Pro-
tégé-2000 concepts, deserves a special dis-
cussion. Consider domains of properties in
RDFS (rdfs:domain). A domain specifies a class
on which a property might be used. For exam-
ple, the domain of the flavor property is the Wine
class. Protégé-2000 slots are similar to prop-
erties in RDFS. Attaching a slot to a class in
Protégé-2000 also specifies that a slot can be
used with that class. For example, the flavor slot

MARCH/APRIL 2001 computer.org/intelligent 65

A slider widget for
numeric values

Figure 5. Changing a slot widget. We use a slider instead of a simple field to acquire
numeric values for the sugar level.

(2) Concepts that can be
encoded as native Protégé

concepts

(1) Concepts
that are identical

semantically

(3) Concepts that do not
have an equivalent
in native Protégé

(4) Concepts in Protégé that
do not have an equivalent

in the language

Use native
Protégé concepts

Use Protégé
concepts directly

Use metaclasses and
metaslots to encode

the information

Use custom labels and
slot widgets to hide

the differences

Back end

Use custom slot widgets
to facilitate

knowledge entry

Use knowledge-acquisition
forms to disable

the features

Map between the model in
Protégé and the model

required by the language

Map directly into
the model required

by the language

Modeling

User interface

Map between the model in
Protégé and the model

required by the language

Define the means of storing
the information in the

language format

The new language3

1

2

4 Protégé-2000

Figure 6. Comparing the knowledge models of Protégé-2000 and a new Semantic Web language.

is attached to the Wine class. We have two ways
to encode the RDFS domain information in a
Protégé-RDFS editor. First, we can add a
domain slot to a template (metaslot) that we will
use for all our slots. Then, a field for domain
will appear on each form for a slot, and we
will fill it in there. Second, we can simply use
the native Protégé-2000 notion of slot attach-
ment and translate the attachments of slots to
classes into domains of properties in the back
end. The second solution lets us use the Pro-
tégé-2000 user interface directly and hides the
features of a specific language used to store
the information.

We find it extremely beneficial to adopt the
paradigm of using the native Protégé-2000 fea-
tures wherever possible and of resorting to
additional definitions, such as metaclasses and
metaslots, only when absolutely necessary.
This approach maximally facilitates the
exchange of domain models among different
languages, which we edit (or will edit) with
Protégé-2000. As new languages emerge and
we experiment with them, the knowledge mod-
els underlying these languages will undoubt-
edly overlap. By encoding as much as possible
in the native Protégé-2000 structures and leav-
ing part of the translation between the Protégé-
2000 model and the language to the back end,
we maximize the amount of information that
we will preserve by simply loading a knowl-
edge base in one language supported by Pro-
tégé-2000 and saving it to another language.
Even though there would often be some parts

of these models that will not be part of this
overlap, we are maximizing the amount of
information that gets ported among models in
different languages for free.

Having generated the four groups of con-
cepts after comparing the two knowledge
models (see Figure 6), we can reconcile the
differences using

1. modeling—by changing default defini-
tions of classes and slots at the modeling
level;

2. the user interface—by developing spe-
cialized user-interface components; and

3. the back end—by implementing the new
back end that will translate between the
domain model in Protégé-2000 and the
domain model in our language of choice.

Let’s look at how each of these three lev-
els works using the development of a Pro-
tégé-based RDFS editor as an example (see
Table 2 for a summary of the entire process).

The modeling level
We start by determining which concepts in

our language of choice are identical to Protégé-
2000 concepts or that can be represented using
the native Protégé-2000 concepts. We use the
native Protégé-2000 as a means to model this
group of concepts, even if it is not how these
elements are directly expressed in our lan-
guage. We then define the new templates for
class and slot definitions if necessary.

Consider, for example, the two attrib-
utes—rdfs:seeAlso and rdfs:isDefinedBy—that are
associated with each class and each property
in RDFS. The rdfs:seeAlso property specifies
another resource containing information
about the subject resource, and the rdfs:isDe-
finedBy property indicates the resource defin-
ing the subject resource. The values of these
properties are other resources or URIs point-
ing to other resources. We must add these two
fields that the Protégé-2000 itself does not
have to each class and slot form in our knowl-
edge base. To add these fields, we define a
new metaclass that will serve as a template
for RDFS classes. This metaclass is, in fact,
equivalent to the RDFS class rdfs:Class. Figure
7 shows the definition of rdfs:Class with the new
template slots that will appear on each class
form that uses this template.

The user-interface level
When creating a Protégé-based editor for a

new language, we can change both the behav-
ior and the look and feel of the knowledge-
acquisition forms to reflect the terminology
and the features of the language. First, we can
change the labels on the forms—the simplest
type of customization. For example, we can
easily replace Protégé’s “Template slots”
label in a class definition with the RDFS
“Properties” label to give the form an RDFS
look. Other elements that we can easily con-
figure by manipulating the forms include
whether or not a field should be visible to the

66 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Table 2. Creating the Protégé-based RDFS editor.

Category (1) Concepts in RDFS (2) Concepts in RDFS (3) Concepts in RDFS (4) Concepts in Protégé
that are (nearly) identical that can be encoded that do not have an that do not have
to Protégé concepts as native Protégé concepts equivalent in native Protégé an equivalent in RDFS

Modeling rdfs:Class = :STANDARD-CLASS Do not use explicit rdfs:domain and rdfs:Class is a default for Cardinality, inverse slot,
rdfs:subClassOf = rdfs:range for properties; rdfs: metaclass, and rdf:Property is a and default value facets;

subclass of domain encoded as slot attachment; default metaslot; add properties multiple allowed classes
rdf:type = instance of rdfs:range encoded as allowed class rdfs:isDefinedBy, rdfs:seeAlso for a slot
rdf:Property = Instance-typed slots as core slots; add

:STANDARD-SLOT rdfs:ConstraintProperty and
rdfs:subPropertyOf = rdfs:ConstraintResource as

subslot of core classes; multiple types of
rdfs:Resource = :THING an instance
rdf:comment =

:DOCUMENTATION

User Custom labels on class Plug-in URI slot widget for Disable default-value and
interface and slots forms (for validating URI-type slots. inverse-slot widgets on

example, “Properties” slot forms.
and “Comment”)

Back end Map Protégé concepts Translate slot attachments On import, create new class Write out extra facet information
directly to RDFS concepts as rdfs:domain for as a subclass of the multiple as Protégé-specific properties

properties and allowed types. on properties. If a slot has
classes as rdfs:range multiple allowed classes, create

a new class for rdfs:range
value. On import, do the reverse.

user, the buttons on the fields, the position and
size of the fields, and the slot widgets to be
used for each field. We perform this configu-
ration entirely in the Protégé-2000 Forms tab
and not in the programming code.

We could also develop our own slot-wid-
get plug-ins to allow editing and verification
of elements that are unique to our language.
For example, a URI widget in the Protégé-
RDF editor can validate that the user has
entered a correct URI or even take the user
to the corresponding Web page.

Disabling fields for some slots on the form
prevents the user from exercising Protégé-
2000 features that the particular Semantic Web
language does not support. For example, we
can disable the field for entering default slot
values in the Protégé-RDFS editor, because
RDFS does not support default values.

