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The Semantic Web:
= A Brain for Humankind

o riginally, the computer wasintended asadevicefor computation. Then, inthe 1980s,

the PC developed into a system for games, text processing, and PowerPoint pre-

sentations. Eventually, the computer became a portal to cyberspace—an entry point to a

worldwide network of information exchange and business transactions. Consequently,

technol ogy that supports accessto unstructured, het-
erogeneous, and di stributed information and knowl-
edge sourcesis about to become as essential as pro-
gramming languages were in the 60s and 70s.

The Internet—especially World Wide Web tech-
nology—waswhat introduced thischange. TheWebis
animpressive success story, interms of bothitsavail-
ableinformation and the growth rate of human users.
It now penetrates most areas of our lives, and its suc-
cess is based on its simplicity. The restrictiveness of
HTTP and (early) HTML gave software developers,
information providers, and users easy access to new
media, helping thismediareach acritical mass.

Unfortunately, this simplicity could hamper fur-
ther Web devel opment. What we're seeingisjust the
first version of the Web. The next version will be even
bigger and more powerful—but we're still figuring
out how to obtain this upgrade.

Growing complexity

Figure 1illustratesthe growth rate of current Web
technology. It started as an in-house solution for a
small group of users. Soon, it established itself asa
worldwide communication medium for more than

10 million people. In afew years, it will interweave
one hillion people and penetrate not just computers
but also other devices, including cars, refrigerators,
coffee machines, and even clothes.

However, the current state of Web technology gen-
erates serious obstacles to its further growth. The
technology’'s simplicity has already caused bottle-
necksthat hinder searching, extracting, maintaining,
and generating information. Computersare only used
as devices that post and render information—they
don’t have access to the actual content. Thus, they
can only offer limited support in accessing and pro-
cessing thisinformation. So, the main burden not only
of accessing and processing information but also of
extracting and interpreting it is on the human user.

The Semantic Web

Tim Berners-Lee first envisioned a Semantic Web
that provides automated information access based on
machine-processable semantics of data and heuristics
that usethese metadata. The explicit representation of
the semantics of data, accompanied with domain the-
ories (that is, ontologies), will enable a\Web that pro-
videsaqualitatively new level of service. It will weave
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Figure 1. The growth rate of current Web technology.

together anincredibly large network of human
knowledge and will complement it with
machine processability. Various automated ser-
vices will help the user to achieve goals by
accessing and providing information in a
machine-understandable form. This process
might ultimately create an extremely knowl-
edgeable system with various speciaized rea-
soning services—systemsthat can support usin
nearly dl aspectsof our lifeand that will become
as necessary to Usasaccessto electric power.

Thisgivesusacompletely new perspective
of the knowledge acquisition and engineering
and the knowledge representation communi-
ties. Some 20 yearsago, Al researcherscoined
the slogan “knowledge is power.” Quickly,
two communities arose:

 knowledge acquisition and engineering,
which dealswith the bottleneck of acquir-
ing and modeling knowledge (the human-
oriented problem), and

» knowledge representation, which deals
with the bottleneck of representing know!-
edge and reasoning about it (the computer-
oriented problem).

However, the results of both communities
never really hit the nail on the head. Knowl-
edge acquisitionistoo costly, and the know!-
edge representation systems that were cre-
ated were mainly isolated, brittle, and small
solutions for minor problems.

With the Web and the Semantic Web, this
situation has changed drastically. We have
millions of knowledge* acquisitioners’ work-
ing nearly for free, providing up to ahillion
Web pages of information and knowledge.
Transforming the Web into a “knowledge
Web” suddenly put knowledge acquisition
and knowledge representation at the center of
an extremely interesting and powerful topic:
Given the amount of available online infor-

mation we aready have achieved, thisKnowl-
edge (or Semantic) Web will be extremely
useful and powerful. ImagineaWeb that con-
tainslarge bodiesof the overall human knowl-
edge and trillions of specialized reasoning
services using these bodies of knowledge.
Compared to the potential of the Semantic
Web, the original Al vision seems small and
old-fashioned, like an idea of the 19th cen-
tury. Instead of trying to rebuild some aspects
of a human brain, we are going to build a
brain of and for humankind.

In this issue

The work and projects described in this
special issueprovideinitial stepsinto sucha
direction. We start with Michel Klein'stuto-
rial, which introduces the current language
standards of the Semantic Web: XML,
XMLS, RDF, and RDFS.

James Hendler—who has already helped
usall by successfully initiating and running
a large DARPA-funded initiative on the
Semantic Web—reveals his vision of the
Semantic Web. On the basis of a standard
ontology language, he sees software agents
populating the Semantic Web, providing
intelligent services to their human users. In
“OIL: An Ontology Infrastructure for the
Semantic Web,” Dieter Fensel, |lan Horrocks,
Frank van Harmelen, Deborah L. McGuin-
ness, and Peter F. Patel-Schneider propose
such an ontology standard language. OIL and
DAML+OIL are the basis of a semantic
working group of theW3C that should soon
develop a standardization approach. Sheila
A. Mcllraith, Tran Cao Son, and Honglei
Zeng, in“ Semantic Web Services,” and Jeff
Heflin and James Hendler, in “A Portrait of
the SemanticWebinAction,” describeintel-
ligent services on top of such services, based
on query and reasoning support for the
Semantic Web.

A key technology for the SemanticWebis
ontologies. In*“ Creating Semantic Web Con-
tents with Protégé-2000,” Natalya F. Noy,
Michael Sintek, Stefan Decker, Monica
Crubézy, Ray W. Fergerson, and Mark A.
Musen provide excellent tool support for
manually building ontol ogies based on Pro-
tégé-2000. However, even with an excellent
tool environment, manually building ontolo-
giesislabor intensive and costly. Alexander
Maedche and Steffen Staab, in “ Ontology
Learning for the Semantic Web,” try to
mechanize The ontology building process
with machine learning techniques. 8
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By Michel Klein
Vrije Universiteit

Tuforial: The Semanfic Web

XNIL, RDF, and Relatives

anguages for representing data and knowledge are an

important aspect of the Semantic Web. And there are
alot of languages around! Most languages are based on
XML or use XML as syntax; some have connectionsto
RDF or RDF Schemas. Thistutorial will briefly introduce
XML, XML Schemas, RDF, and RDF Schemas.

Let's start with XML

XML (eXtensible Markup Language) is a specification
for computer-readable documents. Markup means that
certain sequences of charactersin the document contain
information indicating the role of the document’s content.
The markup describes the document’s data layout and logi-
cal structure and makes the information self-describing, in
asense. It takes the form of words between pointy brack-
ets, called tags—for example, <name> or <hl>. Inthis
aspect, XML looks very much like the well-known lan-
guage HTML.

However, extensible indicates an important difference
and amain characteristic of XML. XML isactualy a
metalanguage: a mechanism for representing other lan-
guagesin astandardized way. In other words, XML only
provides adataformat for structured documents, without
specifying an actual vocabulary. This makes XML univer-
sally applicable: you can define customized markup lan-
guages for unlimited types of documents. This has already
occurred on amassive scale. Besides many proprietary
languages—ranging from electronic order forms to appli-
cation file formats—a number of standard languages are
defined in XML (called XML applications). For example,
XHTML isaredefinition of HTML 4.0in XML.