The back-end level
Whatever the differences between Protégé-

2000 and our language that we could not
resolve at the modeling and user-interface lev-
els, we will need to reconcile in the module
that saves the internal Protégé-2000 repre-

sentation in the required output file format—
the back-end plug-in. The back-end plug-in

1. saves a Protégé-2000 knowledge base in
a file format that conforms to the syntax
of our language of choice;

2. maps the elements of the Protégé-2000
knowledge base that do not have a direct
equivalent in our language to the appro-
priate set of elements in this language; and

3. imports domain models in this language
that were developed elsewhere for edit-
ing in Protégé-2000.

Usually, when developers define a lan-
guage with a new syntax, they quickly imple-
ment a parser that allows developers to read
and write files in that language’s syntax.
Many of the new languages are extensions of
XML or RDF, and thus we can often use the
existing XML and RDF parsers to take care
of the syntactic part of adapting to the new
language.

In RDFS, the back end must deal with a
number of issues that we did not resolve at
the modeling level or in the user interface. We

might have resolved some of these issues
there, but it would have unnecessarily com-
plicated the editor for the user. For example,
instances in Protégé-2000 are of a single
class, whereas in RDFS they can be direct
instances of several classes (for example, they
have several direct types). Because the RDFS
model is more general, we have no problem
in saving a Protégé-2000 knowledge base in
RDFS. However, when we import RDFS
instance data into Protégé-2000, we must deal
with instances that have several direct types.
Suppose we have a class for red wines and a
class for dessert wines. We have Romariz Port as
an instance of both classes in RDFS. When
we import this RDFS instance data into Pro-
tégé-2000, the back end can create a new class
that is a subclass of both classes (for exam-
ple, denoting a concept of dessert red wines)
and make the Romariz Port instance an instance
of this new class. We can record the two orig-
inal classes of Romariz Port as additional slots
on the newly created class (as shown in Fig-
ure 4). When saving back to RDFS, the back
end can extract the information from this slot,
thus preserving the original model.

MARCH/APRIL 2001 computer.org/intelligent 67

The additional slots
defining RFDS-specific

properties

Figure 7. A template definition for classes in RDFS. The class rdfs:Class inherits most of the slots from the standard class template, but
the two slots at the top of the list of properties are the ones that we defined for RDFS.

Any user-defined back end has the same
status as all the other back ends, including
the ones that are part of the core Protégé-
2000 system: it can be used as a storage for-
mat for Protégé-2000 knowledge bases.
Therefore, there is another, no less impor-
tant, goal of a back-end plug-in: to ensure
that when we create a knowledge base in Pro-
tégé-2000, save it using the back-end plug-in,
and load it again, we have preserved all the
information. Hence, we must find a way to
store the elements that Protégé-2000 sup-
ports, but that our language of choice does
not. Most Semantic Web languages are flex-
ible enough to easily store this information.
For example, in RDFS, we simply add new
Protégé-specific properties to slots to record
default values, which RDFS does not have.
These properties have no meaning to another
RDFS agent, but if we read the knowledge

base back in Protégé-2000, we will have the
default values preserved.

Creating new tabs to include
other semantic modules

In addition to creating a Protégé-based
editor for a new Semantic Web language,
developers can plug in other applications in
the knowledge-base–editing environment. In
addition to the standard tabs that constitute
the Protégé-2000 user interface (Figures 2
and 4), developers can create tab plug-ins in
the same way they can plug in new slot wid-
gets. These tabs can include arbitrary appli-
cations that benefit from the live connection
to the knowledge base. These applications
then become an integral part of the knowl-
edge-base–editing environment.

Consider our wine example again. Having
created a knowledge base of wines and food

and the appropriate combinations, we might
want to build an application that produces
wine suggestions for a meal course in a restau-
rant. Such an application would actively use
the data in the knowledge base but it would
also implement its own reasoning mechanism
to analyze suggestions. We can implement this
wine-selection application as a tab plug-in.

In practical terms, a tab plug-in is a sepa-
rate application, a developer’s own user-
interface space from which the developer can
connect to, query, and update the current Pro-
tégé-2000 knowledge base.

In the realm of the Semantic Web, a tab
can include any applications that would help
us acquire or annotate the knowledge base.
Such applications can

• enable direct annotation of HTML pages
with semantic elements;

68 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Auxilliary core
classes

Figure 8. The definition for the spicy-red-meat-course class in the Protégé-OIL editor. In addition to the standard fields, such as those
shown in Figure 2), we have OIL-specific fields such as hasPropertyRestriction and subClassOf for specifying complex class expressions.
These slots use the OIL-specific slot widget to display expressions. The tree on the left contains the auxiliary core classes we
defined for OIL.

• provide connection to external reasoning
and inference resources;

• acquire the semantic data automatically
from text; and

• present a graphical view of a set of inter-
related resources.

Using Protégé to edit DAML+OIL
DAML+OIL, the Semantic Web language

that was heavily inspired by research in
description logics (DL), allows more types
of concept definitions in ontologies than Pro-
tégé-2000 and RDFS do. The DL-inspired
languages usually include the following fea-
tures in addition to the ones found in the tra-
ditional frame-based languages:

• We can specify not only necessary but also
sufficient conditions for class membership.
For example, if a wine is produced by a
winery from the Bordeaux region, it is a
Bordeaux wine.

• We can use arbitrary Boolean expressions
in class and slot definitions to specify
superclasses of a class, domain and range
of a slot, and so on. For example, a spicy
red-meat course must contain red meat and
must contain food that is itself spicy or
food containing something that is spicy.

• We can specify global slot properties. For
example, location is a transitive property: if
the Château Lafite Rothschild winery is in the Bor-
deaux region and the Bordeaux region is in
France, then the Château Lafite Rothschild winery
is in France.

• We can define global axioms that express
additional properties of classes. For exam-
ple, we can say that the classification of
the class of all wines into the subclasses
for red, white, and rosé wines is disjoint:
Each instance of the Wine class belongs
only to one of these subclasses.

We have adapted Protégé-2000 to work as
an OIL editor. (The OIL language is a pre-
cursor for DAML+OIL.) In doing so, we fol-
lowed the same steps we described in creat-
ing the Protégé-based RDFS editor. In
addition, we have integrated external services
for OIL ontologies into Protégé-2000. Inte-
grating DAML+OIL would require nearly
identical steps.

The modeling level
We introduce the new class and slot tem-

plates, OilClass and OilProperty, to specify com-
plex class and slot definitions. As a result, a

class template, for example, acquires these
three new fields (see Figure 8):

1. type—to specify whether the class defin-
ition contains only necessary or both
necessary and sufficient conditions for
class membership;

2. hasPropertyRestriction—to specify complex
expressions for slot restrictions; and

3. subclassOf—to specify complex expres-
sions describing the position of the class
in the class hierarchy.

To integrate OIL into Protégé-2000, we used
the names from the RDFS serialization syntax
of (Standard-)OIL and not the plain ASCII ver-
sion. See www.ontoknowledge.org/oil/ for the
various syntaxes and versions.

Just as for RDFS, we use as many native
Protégé-2000 mechanisms for modeling OIL
ontologies as possible. If a new class is sim-
ply a subclass of several existing classes in
the hierarchy, we use Protégé’s own notion of
subclasses by placing the new class where it
belongs in the hierarchy. However, if a super-
class definition requires boolean expres-
sions—something Protégé-2000 does not
allow—we use the subClassOf field that we see
on the template. Even though Protégé-2000
does not understand the semantics of this
field, we can represent this additional super-
class information declaratively, and then pass
it to a classifier or simply save in OIL.