Let’'stake amore detailed look at XML. Themain
markup entitiesin XML are elements. They consist nor-
mally of an opening tag and a closing tag—for example,
<person> and </person>. Elements might contain other ele-
ments or text. If an element has no content, it can be
abbreviated as <person/>. Elements should be properly
nested: achild element’s opening and closing tags must be
within its parent’s opening and closing tags. Every XML

document must have exactly one root element. Elements
can carry attributes with values, encoded as additional
“word = value’ pairsinside an element tag—for example,
<person name="John">. Here is a piece of XML:

<¥ml version="1.0"?>
<employees>
List of persons in company:
<person name="John">
<phone>47782</phone>
On leave for 2001.
</person>
</employees>

XML does not imply a specific interpretation of the
data. Of course, on account of the tag's names, the mean-
ing of the previous piece of XML seems obviousto
human users, but it is not formally specified! The only
legitimate interpretation is that XML code contains named
entities with subentities and values; that is, every XML
document forms an ordered, |abeled tree. This generality
isboth XML's strength and its weakness. You can encode
al kinds of data structuresin an unambiguous syntax, but
XML does not specify the data's use and semantics. The
parties that use XML for their data exchange must agree
beforehand on the vocabulary, its use, and its meaning.

Enter DTDs and XML Schemas

Such an agreement can be partly specified by Docu-
ment Type Definitions and XML Schemas. Although
DTDsand XML Schemas do not specify the data’'s mean-
ing, they do specify the names of elements and attributes
(the vocabulary) and their use in documents. Both are
mechanisms with which you can specify the structure of
XML documents. You can then validate specific docu-
ments against the structure prescription specified by a
DTD or an XML Schema.

DTDs provide only asimple structure prescription: they
specify the allowed nesting of elements, the elements’
possible attributes, and the |ocations where normal text is
allowed. For example, aDTD might prescribe that every

26

1094-7167/01/$10.00 © 2001 |EEE

IEEE INTELLIGENT SYSTEMS



person element must have aneme attribute
and may have a child element called phone
whose content must be text. A DTD’s syn-
tax looks a bit awkward, but it is actually
quitesimple.

XML Schemas are a proposed successor
to DTDs. The XML Schemadefinitionis
still a candidate recommendation from the
W3C (World Wide Web Consortium), which
meansthat, although it is considered stable,
it might still undergo small revisions. XML
Schemas have several advantages over
DTDs. First, the XML Schemamechanism
provides aricher grammar for prescribing
the structure of elements. For example, you
can specify the exact number of allowed
occurrences of child elements, you can
specify default values, and you can put
elementsin achoice group, which means
that exactly one of the elementsin that
group isallowed at a specific location. Sec-
ond, it provides datatyping. In the example
in the previous paragraph, you could pre-
scribe the phone element’s content as five
digits, possibly preceded by another five
digits between brackets. A third advantage
isthat the XML Schema definition pro-
videsinclusion and derivation mechanisms.
Thislets you reuse common element defin-
itions and adapt existing definitions to new
practices.

A final differencefrom DTDsisthat
XML Schema prescriptions use XML as
their encoding syntax. (XML isametalan-
guage, remember?) Thissimplifiestool
devel opment, because both the structure
prescription and the prescribed documents
use the same syntax. The XML Schema
specification’s devel opers exploited this
feature by using an XML Schemadocu-
ment to define the class of XML Schema
documents. After all, because an XML
Schema prescriptionisan XML applica-
tion, it must obey rulesfor its structure,
which can be defined by another XML
Schema prescription. However, this recur-
sive definition can be abit confusing.

RDF represents data about data

XML provides a syntax to encode data;
the resource description framework isa
mechanism to tell something about data. As
itsnameindicates, it isnot alanguage but a
model for representing data about “things
on the Web.” Thistype of data about datais
called metadata. The “things’ are resources
in RDF vocabulary.

RDF's basic datamodel issimple:

Table 1. An RDF description consisting of three triples indicating that a specific Web page was created by something
with a name John and a phone number “47782.”

OBJECT ATTRIBUTE V/ALUE
http://www.w3.org/ created_by #anonymous_resourcel
#anonymous_resource] name “John”
#anonymous_resource] phone “47782"

http://www.w3.org/

Figure 1. A directed labeled graph for the triples in Table 1.

besides resources, it contains properties
and statements. A property isa specific
aspect, characteristic, attribute, or relation
that describes aresource. A statement con-
sists of a specific resource with anamed
property plusthat property’svaluefor that
resource. This value can be another re-
source or aliteral value: free text, basi-
caly. Altogether, an RDF descriptionisa
list of triples: an object (aresource), an
attribute (aproperty), and avalue (are-
source or freetext). For example, Table 1
shows the three triples necessary to state
that a specific Web page was created by
something with aname “ John” and a phone
number “47782."

You can easily depict an RDF model asa
directed labeled graph. To do this, you draw
an oval for every resource and an arrow for
every property, and you represent literal
values as boxes with values. Figure 1 shows
such agraph for thetriplesin Table 1.

These example notations reveal that
RDF isignorant about syntax; it only pro-
videsamodel for representing metadata.
Thetriplelist is one possible representa-
tion, asisthe labeled graph, and other syn-
tactic representations are possible. Of
course, XML would be an obvious candi-
date for an alternative representation. The
specification of the data model includes
such an XML -based encoding for RDF.

Aswith XML, an RDF model does not
define (apriori) the semantics of any appli-
cation domain or make assumptions about
aparticular application domain. It just pro-
vides adomain-neutral mechanism to de-
scribe metadata. Defining domain-specific
properties and their semantics requires
additional facilities.

Defining an RDF vocabulary:
RDF Schema

Basically, RDF Schemaisasimpletype
system for RDF. It provides a mechanism
to define domain-specific properties and
classes of resourcesto which you can apply
those properties.

The basic modeling primitivesin RDF
Schema are class definitions and subclass-
of statements (which together allow the
definition of class hierarchies), property
definitions and subproperty-of statements
(to build property hierarchies), domain and
range statements (to restrict the possible
combinations of properties and classes),
and type statements (to declare aresource
as an instance of a specific class). With
these primitives you can build a schemafor
aspecific domain. In the example I've been
using throughout thistutorial, you could
define aschemathat declares two classes
of resources, Person and WebPage, and two
properties, name and phone, both with the
domain Person and range Literal. You could
use this schemato define the resource
http://www.w3.org/ as an instance of WebPage
and the anonymous resource as an instance
of Person. Together, thiswould give some
interpretation and validation possibilitiesto
the RDF data.

RDF Schemais quite simple compared to
full-fledged knowledge representation lan-
guages. Also, it till does not provide exact
semantics. However, thisomission is partly
intentional; the W3C foresees and advo-
cates further extensionsto RDF Schema.

Because the RDF Schema specification
isalso akind of metadata, you can use
RDF to encodeit. Thisis exactly what
occurs in the RDF Schema specification
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document. Moreover, the specification pro-
vides an RDF Schema document that de-
fines the properties and classes that the
RDF Schema specification introduced. As
with the XML Schema specification, such
arecursive definition of RDF Schema
|ooks somewhat confusing.

XM L and RDF are different formalisms
with their own purposes, and their rolesin
the realization of the Semantic Web vision
will be different. XML aimsto provide an
easy-to-use syntax for Web data. Withit,
you can encode al kinds of datathat is
exchanged between computers, using XML
Schemas to prescribe the data structure.
Thismakes XML afundamental language
for the Semantic Web, in the sense that
many techniques will probably use XML as
their underlying syntax.

XML does not provide any interpretation
of the data beforehand, so it does not con-
tribute much to the “ semantic” aspect of
the Semantic Web. RDF provides a stan-
dard model to describe facts about Web
resources, which gives some interpretation
to the data. RDF Schema extends those
interpretation possibilities somewhat more.
However, to realize the Semantic Web

Further Reading

* The pages at www.w3.org/XML and
www.w3.0rg/RDF contain pointers
to the official definitions of the
languages that | covered in this
minitutorial.

e XML.com (www.xml.com) contains
technical introductions to both XML
and XML Schemas.

e Pierre-Antoine Champin provides
comprehensive tutorial on RDF
and RDF Schema at www710.

vision, it will be necessary to express even
more semantics of data, so further exten-
sions are needed. There are aready some
initial stepsin this direction—for example,
the DAML+OIL (DARPA Agent Markup
Language + Ontology Inference Layer)
language, which adds new modeling
primitives and formal semanticsto

RDF Schema.

The " Further Reading” sidebar contains
pointers to more detailed explanations of
XML and RDF and liststhe URL s of the
officia homepages of XML, RDF, and the
Semantic Web Activity at the W3C. Through
those pages, you can find many projectsand
applicationsrelated to thesetopics. M

univ-lyon1.fr/~champin/rdf-tutorial.
Robin Cover maintains a compre-
hensive online reference for XML
and related techniques at
WWW.0asis-open.org/cover.

The vision of the Semantic Web is
sketched at www.w3.0rg/2001/
sw/Activity.

The DAML+OIL extension to RDF
Schema lives at www.daml.org/
2001/03/daml+oil-index.
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Coming Next Issue
Wearable Al

Wear able artificial intelligence allowstheuseof Al in
situationswhere computing previously was severely limited,
even from palm computers. Wearable Al also promisesto
provide nonintrusive accessto intelligent systems. Thisissue
will spotlight leading research in this cutting-edgefield.

Intelligent Systems
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The Semantic

Web

Many challenges of
bringing communicating
multiagent systemsto the
Web require ontologies.
Theintegration of
agent technology and
ontologies could
sgnificantly affect the
use of Web servicesand
theability to extend
programsto perform
tasksfor usersmore
efficiently and with less

human intervention.

Agents and the
Semantic Web

JamesHendler, University of Maryland

At acolloguium | attended recently, aspeaker described a“ sciencefiction” vision

comprising agents running around the Web performing complex actions for

their users. The speaker argued that we are far from the day this vision would become

areality because we don't have the infrastructure to make it happen.

Although | agree with his assessment about infra-
structure, his claim that we are “far from the day”
istoo pessimistic. A crucia component of thisinfra-
structure, a standardized Web ontology language,
isemerging. Thisarticle offersafew pointerstothis
emerging area and shows how the ontology
languages of the Semantic Web can lead directly
to more powerful agent-based approaches—that
is, to therealization of my colleague’'s“sciencefic-
tion” vision.

What is an ontology, really?

There are anumber of termswe sometimes abuse
in the Al community. These terms become even
more confusing when we interact with other com-
munities, such asWeb toolkit developers, who also
abuse them. One such term is ontology, which the
Oxford English Dictionary defines as “the science
or study of being.” In Al, we usually attribute the
notion of ontology to, essentially, the specification
of aconceptualization—that is, defined terms and
rel ationships between them, usually in some formal
and preferably machine-readable manner.! Even
more complicated is the relationship between
ontologies and logics. Some people treat ontology
as asubset of logic, some treat |ogic as a subset of
ontological reasoning, and others consider theterms
disjoint.

Inthisarticle, | employ theterm asitiscurrently
being used in Semantic Web circles. | define ontol-
ogy as a set of knowledge terms, including the
vocabulary, the semantic interconnections, and some
simplerules of inference and logic for some partic-

Self- Ontology vocabuary

describing
document

Digital signature

Resource Description
Framework + RDF Schema

Universal resource

Unicode indicator

Figure 1. The Semantic Web “layer cake”
presented by Tim Berners-Lee at the XML 2000
conference.

ular topic. For example, the ontology of cooking and
cookbooks includes ingredients, how to stir and
combine the ingredients, the difference between
simmering and deep-frying, the expectation that the
productswill be eaten or drunk, that oil isfor cook-
ing or consuming and not for lubrication, and so
forth.

In practice, it is useful to consider more complex
logics and inference systems to be separate from an
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ontology. Figure 1, derived from atalk given
by Tim Berners-Lee at the recent XML 2000
conference, showsthe proposed layers of the
Semantic Web with higher-level languages
using the syntax and semantics of lower lev-
els. This article focuses primarily on the
ontology language level and the sort of agent-
based computing that ontology languages
enable. Higher levels (with complex logics
and the exchange of proofsto establish trust
relationships) will enable even more inter-
esting functionality, but I've left those to be
discussed in other articles.

Semantic Web ontologies

The Semantic Web, as| envisionit evolv-
ing, will not primarily consist of neat ontolo-
giesthat expert Al researchers have carefully
constructed. | envision a complex Web of
semanticsruled by the same sort of anarchy
that rules the rest of the Web. Instead of a
few large, complex, consistent ontologies
that great numbers of users share, | see a
great number of small ontological compo-
nents consisting largely of pointersto each
other. Web userswill devel op these compo-
nents in much the same way that Web con-
tent is created.

In the next few years, almost every com-
pany, university, government agency, or ad
hoc interest group will want their Web
resources linked to ontological content
because of the many powerful toolsthat will
be available for using that content. Informa-
tion will be exchanged between applications,
letting programs collect and process Web
content and exchange information freely. On
top of thisinfrastructure, agent-based com-
puting will become much more practical.
Distributed computer programs interacting
with nonlocal Web-based resources might
eventually become the dominant way in
which computers interact with humans and
each other. Suchinteraction will dso beapri-
mary means of computation in the not-so-
distant future.

However, for thisvision to become areal-
ity, aphenomenon similar to theWeb's early
days must occur. Web userswill not mark up
their Web pages unlessthey perceivevauein
doing so, and toolsto demonstrate thisvalue
will not be developed unless Web resources
are marked up. To help solve this chicken-
and-egg problem, DARPA isfunding aset of
researchers to both develop freely available
toolsand provide significant content for these
toolsto manipulate. Thisshould demonstrate
to the government and other parts of society

that the Semantic Web can be areality.

But without somekiller apps showing the
great power of Web semantics, it will still be
along row to hoe. Although | don’t claim to
have all the answers, perhaps someideasin
the remainder of this article will inspire the
creation of exciting Web-agent applications.
| will develop thisvision onestep at atime by
describing the creation of pages with onto-
logical information, the definition of services
in a machine-readable form, and the use of
logicsand agentsthat provideimportant new
capabilities.