We use the hasPropertyRestriction field when we
need complex expressions or when we need
to specify existential slot constraints: Protégé-
2000 allows definition of value-type con-
straints on slots (“All values of this slot must
be instances of this class”). OIL allows exis-
tential slot constraints in addition to the value-
type constraints (“One value of this slot must
come from this class and one value must
come from that class”). We build the complex
expressions declaratively by creating
instances of core auxiliary classes. We can
see some of these core classes in the tree in
Figure 8. In the example, we specify a sub-
class of a meal-course, spicy-red-meat-course, which
we define as “a course that must contain red
meat and must contain food that is itself spicy
or food containing something that is spicy.”

Even though Protégé-2000 does not sup-
port some of the semantics that OIL has, we
can still encode the additional information
declaratively. Protégé-2000 will “ignore” the
information, but it will be able to pass it on
to a classifier or to encode it in OIL so that an
OIL agent can understand it.

The user-interface level
Apart from changing labels and rearrang-

ing fields on the forms for the OilClass and Oil-
Property templates, we created a new slot widget
to allow easier editing of nested expressions
such as the ones representing “food that is
itself spicy or food containing something that
is spicy” in Figure 8. This widget augments
the standard Protégé-2000 widget for select-
ing and creating values for instance-valued
slots with a display of the nested expressions
in a more practical form. A further extension
of this simple but effective slot widget can
include a full context-sensitive, validating
expression editor.

The back-end level
We describe here an OIL back end that pro-

duces the RDFS output for OIL. Therefore,
we can build largely on the existing RDFS
back end. In defining the class and slot names
and the structure of the auxiliary core classes
in the OIL editor, we have mainly adhered to
the RDFS specification of OIL. As a result,
just using the RDFS back end, described ear-
lier, gives us an output that is very close but
not identical to the RDFS OIL output that we
need. Thus, to create the OIL back end, we
started with the existing RDFS back end. We
adapted it to add the parts of definitions spec-
ified by the native Protégé-2000 means to the
complex class expressions.

The OIL back end encodes the concepts
that Protégé-2000 has and OIL does not
(global cardinality restrictions on slots, for
example) by defining additional statements
in a Protégé namespace. An OIL agent will
not understand these statements and will
ignore them, but Protégé-2000 will be able to
extract the necessary information from them.

Because many Semantic Web languages
are in their infancy and already come in many
different versions, there is an alternative
approach to developing specific back ends
for each of these versions. We can create a
general RDF back end for Protégé-2000 and
then use a declarative and easily adaptable
RDF transformation language for generating
the desired outputs. Some research groups
are currently investigating such a back end
and the corresponding RDF transformation
(and query) language.

Accessing external services through
a tab plug-in

The DL languages, such as OIL and
DAML+OIL, traditionally rely on an infer-
ence component—a classifier—to find the

MARCH/APRIL 2001 computer.org/intelligent 69

right position of a class in the class hierar-
chy and to determine which class definitions
are unsatisfiable (cannot have any instances).
Therefore, it is crucial to have a connection
to a DL classifier as part of the environment
for editing OIL and DAML+OIL ontologies.
Having created a set of definitions, we can
invoke the classifier to determine how the
evolving class hierarchy looks. We can see
the effects that changes in class definitions
will have on the evolving hierarchy. We can
immediately check if logical expressions
defining a class contradict one another mak-
ing the class unsatisfiable.

Therefore, in order to create a full-fledged
Protégé-based OIL editor, we need to con-
nect Protégé-2000 to such an inference com-
ponent and present the results to the user. We
implemented this connection as a Protégé-
2000 tab plug-in.

Figure 9 shows the OIL tab in action. Ini-
tially, the class hierarchy has the various meal-
course subclasses as siblings. In addition, we
specify that an oyster-shellfish-course is a meal-
course that has OYSTERS as the value for its FOOD slot;

a shellfish-course is a meal-course that has shellfish
as its food, and so on. We then use the OIL tab
to connect to a DL classifier, FaCT,6 and to
have it rearrange the class hierarchy accord-
ing to the class definitions. In the resulting
hierarchy, the oyster-shellfish-course class, for
example, is correctly classified as being a
subclass of the shellfish-course class.

W ith the advent of the Semantic Web,
the current network of online

resources is expanding from a set of static
documents designed mainly for human con-
sumption to a new Web of dynamic docu-
ments, services, and devices, which software
agents will be able to understand. Develop-
ers will likely create many different repre-
sentation languages to embrace the hetero-
geneous nature of these resources. Some
languages will be used to describe specific
domains of knowledge; others will model
capabilities of services and devices. These

languages will have different emphasis,
scope, and expressive power.

Protégé-2000 provides full-fledged sup-
port for knowledge modeling and acquisi-
tion. Developers also can custom-tailor Pro-
tégé-2000 quickly and easily to be an editor
for a new Semantic Web language. A Pro-
tégé-based editor enables modeling at a con-
ceptual level that allows developers to think
in terms of concepts and relations in the
domain that they are modeling and not in
terms of the syntax of the final output.

By adapting Protégé-2000 to edit a new
Semantic Web language rather than creating
a new editor from scratch or using a text edi-
tor to create ontologies in the new language,
we obtain a graphical, conceptual-level
ontology editor and knowledge-acquisition
tool. We get a new editor to experiment with
the new language without investing many
resources into it. And we can use Protégé-
2000 as an interchange module to translate
most of the models in other Semantic-Web
languages into our new language and vice
versa. In our experience, it takes a few days

70 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

OIL tab plugin

Figure 9. Tab plug-in for classification of OIL ontologies. On the right, we see a hierarchy of meal courses before classification. The
middle pane shows interactions with the FaCT classifier. The hierarchy on the right is the one that the classifier computed.

to adapt Protégé-2000 to a new Semantic-
Web language—a lot less time than is
required to create any sophisticated software
from scratch. We were able to create these
editors even for a language like OIL, which
takes a knowledge-modeling approach that
is different from the frame-based approach
for which Protégé originally was designed.
The extensible and flexible knowledge model
and the open plug-in architecture of Protégé-
2000 constitute the basis for developing a
suite of conceptual-level editors for Seman-
tic Web languages.

Acknowledgments
For more information about the Protégé project,

please visit http://protege.stanford.edu. A grant
from Spawar, a grant from FastTrack Systems, and
the DARPA DAML program supported this work.

References

1. T. Berners-Lee, M. Fischetti, and M. Der-
touzos, Weaving the Web: The Original
Design and Ultimate Destiny of the World
Wide Web by its Inventor, Harper, San Fran-
cisco, 1999.

2. D. Brickley and R.V. Guha, “Resource
Description Framework (RDF) Schema Spec-
ification,” World Wide Web Consortium, Pro-
posed Recommendation 1999, www.w3.
org/TR/2000/CR-rdf-schema-20000327 (cur-
rent 28 Mar. 2001).

3. J. Hendler and D.L. McGuinness, “The
DARPA Agent Markup Language, ” IEEE
Intelligent Systems, vol. 16, no. 6, Jan./Feb.,
2000, pp. 67–73.

4. N.F. Noy, R.W. Fergerson, and M.A. Musen,
“The Knowledge Model of Protégé-2000:
Combining Interoperability and Flexibility,”
Proc. Knowledge Engineering and Knowl-
edge Management: 12th Int’l Conf. (EKAW-
2000), Lecture Notes in Artificial Intelligence,
no. 1937, Springer-Verlag, Berlin, 2000,
pp.17–32.

5. M.A. Musen et al., “Component-Based Sup-
port for Building Knowledge-Acquisition
Systems, ” Proc. Conf. Intelligent Informa-
tion Processing (IIP 2000) Int’l Federation
for Information Processing World Computer
Congress (WCC 2000), Beijing, China, 2000,
http://smi-web.stanford.edu/pubs/SMI_
Abstracts/SMI-2000-0838.html (current 28
Mar. 2001).

6. I. Horrocks, “The FaCT system,” Proc. Auto-
mated Reasoning with Analytic Tableaux and
Related Methods: Int’l Conf. Tableaux 98, Lec-
ture Notes in Artificial Intelligence, no. 1397,
Springer-Verlag, Berlin, 1998, pp. 307–312.

MARCH/APRIL 2001 computer.org/intelligent 71

Natalya F. Noy is a research scientist in the Stanford Medical Informatics
laboratory at Stanford University. Her interests include ontology development
and evaluation, semantic integration of ontologies, and making ontology-
development accessible to experts in noncomputer-science domains. She has
a BS in applied mathematics from Moscow State University, Russia, an MA
in computer science from Boston University, and a PhD in computer science
from Northeastern University in Boston. Contact her at Stanford Medical
Informatics, 251 Campus Dr., Stanford Univ., Stanford, CA 94305;
noy@smi.stanford.edu.

Michael Sintek is a research scientist at the German Research Center for
Artificial Intelligence. Currently, he is project leader of the FRODO project
where an RDF-based framework for building distributed organizational mem-
ories is developed. He has a Diplom in computer science and economics from
the University of Kaiserslautern. Contact him at the German Research Cen-
ter for Artificial Intelligence (DFKI) GmbH, Knowledge Management Group,
Postfach 2080, D-67608 Kaiserslautern, Germany; sintek@dfki.uni-kl.de.

Stefan Decker is a postdoctoral fellow at the Department of Computer Sci-
ence at Stanford University, where he works on Semantic Web Infrastruc-
ture in the DARPA DAML program. His research interests include knowledge
representation and database systems for the Web, information integration,
and ontology articulation and merging. He has a PhD in computer science
from the University of Karlsruhe, Germany, where he worked on ontology-
based access to information. Contact him at Stanford University, Gates Hall
4A, Room 425, Stanford, CA 94305; stefan@db.stanford.edu.

Monica Crubézy is a postdoctoral researcher in the Stanford Medical Infor-
matics laboratory at Stanford University. Her research focuses on the mod-
eling and integration of libraries of problem-solving methods in the Protégé
knowledge-based-system development framework. She graduated from the
École Polytechnique Féminine, France, in general engineering and computer
science. She has a PhD in computer science from the Institut National de
Recherche en Informatique et Automatique in Sophia Antipolis, France. Con-
tact her at Stanford Medical Informatics, 251 Campus Drive,Stanford Uni-
versity, Stanford, CA 94305; crubezy@smi.stanford.edu.

Ray Fergerson is a programmer in the Stanford Medical Informatics labo-
ratory at Stanford University. He has a BS in physics from the Colorado
School of Mines and a PhD in experimental nuclear physics from the Uni-
versity of Texas in Austin. Contact him at Stanford Medical Informatics, 251
Campus Drive, Stanford University, Stanford, CA 94305; fergerson@smi.
stanford.edu.

Mark A. Musen’s biography appears in the Guest Editors’ Introduction on page 25.

T h e A u t h o r s

72 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Ontology Learning for
the Semantic Web
Alexander Maedche and Steffen Staab, University of Karlsruhe

The Semantic Web relies heavily on formal ontologies to structure data for com-

prehensive and transportable machine understanding. Thus, the proliferation of

ontologies factors largely in the Semantic Web’s success. Ontology learning greatly helps

ontology engineers construct ontologies. The vision of ontology learning that we propose

includes a number of complementary disciplines that
feed on different types of unstructured, semistruc-
tured, and fully structured data to support semiauto-
matic, cooperative ontology engineering. Our ontol-
ogy-learning framework proceeds through ontology
import, extraction, pruning, refinement, and evalua-
tion, giving the ontology engineer coordinated tools
for ontology modeling. Besides the general frame-
work and architecture, this article discusses tech-
niques in the ontology-learning cycle that we imple-
mented in our ontology-learning environment, such
as ontology learning from free text, dictionaries, and
legacy ontologies. We also refer to other techniques
for future implementation, such as reverse engi-
neering of ontologies from database schemata or
learning from XML documents.

Ontologies for the Semantic Web
The conceptual structures that define an underlying

ontology provide the key to machine-processable data
on the Semantic Web. Ontologies serve as metadata
schemas, providing a controlled vocabulary of concepts,
each with explicitly defined and machine-processable
semantics. By defining shared and common domain the-
ories, ontologies help people and machines to commu-
nicate concisely—supporting semantics exchange, not
just syntax. Hence, the Semantic Web’s success and pro-
liferation depends on quickly and cheaply constructing
domain-specific ontologies.

Although ontology-engineering tools have matured
over the last decade,1 manual ontology acquisition
remains a tedious, cumbersome task that can easily
result in a knowledge acquisition bottleneck. When

developing our ontology-engineering workbench,
OntoEdit, we particularly faced this question as we
were asked questions that dealt with time (“Can you
develop an ontology quickly?”), difficulty, (“Is it dif-
ficult to build an ontology?”), and confidence (“How
do you know that you’ve got the ontology right?”).

These problems resemble those that knowledge
engineers have dealt with over the last two decades
as they worked on knowledge acquisition method-
ologies or workbenches for defining knowledge
bases. The integration of knowledge acquisition with
machine-learning techniques proved extremely ben-
eficial for knowledge acquisition.2 The drawback to
such approaches,3 however, was their rather strong
focus on structured knowledge or databases, from
which they induced their rules.

Conversely, in the Web environment we encounter
when building Web ontologies, structured knowl-
edge bases or databases are the exception rather than
the norm. Hence, intelligent support tools for an
ontology engineer take on a different meaning than
the integration architectures for more conventional
knowledge acquisition.4

In ontology learning, we aim to integrate numerous
disciplines to facilitate ontology construction, partic-
ularly machine learning. Because fully automatic
machine knowledge acquisition remains in the distant
future, we consider ontology learning as semiauto-
matic with human intervention, adopting the paradigm
of balanced cooperative modeling for constructing
ontologies for the Semantic Web.5 With this objective
in mind, we built an architecture that combines knowl-
edge acquisition with machine learning, drawing on

The authors present

an ontology-learning

framework that

extends typical

ontology engineering

environments by using

semiautomatic

ontology-construction

tools. The framework

encompasses ontology

import, extraction,

pruning, refinement,

and evaluation.

resources that we find on the syntactic Web—
free text, semistructured text, schema defini-
tions (such as document type definitions
[DTDs]), and so on. Thereby, our framework’s
modules serve different steps in the engineer-
ing cycle (see Figure 1):

• Merging existing structures or defining
mapping rules between these structures
allows importing and reusing existing
ontologies. (For instance, Cyc’s ontolog-
ical structures have been used to construct
a domain-specific ontology.6)

• Ontology extraction models major parts
of the target ontology, with learning sup-
port fed from Web documents.