Markup for free
A crucial aspect of creating the Semantic
Web is to enable users who are not logic

The ability to link and browse
ontological relations enabled by
the Web's use of semantics will be

a powwerful tool for users who do
knotw what ontologies are and why
they should be used.

expertsto create machine-readable Web con-
tent. Ideally, most users shouldn’t even need
to know that Web semanticsexist. Lowering
markup’s cost isn’t enough; for many usersit
must be free. Semantic markup should be a
by-product of normal computer use. Much
like current Web content, a small number of
tool creators and Web ontology designers
will need to know the details, but most users
will not even know ontologies exist.
Consider any of the well-known products
for creating online slide shows. Several of
these products contain libraries of clippings
that you can insert into a presentation. Soft-
ware devel opers could mark these clippings
with pointers to ontologies. The save-as-
HTML feature could include linking these
productsto their respective ontologies. So, a
presentation that had pictures of, for exam-
ple, acow and a donkey would be linked to
barnyard animals, mammals, animals, and so
forth. While doing so would not guarantee
appropriate semantics—the cow might be the
mascot of some school or the donkey theicon

of some political party—retrieval engines
could use the markups as clues to what the
presentations contain and how they can be
linked to other ones. The user simply creates
aslide show, but the search tools do a better
job of finding results.

An dternative example is a markup tool
driven by one or more ontologies. Consider
a page-creation tool that represents hierar-
chical classrelations as menus. Properties of
the classes could be tied to various types of
forms, and these made available through sm-
pleWeb forms. A user could thus choosefrom
amenu to add information about a person,
and then choose arelative (as opposed to a
friend, professional acquaintance, and so
forth) and then adaughter. The system would
usethe semanticsto retrieve the properties of
daughters specified in the ontologies and to
display themto the user asaformto befilled
out with strings (such as name) or numbers
(age)—or to browse for related links (home-
page), online images (photo-of), and so forth.
The system would then lay these out using
appropriate Web page design tools while
recording the relevant instance information.

Because the tool could be driven by any
ontology, libraries of terms could be created
(and mixed) in many different ways. Thus, a
single easy-to-use tool would allow the cre-
ation of homepages (using ontologies on
people, hobbies, and so forth), professional
pages (using ontologies relating to specific
occupationsor industries), or agency-specific
pages (using ontologies relating to specific
functions). In an easy, interactive way the
tool would help a user create a page and
would provide free markup. Also, mixtures
of the various ontologies and forms could be
easily created, thus helping to create the
Semantic Web of pageslinking to many dif-
ferent ontologies, as| mentioned earlier.

Incremental ontology creation

Not only can pages be created with linksto
numerous ontol ogies, but the ontologies can
also include links between them to reuse or
change terms. The notion of creating large
ontologies by combining componentsis not
unique to the Semantic Web vision.2 How-
ever, the ahility to link and browse ontolog-
ical relations enabled by the Web's use of
semantics will be a powerful tool for users
who do know what ontologies are and why
they should be used.

How will it all work? Consider Mary, the
Webmaster for anew busi ness-to-consumer
Web site for an online pet shop. Browsing
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Query Processed:

« A satellite image taken yesterday at 10 AM is available on the Web at http://....
« A new satellite image, to be taken today at 10 AM, will be available for $100—click here to
authorize transfer of funds and obtain image. (You will need a valid credit card number from

one of the following providers....)

< Inan emergency situation, a Coast Guard observer plane can be sent to any location within the
area you indicate. Service Note: You will be responsible for cost of flight if the situation does
not result in an emergency pickup. Click here for more information.

A high-altitude observer can be sent to your location in 13 hours. Click here to initiate proce-
dure. (You will need to provide US military authorization, a valid military unit code, and the
name of the commanding officer. Abuse of this procedure can result in fine or imprisonment.)

< A service entitled commercial service for providing satellite images is advertised as becoming
available in 2004. See http://... for more information.

Figure 2. The results of processing a fictitious agent-based query from a fishing vessel
that finds itself in a difficult weather situation.

through aWeb ontology repository (such as
the one at www.daml.org/ontologies/), she
finds that many interesting ontologies are
available. Selecting a product ontology,
Mary uses a browser to choose the various
classes and relations that she wants to
include in her ontology. Several of these
might need to be further constrained depend-
ing on the properties of her particular busi-
ness. For example, Mary must define some
of these properties for the various animals
shewill sell.

Searching further in the repository, Mary
finds a biological taxonomy that contains
many classes, such asfeline, canine, mammal, and
animal. Shefindsthat these ontol ogies contain
several propertiesrelevant to her business, so
she provides links to them. She adds a new
descriptor field to animal called product shipping
type and setsit to default to the val uedlive (not
astandard property or default in the product
ontology she chose to extend).

Finally, she notices that although the
biological ontology contains several kinds
of felines, it didn’t use the categories she
wanted (popular pets, exotic pets, and so
forth), so she addsthese classes as subclasses
of the onesin the parent ontology and defines
their properties. Saving thisontology on her
Web site, she can now use other ontology-
based tool sto organize and manage her Web
site. Mary ismotivated to add the semantics
to her site by both these tools and the other
powerful browsing and search tools that the
semantics enable.

The many ontology-based search and
browsing tools on the Web, when pointed at
her pages, can usethisinformation to distin-
guish her site from the non-ontol ogy-based
sitesthat her competitors run. This makesit

easy for her to extend her site to use various
business-to-business e-commerce tools that
can exploit Web ontologies for automated
business uses. In addition, she might submit
her ontology back into one of the reposito-
ries so that othersin her profession can find
it and useit for their own sites. After al, the
power of the ontologiesisin the sharing; the
more people using common terms with her,
the better.

Ontologies and services

Web services might be one of the most
powerful uses of Web ontologiesand will be
a key enabler for Web agents. Recently,
numerous small businesses, particularly
those in supply chain management for busi-
ness-to-business e-commerce, have been dis-
cussing the role of ontologies in managing
machine-to-machine interactions. In most
cases, however, these approaches assumethat
computer program constructors primarily use
ontologiesto ensurethat everyone agreeson
terms, types, constraints, and so forth. So, the
agreement is recorded primarily offline and
used in Web management applications. On
the Semantic Web, we will go much further
than this, creating machine-readabl e ontolo-
gies used by “capable’ agents to find these
Web services and automate their use.

A well-known problem with the Web is
that finding the many available\Web services
isdifficult. For example, when | first started
writing this article, | wanted to send aWeb
greeting card but didn’t know the name of
any companies offering such aservice. Using
standard keyword-based searches did not
help much. The query “web greeting card”
turned up many links to sites displaying
greeting cards or using the terms on their

pages. Infact, for these three keywords, sev-
era of the most common search enginesdid
not turn up the most popular Web greeting
card service provider in their top 20 sugges-
tions. A search on “eCards’ would have
found the most popular site, but | didn’'t hap-
pen to know this particular neologism.

AsI'm finalizing this article, the search
engines are now actually finding the most
popular sitewith the“web greeting card” key-
words. However, if | want something more
complex—for example, an anniversary card
for my mother-in-law that plays“HavaNag-
ila’—I'mtill pretty much out of luck. Asthe
number of servicesgrowsand the specificity
of our needs increases, the ability of current
search engines to find the most appropriate
servicesis strained to the limit.

Several efforts are underway to improve
this situation. Some examples are the Uni-
versal Description, Discovery, and Integra-
tion specification (www.uddi.org); ebXML
(www.ebXML.org); and eSpeak (www.
e-speak.hp.com). These efforts focus on
service advertisements. By creating a con-
trolled vocabulary for service advertise-
ments, search engines could find these Web
services. So, Mary’s pet site (discussed
above) might have an annotation that it pro-
videsa“sell” service of object “pet,” which
would let pet buyersfind it moreeasily. Sim-
ilarly, aWeb greeting card site could regis-
ter as something such as “ personal service,
e-mail, communications,” and a user could
more easily get to it without knowing the
term “eCard.”