• The target ontology’s rough outline, which
results from import, reuse, and extraction,
is pruned to better fit the ontology to its
primary purpose.

• Ontology refinement profits from the pruned
ontology but completes the ontology at a
fine granularity (in contrast to extraction).

• The target application serves as a measure
for validating the resulting ontology.7

Finally, the ontology engineer can begin this
cycle again—for example, to include new
domains in the constructed ontology or to
maintain and update its scope.

Architecture
Given the task of constructing and main-

taining an ontology for a Semantic Web
application such as an ontology-based
knowledge portal,8 we produced support for
the ontology engineer embedded in a com-
prehensive architecture (see Figure 2). The
ontology engineer only interacts via the
graphical interfaces, which comprise two of
the four components: the OntoEdit Ontol-
ogy Engineering Workbench and the Man-
agement Component. Resource Processing
and the Algorithm Library are the architec-
ture’s remaining components.

The OntoEdit Ontology Engineering
Workbench offers sophisticated graphical
means for manual modeling and refining of the
final ontology. The interface gives the user dif-
ferent views, targeting the epistemological
level rather than a particular representation lan-
guage. However, the user can export the onto-
logical structures to standard Semantic Web
representation languages such as OIL (ontol-
ogy interchange language) and DAML-ONT
(DAML ontology language), as well as our own
F-Logic-based extensions of RDF(S)—we use
RDF(S) to refer to the combined technologies

MARCH/APRIL 2001 computer.org/intelligent 73

Web documents

Crawl
corpus

Domain
 ontology

Wordnet

O1

Result
set

Resource
Processing

Center

Natural-language-processing
system

OntologyOntology
engineer

Processed data

O2

HTML
HTML

DTD

Legacy databases

Import
schema Import

existing ontologies

XML schema

OntoEdit Ontology
Engineering Workbench

Algorithm
Library

Result
set

Lexicon

Management Component

XML Import semi-
 structured
 schema

Figure 2. Ontology-learning architecture for the Semantic Web.

Apply

Extract

Refine

Prune

Import and reuse Ontology
learning

Ontology
learning

Legacy and application data

Legacy and application data

Domain
ontology

Figure 1. The ontology-learning process.

of the resource description framework and
RDF Schema. Additionally, users can gener-
ate and access executable representations for
constraint checking and application debugging
through SilRi (simple logic-based RDF inter-
preter, www.ontoprise.de), our F-Logic infer-
ence engine, which connects directly to
OntoEdit.

We knew that sophisticated ontology-engi-
neering tools—for example, the Protégé mod-
eling environment for knowledge-based sys-
tems1—would offer capabilities roughly
comparable to OntoEdit. However, in trying
to construct a knowledge portal, we found
that a large conceptual gap existed between
the ontology-engineering tool and the input
(often legacy data), such as Web documents,
Web document schemata, databases on the
Web, and Web ontologies, which ultimately
determine the target ontology. Into this void
we have positioned new components of our
ontology-learning architecture (see Figure 2).
The new components support the ontology
engineer in importing existing ontology prim-
itives, extracting new ones, pruning given
ones, or refining with additional ontology
primitives. In our case, the ontology primi-
tives comprise

• a set of strings that describe lexical entries
L for concepts and relations;

• a set of concepts C (roughly akin to
synsets in WordNet9);

• a taxonomy of concepts with multiple
inheritance (heterarchy) HC;

• a set of nontaxonomic relations R
described by their domain and range
restrictions;

• a heterarchy of relations—HR;
• relations F and G that relate concepts and

relations with their lexical entries; and
• a set of axioms A that describe additional

constraints on the ontology and make
implicit facts explicit.8

This structure corresponds closely to
RDF(S), except for the explicit consideration
of lexical entries. Separating concept refer-
ence from concept denotation permits very
domain-specific ontologies without incur-
ring an instantaneous conflict when merg-
ing ontologies—a standard Semantic Web
request. For instance, the lexical entry school
in one ontology might refer to a building in
ontology A, an organization in ontology B,
or both in ontology C. Also, in ontology A,
we can refer to the concept referred to in
English by school and school building by the

German Schule and Schulgebäude.
Ontology learning relies on an ontology

structured along these lines and on input data
as described earlier to propose new knowledge
about reasonably interesting concepts, rela-
tions, and lexical entries or about links between
these entities—proposing some for addition,
deletion, or merging. The graphical result set
presents the ontology-learning process’s
results to the ontology engineer (we’ll discuss
this further in the “Association rules” section).
The ontology engineer can then browse the
results and decide to follow, delete, or modify
the proposals, as the task requires.

Components
By integrating the previously discussed con-

siderations into a coherent generic architecture
for extracting and maintaining ontologies from
Web data, we have identified several core com-
ponents (including the graphical user interface
discussed earlier).

Management component
graphical user interface

The ontology engineer uses the manage-
ment component to select input data—that is,
relevant resources such as HTML and XML
documents, DTDs, databases, or existing
ontologies that the discovery process can fur-
ther exploit. Then, using the management
component, the engineer chooses from a set
of resource-processing methods available in
the resource-processing component and from
a set of algorithms available in the algorithm
library.

The management component also supports
the engineer in discovering task-relevant
legacy data—for example, an ontology-based
crawler gathers HTML documents that are rel-
evant to a given core ontology.

Resource processing
Depending on the available input data, the

engineer can choose various strategies for
resource processing:

• Index and reduce HTML documents to
free text.

• Transform semistructured documents,
such as dictionaries, into a predefined rela-
tional structure.

• Handle semistructured and structured
schema data (such as DTDs, structured
database schemata, and existing ontolo-
gies) by following different strategies for
import, as described later in this article.

• Process free natural text. Our system
accesses the natural-language-processing
system Saarbrücken Message Extraction
System, a shallow-text processor for Ger-
man.10 SMES comprises a tokenizer
based on regular expressions, a lexical
analysis component including various
word lexicons, an amorphological analy-
sis module, a named-entity recognizer,
a part-of-speech tagger, and a chunk
parser.

After first preprocessing data according to one
of these or similar strategies, the resource-pro-
cessing module transforms the data into an
algorithm-specific relational representation.

Algorithm library
We can describe an ontology by a number

of sets of concepts, relations, lexical entries,
and links between these entities. We can
acquire an existing ontology definition
(including L, C, HC, R, HR, A, F, and G),
using various algorithms that work on this
definition and the preprocessed input data.
Although specific algorithms can vary
greatly from one type of input to the next, a
considerable overlap exists for underlying
learning approaches such as association
rules, formal concept analysis, or clustering.
Hence, we can reuse algorithms from the
library for acquiring different parts of the
ontology definition.

In our implementation, we generally use
a multistrategy learning and result combina-
tion approach. Thus, each algorithm plugged
into the library generates normalized results
that adhere to the ontology structures we’ve
discussed and that we can apply toward a
coherent ontology definition.

Import and reuse
Given our experiences in medicine,

74 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

In trying to construct a

knowledge portal, we found that a

large conceptual gap existed

between the ontology-

engineering tool and the input

(often legacy data).

telecommunications, tourism, and insurance,
we expect that domain conceptualizations are
available for almost any commercially signif-
icant domain. Thus, we need mechanisms and
strategies to import and reuse domain con-
ceptualizations from existing (schema) struc-
tures. We can recover the conceptualizations,
for example, from legacy database schemata,
DTDs, or from existing ontologies that con-
ceptualize some relevant part of the target
ontology.