SemanticWeb techniques can—and must—
go much further. The first use of ontologies
on the Web for this purpose is straightfor-
ward. By creating the service advertisements
in an ontological language, you would be
able to use the hierarchy (and property
restrictions) to find matches through class
and subclass properties or other semantic
links. For example, someone looking to buy
roses might find florists (who sell flowers)
even if no exact match served the purpose.
Using description logic (or other inferential
means), the user could even find categoriza-
tions that weren’t explicit. So, for example,
specifying a search for animals that were of
“size=small” and“type=Tfriendly,” the user
could end up finding the pet shop Mary is
working for, which happensto be overflow-
ing in hamsters and gerbils.

However, by using acombination of Web
pointers, Web markup, and ontology lan-
guages, we can do even better than just
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putting service advertisementsinto ontol o-
gies. By using these techniqueswe can also
include a machine-readable description of
a service (as to how it runs) and some
explicit logic describing the consegquences
of using the service. Such service descrip-
tions and service logic will lead us to the
integration of agents and ontologiesin some
exciting ways.

Agents and services

Inanearlier article, | described avision of
intelligent Web agents using the analogy of
travel agents.® Rather than doing everything
for a user, the agents would find possible
ways to meet user needs and offer the user
choices for their achievement. Much as a
travel agent might give you alist of several
flights to take, or a choice of flying as
opposed to taking atrain, aWeb agent could
offer several possible ways to get you what
you need on the Web.

Consider a Web-enabled method for sav-
ing the doomed crew of The Perfect Storm.*
In this story, now a major motion picture, a
crew of fishermenisout at seawhen weather
conditions conspireto create astorm of epic
proportions. For variousreasons, thecrew is
unableto get adetailed weather map, so they
missthat the stormisdeveloping right intheir
way. Instead of avoidingit, they end up at its
center, with tragic results.

How could Web agents have helped? As

the ship’s captain goes to call land, awave
hits and his cell phone is swept overboard.
Luckily, he is a savvy Web user and has
brought his wireless Web device with him.
Checking the weather forecast from a stan-
dard weather site, he determinesthat astorm
iscoming, but he doesnot find enough detail
for his needs. He goes to an agent-enabled
geographical server site and invokes the
query “ Get measatellite photo of thisregion
of the Atlantic,” and he draws a box on an
appropriate map.

The system comes back alittle later with
the message shown in Figure 2. Options
range from a picture available on the Web
(possibly out of date) to other services (that
might need special resources) and even
future options being announced. The captain
now chooses an option on the basis of what
availableresources he has and what criterion
heiswilling to accept. Recognizing the grav-
ity of his situation, he invokes the Coast
Guard option, which creates a scheduled
overflight for his GPS location. Seeing the
emerging weather, the Coast Guard arranges
an emergency pickup at sea, and the sailors
can go on to fish again some other day.

Using the tools of the Semantic Web, we
can makethissort of thing routine and avail-
able to anyone who needs to use a Web ser-
vice for any purpose. We simply need to
make expressive service capability adver-
tisements available to, and usable by, Web

agents. Figure 3 depicts acomplete instance
of a potential service class. Each service
classhasthree properties: apointer to the ser-
vice advertisement as discussed above, a
pointer to aservice description, and adeclar-
ative servicelogic. | will discussthe service
logic later; | first want to concentrate on ser-
vice descriptions.

Consider visiting a current business-to-
consumer Web site, such as a book vendor.
When you are ready to order, you usually
havetofill out aform. Whenyou click onthe
Submit button, you're taken to another form
or returned to the sameform to provide miss-
ing information or to fix an error. When you
pass through thefirst form, you get directed
to anew form where the same might happen,
until eventually you providetheinformation
necessary to complete the order. Most other
Web services require similar interactions,
whether to buy an item, get directionsto a
location, or find a particular image.

The most common way to develop these
systemsiswith the Common Gateway | nter-
face (CGl), inwhich procedural codeiswrit-
ten to invoke various functions of the Web
protocols. This code links the set of Web
pages to an external resource, which means
that the invocation procedure is represented
procedurally onthe Web. Thus, an agent vis-
iting the page cannot easily determinethe set
of information that must be provided or ana-
lyze other features of the code.

(lass:Service

Subclass

(loss: WeatherService
Property: Advertisement
Value:
Property: Description
Value:

Universal resource indicator

Display-Service
Type: Geographic
Format: Photo
Return: Display
Value: Weather

Universal resource indicator

Property: Logic
Value:

Invocation-Description

Procedural

code

Universal resource indicator

Service-Logic
TransferOccurs(#cost Service) :=

Reached(ServState11), ServiceCost(#cost)

External resource

Figure 3. A potential service class and its properties on the Semantic Web.
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{Purchased(user1.hook1.AOL):www.confirm.com#1221122}
{Priceof (book1, $30);A0L-historyDB#29293910}
{Purchase(a,b,c) & Priceof(b,d)->O0wes(a,c,d);www.ont.com/prodont}

The check is
in the email!

Figure 4. Agents exchanging simple proofs.

On the Semantic Web, solving this prob-
lem will be easy by using a declarative
framework. Eventually you might wish to
use some sort of Web-enabled logic lan-
guage, but thereisamuch simpler way to get
started. Figure 3 showstheinvocation of the
procedural codethrough asimplefinite-state
automaton. An ontology language such as
DAML+OIL (see the sidebar “DAML and
Other Languages’) could be easily used to
define an ontology—not of services but of
the terms needed to describe the invocation
of services.

Using the example of afinite-state machine
(FSM), we can see what this ontology would
contain. It would start with classes such as
State and Link and have special subclassessuch
as StartState and EndState. Constraints and prop-
ertieswould be described to givelinksahead
and tail, to give states alist of the links that
lead out from them, and to give statesaname,
URI (universal resourceidentifier), or other
identifying property. This would provide a
base ontology that specific types of service
providers could extend (much as Mary
extended abiological ontology intheearlier
example), and in which specialized ontolo-
gies could easily describe sets of terms for
genera use.

For example, a“ standard Web sale” could
be defined in some service ontology com-
prising aparticular set of statesand links. A

service provider could then simply say that a
particular part of atransaction wasastandard
Web sale, which would then find the neces-
sary set of links and nodes through a pointer
on the Web.

Exciting capabilities arise through creat-
ing such ontol ogies. Because these ontolo-
giesareWeb-enabled and declarative, agents
coming to a page containing a service
description could analyze the FSM found
there and would be ableto determinethe par-
ticular information needs for invoking the
service (and reaching an EndState). An agent
that had accessto a set of information about
auser could analyzethe FSM and determine
if that information would be sufficient for
using this service. If not, the agent could
inform the user as to what additional infor-
mation would be required or other action
taken.

While I've described primarily an FSM
approach, thereisno reason thiscouldn’t be
done using any other declarative framework.
More expressive logic languages or other
declarative frameworks would extend the
capahilitiesof agentsto analyzetheinforma-
tion needs, resource requirements, and pro-
cessing burden of the services so described.
Astheselanguages are linked to CGlI scripts
or other procedural techniques, the agents
could perform the procedural invocation.
Thiswould let them actually runthe services

(without user intervention), thus allowing a
very general form of agent interaction with
off-Web resources.