In the first part of import and reuse, we
identify the schema structures and discuss
their general content with domain experts.
We must import each of these knowledge
sources separately. We can also import man-
ually—which can include a manual defini-
tion of transformation rules. Alternatively,
reverse-engineering tools—such as those
that exist for recovering extended entity-
relationship diagrams from a given data-
base’s SQL description (see the sidebar)—
might facilitate the recovery of conceptual
structures.

In the second part of the import and reuse
step, we must merge or align imported con-

ceptual structures to form a single common
ground from which to springboard into the
subsequent ontology-learning phases of
extracting, pruning, and refining. Although
the general research issue of merging and
aligning is still an open problem, recent pro-
posals have shown how to improve the man-
ual merging and aligning process. Existing
methods mostly rely on matching heuristics
for proposing the merger of concepts and sim-
ilar knowledge base operations. Our research
also integrates mechanisms that use an appli-
cation-data–oriented, bottom-up approach.11

For instance, formal concept analysis lets us
discover patterns between application data
and the use of concepts, on one hand, and
their heterarchies’relations and semantics, on
the other, in a formally concise way (see B.
Ganter and R. Wille’s work on formal con-
cept analysis in the sidebar).

Overall, the ontology-learning import and
reuse step seems to be the hardest to general-
ize. The task vaguely resembles the general
problems encountered in data-warehousing
—adding, however, challenging problems of
its own.

Extraction
Ontology-extraction models major

parts—the complete ontology or large
chunks representing a new ontology sub-
domain—with learning support exploiting
various types of Web sources. Ontology-
learning techniques partially rely on given
ontology parts. Thus, we here encounter an
iterative model where previous revisions
through the ontology-learning cycle can
propel subsequent ones, and more sophis-
ticated algorithms can work on structures
that previous, more straightforward algo-
rithms have proposed.

To describe this phase, let’s look at some
of the techniques and algorithms that we
embedded in our framework and imple-
mented in our ontology-learning environ-
ment Text-To-Onto (see Figure 3). We
cover a substantial part of the overall ontol-
ogy-learning task in the extraction phase.
Text-To-Onto proposes many different
ontology learning algorithms for primi-
tives, which we described previously (that
is, L, C, R, and so on), to the ontology engi-
neer building on several types of input.

MARCH/APRIL 2001 computer.org/intelligent 75

Figure 3. Screenshot of our ontology-learning workbench, Text-To-Onto.

76 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Until recently, ontology learning—for comprehensive ontol-
ogy construction—did not exist. However, much work in numer-
ous disciplines—computational linguistics, information retrieval,
machine learning, databases, and software engineering—has
researched and practiced techniques that we can use in ontol-
ogy learning. Hence, we can find techniques and methods rel-
evant for ontology learning referred to as

• “acquisition of selectional restrictions,”1,2

• “word sense disambiguation and learning of word senses,”3

• “computation of concept lattices from formal contexts,”4 and
• “reverse engineering in software engineering.”5

Ontology learning puts many research activities—which focus
on different input types but share a common domain conceptu-
alization—into one perspective. The activities in Table A span a
variety of communities, with references from 20 completely dif-
ferent events and journals.

References
1. P. Resnik, Selection and Information: A Class-Based Approach to

Lexical Relationships, PhD thesis, Dept. of Computer Science, Univ.
of Pennsylvania, Philadelphia, 1993.

2. R. Basili, M.T. Pazienza, and P. Velardi, “Acquisition of Selectional
Patterns in a Sublanguage,” Machine Translation, vol. 8, no. 1, 1993,
pp. 175–201.

3. P. Wiemer-Hastings,A. Graesser, and K. Wiemer-Hastings, “Inferring
the Meaning of Verbs from Context,” Proc. 20th Ann. Conf. Cognitive
Science Society (CogSci-98), Lawrence Erlbaum, New York, 1998.

4. B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations, Springer-Verlag, Berlin, 1999.

5. H.A. Mueller et al., “Reverse Engineering: A Roadmap,” Proc. Int’l
Conf. Software Eng. (ICSE-00),ACM Press, New York, 2000, pp. 47–60.

6. P. Buitelaar,CORELEX Systematic Polysemy and Underspecification,PhD
thesis,Dept. of Computer Science,Brandeis Univ.,Waltham,Mass., 1998.

7. H. Assadi, “Construction of a Regional Ontology from Text and Its
Use within a Documentary System,” Proc. Int’l Conf. Formal Ontol-
ogy and Information Systems (FOIS-98), IOS Press, Amsterdam.

8. D. Faure and C. Nedellec, “A Corpus-Based Conceptual Clustering
Method for Verb Frames and Ontology Acquisition,” Proc. LREC-98
Workshop on Adapting Lexical and Corpus Resources to Sublan-
guages and Applications, European Language Resources—Distrib-
ution Agency, Paris, 1998.

9. F. Esposito et al., “Learning from Parsed Sentences with INTHELEX,”
Proc. Learning Language in Logic Workshop (LLL-2000) and Learn-
ing Language in Logic Workshop (LLL-2000), Assoc. for Computa-
tional Linguistics, New Brunswick, N.J., 2000, pp. 194-198.

10. A. Maedche and S. Staab, “Discovering Conceptual Relations from
Text,” Proc. European Conf. Artificial Intelligence (ECAI-00), IOS
Press, Amsterdam, 2000, pp. 321–325.

11. J.-U. Kietz,A. Maedche, and R. Volz, “Semi-Automatic Ontology Acqui-
sition from a Corporate Intranet.” Proc. Learning Language in Logic
Workshop (LLL-2000), ACL, New Brunswick, N.J., 2000, pp. 31–43.

12. E. Morin, “Automatic Acquisition of Semantic Relations between
Terms from Technical Corpora,” Proc. of the Fifth Int’l Congress on
Terminology and Knowledge Engineering (TKE-99), TermNet-Ver-
lag, Vienna, 1999.

13. U. Hahn and K. Schnattinger, “Towards Text Knowledge Engineer-
ing,” Proc. Am. Assoc. for Artificial Intelligence (AAAI-98),
AAAI/MIT Press, Menlo Park, Calif., 1998.

14. M.A. Hearst, “Automatic Acquisition of Hyponyms from Large Text
Corpora,” Proc. Conf. Computational Linguistics (COLING-92), 1992.

15. Y. Wilks, B. Slator, and L. Guthrie, Electric Words: Dictionaries,
Computers, and Meanings, MIT Press, Cambridge, Mass., 1996.

16. J. Jannink and G. Wiederhold, “Thesaurus Entry Extraction from an
On-Line Dictionary,” Proc. Second Int’l Conf. Information Fusion
(Fusion-99), Omnipress, Wisconsin, 1999.

17. J.-U. Kietz and K. Morik, “A Polynomial Approach to the Con-
structive Induction of Structural Knowledge,” Machine Learning,
vol. 14, no. 2, 1994, pp. 193–211.

18. S. Schlobach, “Assertional Mining in Description Logics,” Proc. 2000
Int’l Workshop on Description Logics (DL-2000), 2000; http://Sun-
SITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-33.

19. A. Doan, P. Domingos, and A. Levy, “Learning Source Descriptions
for Data Integration,” Proc. Int’l Workshop on The Web and Data-
bases (WebDB-2000), Springer-Verlag, Berlin, 2000, pp. 60–71.

20. P. Johannesson, “A Method for Transforming Relational Schemas
into Conceptual Schemas,” Proc. Int’l Conf. Data Engineering
(IDCE-94), IEEE Press, Piscataway, N.J., 1994, pp. 190–201.

21. Z. Tari et al., “The Reengineering of Relational Databases Based on
Key and Data Correlations,” Proc. Seventh Conf. Database Seman-
tics (DS-7), Chapman & Hall, 1998, pp. 40–52.

A Common Perspective

Table A. A survey of ontology-learning approaches.

Domain Methods Features used Prime purpose Papers

Free Text Clustering Syntax Extract Paul Buitelaar,6 H. Assadi,7 and David Faure and Claure Nedellec8

Inductive logic Syntax, logic Extract Frederique Esposito et al.9
programming representation

Association rules Syntax, Tokens Extract Alexander Maedche and Steffen Staab10

Frequency-based Syntax Prune Joerg-Uwe Kietz et al.11

Pattern matching — Extract Emanuelle Morin12

Classification Syntax, semantics Refine Udo Hahn and Klemens Schnattinger13

Dictionary Information extraction Syntax Extract Marti Hearst,14 Yorik Wilks,15 and Joerg-Uwe Kietz et al.11

Page rank Tokens — Jan Jannink and Gio Wiederhold16

Knowledge base Concept induction, Relations Extract Joerg-Uwe Kietz and Katharina Morik17 and S. Schlobach18

A-Box mining

Semistructured Naive Bayes Relations Reverse engineering Anahai Doan et al.19

schemata

Relational Data correlation Relations Reverse engineering Paul Johannesson20 and Zahir Tari et al.21

schemata

Lexical entry and concept extraction
One of the baseline methods applied in our

framework for acquiring lexical entries with
corresponding concepts is lexical entry and
concept extraction. Text-To-Onto processes
Web documents on the morphological level,
including multiword terms such as “database
reverse engineering” by n-grams, a simple sta-
tistics-based technique. Based on this text pre-
processing, we apply term-extraction tech-
niques, which are based on (weighted)
statistical frequencies, to propose new lexical
entries for L.

Often, the ontology engineer follows the
proposal by the lexical entry and concept-
extraction mechanism and includes a new lex-
ical entry in the ontology. Because the new
lexical entry comes without an associated con-
cept, the ontology engineer must then decide
(possibly with help from further processing)
whether to introduce a new concept or link the
new lexical entry to an existing concept.

Hierarchical concept clustering
Given a lexicon and a set of concepts, one

major next step is taxonomic concept classifi-
cation. One generally applicable method with
regard to this is hierarchical clustering, which
exploits items’ similarities to propose a hier-
archy of item categories. We compute the sim-
ilarity measure on the properties of items.

When extracting a hierarchy from natural-
language text, term adjacency or syntactical
relationships between terms yield consider-
able descriptive power to induce the semantic
hierarchy of concepts related to these terms.

David Faure and Claure Nedellec give a
sophisticated example for hierarchical clus-
tering (see the sidebar). They present a coop-
erative machine-learning system, Asium
(acquisition of semantic knowledge using
machine-learning method), which acquires
taxonomic relations and subcategorization
frames of verbs based on syntactic input. The
Asium system hierarchically clusters nouns
based on the verbs to which they are syntac-
tically related and vice versa. Thus, they
cooperatively extend the lexicon, the concept
set, and the concept heterarchy (L, C, HC).

Dictionary parsing
Machine-readable dictionaries are fre-

quently available for many domains. Although
their internal structure is mostly free text, com-
paratively few patterns are used to give text
definitions. Hence, MRDs exhibit a large
degree of regularity that can be exploited to
extract a domain conceptualization.

We have used Text-To-Onto to generate a
concept taxonomy from an insurance com-
pany’s MRD (see the sidebar). Likewise,
we’ve applied morphological processing to
term extraction from free text—this time,
however, complementing several pattern-
matching heuristics. Take, for example, the
following dictionary entry:

Automatic Debit Transfer: Electronic service
arising from a debit authorization of the Yellow
Account holder for a recipient to debit bills that
fall due direct from the account….

We applied several heuristics to the mor-
phologically analyzed definitions. For
instance, one simple heuristic relates the defi-
nition term, here automatic debit transfer, with

the first noun phrase in the definition, here elec-
tronic service. The heterarchy HC : HC (auto-
matic debit transfer, electronic service) links
their corresponding concepts. Applying this
heuristic iteratively, we can propose large parts
of the target ontology—more precisely, L, C,
and HC to the ontology engineer. In fact,
because verbs tend to be modeled as relations,
we can also use this method to extend R (and
the linkage between R and L).

Association rules
One typically uses association-rule-learn-

ing algorithms for prototypical applications of
data mining—for example, finding associa-
tions that occur between items such as super-
market products in a set of transactions for
example customers’ purchases. The general-
ized association-rule-learning algorithm ex-
tends its baseline by aiming at descriptions at
the appropriate taxonomy level—for example,
“snacks are purchased together with drinks,”
rather than “chips are purchased with beer,”
and “peanuts are purchased with soda.”

In Text-To-Onto (see the sidebar), we use
a modified generalized association-rule-
learning algorithm to discover relations
between concepts. A given class hierarchy
HC serves as background knowledge. Pairs
of syntactically related concepts—for exam-
ple, pair (festival,island) describing the
head–modifier relationship contained in the
sentence “The festival on Usedom attracts
tourists from all over the world.”—are given
as input to the algorithm. The algorithm gen-
erates association rules that compare the rel-
evance of different rules while climbing up or
down the taxonomy. The algorithm proposes
what appears to be the most relevant binary
rules to the ontology engineer for modeling
relations into the ontology, thus extending R.

As the algorithm tends to generate a high
number of rules, we offer various interaction
modes. For example, the ontology engineer
can restrict the number of suggested relations
by defining so-called restriction concepts that
must participate in the extracted relations.
The flexible enabling and disabling of taxo-
nomic knowledge for extracting relations is
another way of focusing.

Figure 4 shows various views of the
results. We can induce a generalized relation
from the example data given earlier—relation
rel(event,area), which the ontology engineer
could name locatedin, namely, events located in
an area (which extends L and G). The user can
add extracted relations to the ontology by
dragging and dropping them. To explore and
determine the right aggregation level of
adding a relation to the ontology, the user can
browse the relation views for extracted prop-
erties (see the left side of Figure 4).

Pruning
A common theme of modeling in various

disciplines is the balance between com-
pleteness and domain-model scarcity. Tar-
geting completeness for the domain model
appears to be practically unmanageable and
computationally intractable, but targeting the
scarcest model overly limits expressiveness.
Hence, we aim for a balance between the two
that works. Our model should capture a rich
target-domain conceptualization but exclude
the parts out of its focus. Ontology import
and reuse as well as ontology extraction put
the scale considerably out of balance where
out-of-focus concepts reign. Therefore, we
appropriately diminish the ontology in the
pruning phase.

We can view the problem of pruning in at
least two ways. First, we need to clarify how

MARCH/APRIL 2001 computer.org/intelligent 77

Targeting completeness for the

domain model appears to be

practically unmanageable and

computationally intractable, but

targeting the scarcest model

overly limits expressiveness.

pruning particular parts of the ontology (for
example, removing a concept or relation)
affects the rest. For instance, Brian Peterson
and his colleagues have described strategies
that leave the user with a coherent ontology
(that is, no dangling or broken links).6 Second,
we can consider strategies for proposing ontol-
ogy items that we should either keep or prune.
Given a set of application-specific documents,
several strategies exist for pruning the ontol-
ogy that are based on absolute or relative
counts of term frequency combined with the
ontology’s background knowledge (see the
sidebar).