Service logics

By defining languagesthat | et usersdefine
structura ontologies, current projects (includ-
ing the DARPA DAML initiative) are explor-
ing the extension of Web ontologiesto allow
rules to be expressed within the languages
themselves. These efforts vary in the com-
plexity of the rules alowed, and range from
description logics (as in the DAML+OIL
language mentioned earlier), to SHOE's use
of Horn-clause-like rules,® and even to first-
and higher-order logicsin several exploratory
efforts.5-°

Whatever types of rulesyou use, they can
be particularly effective in connection with
the service classes, as Figure 3 shows. The
service class contains (in addition to the ser-
vice advertisement and service description)
apointer toaURI containing associated ser-
vicelogic. Thislogic can be used to express
information that goes beyond the informa-
tion contained in the service description.

For example, returning to the agent replies
inFigure 2, consider acasein whichthe ser-
vice offersan up-to-date picture (to be taken
tomorrow) at some particular cost. A rule
such as

TransferOccurs(#cost, Service) :=
Reached(ServState11), ServiceCost(#cost)

might represent the information that the
actual transfer of funds will occur upon
reaching a particular point in the service
invocation (ServStatel1 in thiscase). Thisinfor-
mation would not be obvious from the state
machineitself but could be useful in several
kinds of e-commercetransactions. For exam-
ple, users often leave a site without com-
pleting aparticular CGlI script, and they can-
not always know whether they’ve actually
completed atransaction and incurred acredit
card charge. Using servicelogics, suchthings
could be made explicit.

More interesting transactional logics
might also be used. Figure 4 shows a poten-
tial interaction between two Web agentsthat
can use proof checking to confirm transac-
tions. An agent sends an annotated proof to
another agent. The annotations can be point-
ersto a particular fact on the Web or to an
ontology where aparticular ruleresides. The
agent receiving this proof can analyze it,
check the pointers (or decidethey aretrusted
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by some previous agreements), and check
that the ontology isoneit can read and agree
with. Thisletsthe agent recognizethat avalid
transaction has occurred and allow thefunds
to be transferred.

Such service logics could serve many
other purposes as well. For example, Het-
erogeneous Agent Systems!? discusses the
use of deontic logicsand agent programsfor
multiagent systems. Theselogics, tied to the
appropriate service descriptions, can repre-
sent what an agent can do and when it can
or cannot do so. Logical descriptions of ser-
vices could also be used for automated
matchmaking and brokering, for planning a
set of servicesthat together achieveauser’s
goal, and for other capabilities currently dis-
cussed (but not yet implemented) for multi-
agent systems.

Agent-to-agent communication
Of course, having pages, service descrip-

DAML and Other Languages

tions, and agent programs that are linked to
many ontologies, which might themselves
include linksto still other ontologies and so
on, introduces some compelling issues. Fig-
ure 5 shows arepresentation of asmall piece
of thisontological Web. The small boxesrep-
resent agents or other Web resourcesthat use
the terms in Web ontol ogies represented by
the larger boxes. The arrows represent any
mechanism that provides amapping (full or
partial) from one ontology to another. This
mapping can be as simple as inclusion of
terms or as complex as some sort of ad hoc
mapping program that simply readsin terms
from one and spits out terms of another. The
figure shows one DAG (directed acyclic
graph) that could be taken from the much
larger Web of ontologies.

Assuming agents are communicating with
each other using the terms in these ontolo-
gies for the content terms, it is relatively
straightforward for them to communicate. By

linking to these ontologies, the agents com-
mit to using the terms consistently with the
usage mandated in that ontology. If the ontol -
ogy specifiesthat aparticular classhasapar-
ticular property and that the property has
somerestriction, then each agent can assume
that the other has legal values for that prop-
erty maintaining that restriction.

What is more interesting, agents that are
not using the same ontologies might still be
able to communicate. If all mappings were
perfect, then obviously any agent could com-
municate with any other by finding a com-
mon ontology they could both map into.
More likely, however, isthat the ontologies
are only partially or imperfectly mapped.
This would happen, for example, with
Mary’s pet shop site. When Mary defined her
site’s ontology as linking back to the zoo’s
animal ontology, she changed some defini-
tions but |eft others untouched. Those terms
that were not modified, or were modified in

The modern IT world is a dynamically changing environment
with an exponentially increasing ability to create and publish
data that rapidly swamps human abilities to process that data
into information. Agent-based computing can potentially help
us recognize complex patterns in this widely distributed, hetero-
geneous, uncertain information environment. Unfortunately,
this potential is hampered by the difficulty agents face in under-
standing and interacting with data that is either unprocessed or
in natural languages. The inability of agents to understand the
conceptual aspects of a Web page, their difficulty in handling
the semantics inherent in program output, and the complexity
of fusing sensor output information—to name but a few prob-
lems—truly keep the agent revolution from happening.

One potential solution is for humans to meet the com-
puter halfway. By using tools to provide markup annotations
attached to data sources, we can make information available
to agents in new and exciting ways. The goal of the DARPA
Agent Markup Language (DAML) program is to develop a lan-
guage aimed at representing semantic relations in machine-
readable ways that will be compatible with current and future
Internet technologies. The program is currently developing
prototype tools to show the potential of such markups to pro-
vide revolutionary capabilities that will change the way humans
interact with information.

To realize these goals, Internet markup languages must move
beyond the implicit semantic agreements inherent in XML and
community-specific controlled languages. DARPA is leading the
way with DAML, which will be a semantic language that ties
the information on a page to machine-readable semantics. The
language must allow for communities to extend simple ontolo-
gies for their own use, allowing the bottom-up design of mean-
ing while allowing sharing of higher-level concepts. In addition,
the language will provide mechanisms for the explicit represen-

tation of services, processes, and business models so as to allow
nonexplicit information (such as that encapsulated in programs
or sensors) to be recognized.

DAML will provide a number of advantages over current
markup approaches. It will allow semantic interoperability at
the level we currently have syntactic interoperability in XML.
Objects in the Web can be marked (manually or automatically)
to include descriptions of information they encode, descrip-
tions of functions they provide, and descriptions of data they
can produce. Doing so will allow Web pages, databases, pro-
grams, models, and sensors all to be linked together by agents
that use DAML to recognize the concepts they are looking for.
If successful, information fusion from diverse sources will
become a reality.

DARPA funds work in the development of DAML to help
the US military in areas of command and control and for use
in military intelligence. For example, one use of DAML is to
improve the organization and retrieval of large military infor-
mation stores such as those at the US Center for Army Lessons
Learned. With respect to intelligence, DAML is aimed at improv-
ing the integration of information from many sources to pro-
vide specific indications and warnings aimed at preventing ter-
rorist attacks on military targets such as last year's attack on the
USS Cole in Yemen.

Recently, an ad hoc group of researchers formed the Joint
US-EU committee on Agent Markup Languages and released a
new version of DAML called DAML+OIL. This language is based
on the Resource Description Framework (www.w3.org/rdf);
you can find discussion of RDF’s features on an open mailing
list archived at http:/lists.w3.org/Archives/Public/iwww-rdf-
logic. For details of the language, a repository of numerous
ontologies and annotated Web pages, and a full description of
DAML and related projects see www.daml.org.
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Figure 5. Mappings between agents and the ontologies they use.

certain restricted ways, could be mapped
even if others couldn’t. So, those ontologies
made by combination and extension of oth-
ers could, in principle, be partially mapped
without too much trouble.