Refinement
Refining plays a similar role to extract-

ing—the difference is on a sliding scale
rather than a clear-cut distinction. Although

extracting serves mainly for cooperative
modeling of the overall ontology (or at least
of very significant chunks of it), the refine-
ment phase is about fine-tuning the target
ontology and the support of its evolving
nature. The refinement phase can use data
that comes from a concrete Semantic Web
application—for example, log files of user
queries or generic user data. Adapting and
refining the ontology with respect to user
requirements plays a major role in the
application’s acceptance and its further
development.

In principle, we can use the same algo-
rithms for extraction and refinement. How-
ever, during refinement, we must consider
in detail the existing ontology and its exist-
ing connections, while extraction works
more often than not practically from scratch.

Udo Hahn and Klemens Schnattinger
presented a prototypical approach for re-
finement (see the sidebar)—although not
for extraction! They introduced a method-
ology for automating the maintenance of
domain-specific taxonomies. This incre-
mentally updates an ontology as it acquires
new concepts from text. The acquisition
process is centered on the linguistic and
conceptual “quality” of various forms of
evidence underlying concept-hypothesis
generation and refinement. Particularly, to
determine a particular proposal’s quality,
Hahn and Schnattinger consider semantic
conflicts and analogous semantic structures
from the knowledge base for the ontology,
thus extending an existing ontology with
new lexical entries for L, new concepts for
C, and new relations for HC.

78 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Figure 4. Result presentation in
Text-To-Onto.

MARCH/APRIL 2001 computer.org/intelligent 79

Ontology learning could add significant
leverage to the Semantic Web because

it propels the construction of domain ontolo-
gies, which the Semantic Web needs to suc-
ceed. We have presented a comprehensive
framework for ontology learning that crosses
the boundaries of single disciplines, touch-
ing on a number of challenges. The good
news is, however, that you don’t need perfect
or optimal support for cooperative ontology
modeling. At least according to our experi-
ence, cheap methods in an integrated envi-
ronment can tremendously help the ontology
engineer.

While a number of problems remain
within individual disciplines, additional chal-
lenges arise that specifically pertain to apply-
ing ontology learning to the Semantic Web.
With the use of XML-based namespace
mechanisms, the notion of an ontology with
well-defined boundaries—for example, only
definitions that are in one file—will disap-
pear. Rather, the Semantic Web might yield
an amoeba-like structure regarding ontology
boundaries because ontologies refer to and
import each other (for example, the DAML-
ONT primitive import). However, we do not
yet know what the semantics of these struc-
tures will look like. In light of these facts, the
importance of methods such as ontology
pruning and crawling will drastically
increase. Moreover, we have so far restricted
our attention in ontology learning to the con-
ceptual structures that are almost contained
in RDF(S). Additional semantic layers on top
of RDF (for example, future OIL or DAML-
ONT with axioms, A) will require new
means for improved ontology engineering
with axioms, too!

Acknowledgments
We thank our students, Dirk Wenke, and

Raphael Volz for work on OntoEdit and Text-To-
Onto. Swiss Life/Rentenanstalt (Zurich,
Switzerland), Ontoprise GmbH (Karlsruhe,
Germany), the US Air Force DARPA DAML
(“OntoAgents” project), the European Union
(IST-1999-10132 “On-To-Knowledge” project),
and the German BMBF (01IN901C0 “GETESS”
project) partly financed research for this article.

References

1. E. Grosso et al., “Knowledge Modeling at the
Millennium—the Design and Evolution of
Protégé-2000,” Proc. 12th Int’l Workshop
Knowledge Acquisition, Modeling and Man-
agement (KAW-99), 1999.

2. G. Webb, J. Wells, and Z. Zheng, “An Exper-
imental Evaluation of Integrating Machine
Learning with Knowledge Acquisition,”
Machine Learning, vol. 35, no. 1, 1999, pp.
5–23.

3. K. Morik et al., Knowledge Acquisition and
Machine Learning: Theory, Methods, and
Applications, Academic Press, London,
1993.

4. B. Gaines and M. Shaw, “Integrated Knowl-
edge Acquisition Architectures,” J. Intelligent
Information Systems, vol. 1, no. 1, 1992, pp.
9–34.

5. K. Morik, “Balanced Cooperative Modeling,”
Machine Learning, vol. 11, no. 1, 1993, pp.
217–235.

6. B. Peterson, W. Andersen, and J. Engel,
“Knowledge Bus: Generating Application-

Focused Databases from Large Ontologies,”
Proc. Fifth Workshop Knowledge Represen-
tation Meets Databases (KRDB-98), 1998,
http://sunsite.informatik.rwth-aachen.de/Pub-
lications/CEUR-WS/Vol-10 (current 19 Mar.
2001).

7. S. Staab et al., “Knowledge Processes and
Ontologies,” IEEE Intelligent Systems, vol.
16, no. 1, Jan./Feb. 2001, pp. 26–34.

8. S. Staab and A. Maedche, “Knowledge Por-
tals—Ontologies at Work,” to be published in
AI Magazine, vol. 21, no. 2, Summer 2001.

9. G. Miller, “WordNet: A Lexical Database for
English,” Comm. ACM, vol. 38, no. 11, Nov.
1995, pp. 39–41.

10. G. Neumann et al., “An Information Extrac-
tion Core System for Real World German Text
Processing,” Proc. Fifth Conf. Applied Nat-
ural Language Processing (ANLP-97), 1997,
pp. 208–215.

11. G. Stumme and A. Maedche, “FCA-Merge:
A Bottom-Up Approach for Merging Ontolo-
gies,” to be published in Proc. 17th Int’l Joint
Conf. Artificial Intelligence (IJCAI ’01),
Morgan Kaufmann, San Francisco, 2001.

Alexander Maedche is a PhD student at the Institute of Applied Informat-
ics and Formal Description Methods at the University of Karlsruhe. His
research interests include knowledge discovery in data and text, ontology
engineering, learning and application of ontologies, and the Semantic Web.
He recently founded together with Rudi Studer a research group at the FZI
Research Center for Information Technologies at the University of Karlsruhe
that researches Semantic Web technologies and applies them to knowledge
management applications in practice. He received a diploma in industrial
engineering, majoring in computer science and operations research, from the

University of Karlsruhe. Contact him at the Institute AIFB, Univ. of Karlsruhe, 76128 Karlsruhe,
Germany; ama@aifb.uni-karlsruhe.de.

Steffen Staab is an assistant professor at the University of Karlsruhe and
cofounder of Ontoprise GmbH. His research interests include computational
linguistics, text mining, knowledge management, ontologies, and the Seman-
tic Web. He received an MSE from the University of Pennsylvania and a Dr.
rer. nat. from the University of Freiburg, both in informatics. He organized
several national and international conferences and workshops, and is now
chairing the Semantic Web Workshop in Hongkong at WWW10. Contact
him at the Institute AIFB, Univ. of Karlsruhe, 76128 Karlsruhe, Germany;
sst@aifb.uni-karlsruhe.de.

T h e A u t h o r s