Withthisin mind, let'sreconsider the DAG
in Figure 5. Clearly, many of these agents
could be ableto find at |east some terms that
they could sharewith others. For agentssuch
as those pointing at ontologies C and E, the
terms they share might be some sort of sub-
set. In this case the agent at E might be able
to use only some of thetermsin C (those that
were not significantly changed when E was
defined). Other agents, such asthe ones point-
ing at Fand G, might share partial termsfrom
another ontology that they both changed (D in
thiscase). Infact, dl of theagentsmight share
sometermswith al the others, although this
might take several mappings (and thus there
might be very few common terms, if any, in
Some Cases).

The previous discussion is purposely
vague regarding what these mappingsareand
how they work. For certain kinds of restricted
mappings, we might be able to obtain some
interesting formal results. For example, if all
mappings are inclusion links—that is, the
lower ontology includes all the terms from
the upper onein Figure 5—and we can find
arooted DAG among aset of agents, then we
could guarantee that all those agents will
share sometermswith all others(although, in
the worst case, some might only share the
terms from the uppermost ontology). If the
mappings are more ad hoc—they might, for
example, be some sort of procedural maps
defined by hand—we might lose provable
properties but gain power or efficiency.

Theresearchissuesinherent in such ontol-
ogy mappings are quiteinteresting and chal-
lenging. Two agentsthat communicate often
might want to have maximal mappings or
even amerged ontology. Two agentsthat are
simply sending asingle message (such asthe
invocation of an online service) might want
some sort of quick on-the-fly trandation lim-
ited to the terms in a particular message.
Another approach might beto usevery large
ontologies, such asCY C,' toinfer mapping
terms between agents in other ontologies.
The possibilities are endless and are another
exciting challengefor researchersinterested
in bringing agents to the Semantic Web.

For Further Reading

Web sites

I did not intend this article to be acompre-
hensivetechnical tome. Rather, | hopethat
| have convinced you that several strands of
research in Al, Web languages, and multi-
agent systems can be brought together in
exciting and interesting ways.

Many of the challengesinherent in bring-
ing communicating multiagent systemsto the
Web require ontologies of the type being
developed in DARPA'sDAML program and
elsewhere. What ismoreimportant, theinte-
gration of agent technology and ontologies
might significantly affect the use of Web ser-
vices and the ability to extend programs to
perform tasks for users more efficiently and
with less human intervention.

Unifying these research areas and bring-
ing to fruition aWeb teeming with complex,
intelligent agents is both possible and prac-
tical, although a number of research chal-
lenges still remain. The pieces are coming
together, and thus the Semantic Web of
agents is no longer a science fiction future.
Itisapractical application on whichto focus
current efforts. B
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The Semantic

Ontologiesplay a
major rolein
supporting information
exchange across
various networks. A
prerequisitefor such a
roleisthe development
of ajoint standard for
specifying and
exchanging ontologies.
Theauthors present

OIL, aproposal for

Web

OIL: An Ontology
Infrastructure
for the Semantic Web

Dieter Fensel and Frank van Harmelen, Vrije Universiteit, Amsterdam

lan Horrocks, University of Manchester, UK
Deborah L. McGuinness, Sanford University
Peter F. Patel-Schneider, Bell Laboratories

esearchersin artificial intelligencefirst devel oped ontol ogiesto facilitate knowl-

edge sharing and reuse. Since the beginning of the 1990s, ontologies have

become a popular research topic, and several Al research communities—including

knowledge engineering, natural language processing, and knowledge representation—

have investigated them. More recently, the notion of
an ontology is becoming widespread in fields such
as intelligent information integration, cooperative
information systems, information retrieval, elec-
tronic commerce, and knowledge management.
Ontologies are becoming popular largely because of
what they promise: a shared and common under-
standing that reaches across people and application
systems.

Currently, ontologies applied to the World Wide
Web are creating the Semantic Web.! Originally, the
Web grew mainly around HTML, which provides a
standard for structuring documentsthat browserscan
translate in a canonical way to render those docu-
ments. On the one hand, HTML's simplicity helped
spur the Web’sfast growth; on the other, itssimplic-
ity seriously hampered more advanced Web appli-
cations in many domains and for many tasks. This
led to XML (see Figure 1), which lets devel opers
define arbitrary domain- and task-specific extensions
(even HTML appears as an XML application—
XHTML).

application programs have direct access to data
semantics. The resource description framework?
has taken an important additional step by defining
a syntactical convention and a simple data model
for representing machine-processabl e data seman-
tics. RDF is a standard for the Web metadata the
World Wide Web Consortium (www.w3c.org/rdf)
develops, and it defines a data model based on
triples: object, property, and value. The RDF
Schema?® takes a step further into aricher represen-
tation formalism and introduces basic ontological
modeling primitivesinto the Web. With RDFS, we
can talk about classes, subclasses, subproperties,
domain and rangerestrictions of properties, and so
forth in a Web-based context. We took RDFS as a
starting point and enriched it into a full-fledged
Web-based ontology language called OIL.* We
included these aspects:

» A moreintuitive choice of some of the modeling
primitives and richer waysto define conceptsand
attributes.

such astandard. XML isbasically adefined way to provideaseri- + The definition of aformal semanticsfor OIL.
alized syntax for tree structures—itisanimportant  » Thedevelopment of customized editorsand infer-
first step toward building a Semantic Web, where ence engines to work with OIL.
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Ontologies: A revolution
for information access and
integration

Many definitions of ontologies have sur-
faced in the last decade, but the one that in
our opinion best characterizes an ontology’s
essence is this: “An ontology is a formal,
explicit specification of ashared conceptual -
ization.”® In this context, conceptualization
refersto an abstract model of some phenom-
enon in the world that identifies that phe-
nomenon’srelevant concepts. Explicit means
that the type of concepts used and the con-
straintson their useareexplicitly defined, and
formal means that the ontology should be
machine understandable. Different degrees
of formality are possible. Large ontologies
such as WordNet (www.cogsci.princeton.
edu/~wn) provide a thesaurus for over
100,000 termsexplained in natural language.
On the other end of the spectrum is CYC
(www.cyc.com), which provides formal
axiomating theoriesfor many aspects of com-
monsense knowledge. Shared reflects the
notion that an ontology captures consensual
knowledge—that is, it is not restricted to
someindividual but is accepted by agroup.

The three main application areas of ontol-
ogy technology are knowledge management,
Web commerce, and electronic business.

Knowledge management

KM isconcerned with acquiring, maintain-
ing, and accessing an organization’s know!-
edge. Itspurposeisto exploit an organization's
intellectua assetsfor greater productivity, new
value, and increased competitiveness. Owing
to globalization and the Internet’'s impact,
many organizations are increasingly geo-
graphically dispersed and organized around
virtua teams. With thelarge number of online
documents, several document management
systems have entered the market. However,
these systems have weaknesses:

* Searchinginformation: Existing keyword-
based searchesretrieveirrelevant informa-
tion that uses a certain word in adifferent
context; they might missinformationwhen
different words about the desired content
are used.

» Extracting information: Current human
browsing and reading requires extracting
relevant information from information
sources. Automatic agents lack the com-
monsense knowledge required to extract
such information from textual representa-
tions, and they fail to integrate informa-

tion spread over different sources.

* Maintaining: Sustaining weakly struc-
tured text sources is difficult and time-
consuming when such sources become
large. Keeping such collections consis-
tent, correct, and up to date requires a
mechanized representation of semantics
and constraints that can help detect
anomalies.

 Automatic document generation: Adaptive
Web sitesthat enable dynamic reconfigu-
ration according to user profiles or other
relevant aspects could prove very useful.
The generation of semistructured infor-
mation presentations from semistructured
datarequires amachine-accessible repre-
sentation of the semantics of these infor-
mation sources.

Using ontologies, semantic annotations
will alow structural and semantic definitions
of documents. These annotations could pro-
vide completely new possibilities: intelligent
search instead of keyword matching, query
answering instead of information retrieval,
document exchange between departments
through ontology mappings, and definitions
of views on documents.

Web commerce

E-commerceis an important and growing
business area for two reasons. First, e-com-
merce extends existing business models—it
reduces costs, extends existing distribution
channels, and might even introduce new dis-
tribution possibilities. Second, it enablescom-
pletely new business models and gives them
a much greater importance than they had
before. What has up to now been aperipheral
aspect of abusinessfield can suddenly receive
its own important revenue flow.

Examplesof businessfield extensionsare
online stores; examples of new business
fields are shopping agents and online mar-
ketplaces and auction houses that turn com-
parison shopping into a business with its
own significant revenue flow. The advan-
tages of online stores and their success sto-
ries have led to alarge number of shopping
pages. The new task for customersisto find
a shop that sells the product they’re seek-
ing, getting it in the desired quality, quan-
tity, and time, and paying as little as possi-
ble for it. Achieving these goals through
browsing requires significant time and only
covers a small share of the actual offers.
Shopbots visit several stores, extract prod-
uct information, and present it to the cus-

RDFS
RDF
XML

XHTML|

HTML

Figure 1. The layer language model for
the Web.

tomer as an instant market overview. Their
functionality is provided through wrappers,
which use keyword search to find product
information together with assumptions on
regularitiesin presentation format and text
extraction heuristics. This technology has
two severe limitations:

« Effort: Writing awrapper for each online
store is time-consuming, and changesin
store presentation or organization increase
mai ntenance.

* Quality: The extracted product informa-
tion is limited (it contains mostly price
information), error-prone, and incomplete.
For example, awrapper might extract the
product price, but it usually misses indi-
rect costs such as shipping.

Most product information is provided in
natural language; automatic text recognition
is still a research area with significant
unsolved problems. However, the situation
will drastically change in the near future
when standard representation formalismsfor
data structure and semantics are available.
Software agents will then understand prod-
uct information. Metaonline storeswill grow
with little effort, which will enable complete
market transparency in the various dimen-
sions of the diverse product properties.
Ontology mappings, which trand ate different
product descriptions, will replace the low-
level programming of wrappers, which is
based on text extraction and format heuris-
tics. An ontology will describe the various
products and help navigate and search auto-
matically for the required information.

Electronic business

E-commerce in the business-to-business
field (B2B) is not new—initiatives to sup-
port it in business processes between dif-
ferent companies existed in the 1960s. To
exchange business transactions electroni-
cally, sender and receiver must agree on a
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<product>
<type>Car</type>
<name>Daimler 230 SE </name>
<price> 23,000 S</price>
</product>

Order
information

Product
catalogue

Business

Translation
server

<Auto>
<Name>Daimler 230 SE</Name>
<Preis>40.000 DM</Preis>

</Auto>

Bestell-
information

Product
catalogue

Business

Figure 2. The translation of structure, semantics, and language.

standard (a protocol for transmitting con-
tent and alanguage for describing content).
A number of standards arose for this pur-
pose—one of them is the UN initiative,
Electronic Data Interchange for Adminis-
tration, Commerce, and Transport (Edifact).
In general, the automation of businesstrans-
actions has not lived up to the propagan-
dists’ expectations, partly because of the
serious shortcomings of approaches such as
Edifact: It isaprocedural and cumbersome
standard, making the programming of busi-
ness transactions expensive and error-prone,
and it results in large maintenance efforts.
Moreover, the exchange of business data
over extranets is not integrated with other
document exchange processes—Edifact is
an isolated standard.

Using the Internet’s infrastructure for
business exchange will significantly im-
provethissituation. Standard browsers can
render business transactions and transpar-
ently integrate them into other document
exchange processesinintranet and Internet
environments. However, the fact that HTML
doesnot provide ameansfor presenting rich
syntax and data semantics hampers this.
XML, which is designed to close this gap
in current Internet technology, drastically
changes the situation. We can model B2B
communication and data exchange with the
same means available for other data
exchange processes, we can render transac-
tion specifications on standard browsers,
and maintenance is cheap. However,
although XML provides a standard serial-
ized syntax for defining data structure and
semantics, it does not provide standard data
structures and terminologies to describe
business processes and exchanged products.
Therefore, XML-based e-commerce will

need ontologies in two important ways:

» Standard ontologies must cover the vari-
ous business areas. |n addition to official
standards, vertical marketplaces (Internet
portals) could generate de facto stan-
dards—if they can attract significant
shares of a business field's online trans-
actions. Examples include Dublin Core,
Common BusinessLibrary (CBL), Com-
merce XML (cXML), ecl@ss, Open
Applications Group Integration Specifi-
cation (OAGIS), Open Catalog Format
(OCF), Open Financia Exchange (OFX),
Real Estate Transaction Markup Lan-
guage (RETML), RosettaNet, UN/SPSC
(see www.diffuse.org), and UCEC.

« Ontology-based translation services must
link different data structures in areas
where standard ontologies do not exist or
where a particular client needs a transla-
tion from his or her terminology into the
standard. This translation service must
cover structural and semantic as well as
language differences (see Figure 2).

Ontology-based trading will significantly
extend the degree to which data exchange is
automated and will create completely new busi-
ness modelsin participating market ssgments.

Why OIL?

Effective, efficient work with ontologies
requires support from advanced tools. We
need an advanced ontology language to
express and represent ontologies. This lan-
guage must meet three requirements:

e It must be highly intuitive to the human
user. Given the success of the frame-based
and object-oriented modeling paradigm,

an ontology should have aframe-likelook
and feel.

It must have awell-defined formal seman-
ticswith established reasoning properties
to ensure completeness, correctness, and
efficiency.

e |t must have a proper link with existing
Web languages such as XML and RDF to
ensure interoperability.

Many of the existing languages such as
CycL 5 KIF,” and Ontolingua® fail. However,
OIL® matches these criteria and unifies the
three important aspects that different com-
munities provide: epistemologically rich
modeling primitives as provided by theframe
community, formal semantics and efficient
reasoning support as provided by description
logics, and a standard proposal for syntacti-
cal exchange notations as provided by the
Web community.

Frame-based systems

The central modeling primitives of pred-
icatelogic are predicates. Frame-based and
object-oriented approaches take a different
viewpoint. Their central modeling primi-
tives are classes (or frames) with certain
properties called attributes. These attributes
do not have a global scope but apply only
to the classes for which they are defined—
we can associate the “same” attribute (the
same attribute name) with different range
and val uerestrictions when defined for dif-
ferent classes. A frame provides a context
for modeling one aspect of a domain.
Researchers have developed many other
additional refinements of these modeling
constructs, which have led to thismodeling
paradigm’sincredible success.

Many frame-based systems and lan-
guages have emerged, and, renamed as
object orientation, they have conquered the
software engineering community. OIL
incorporates the essential modeling primi-
tives of frame-based systems—it is based
on the notion of a concept and the defini-
tion of its superclasses and attributes. Rela-
tions can also be defined not as an attribute
of aclass but as an independent entity hav-
ing a certain domain and range. Like
classes, relations can fall into a hierarchy.

Description logics

DL describesknowledgein terms of con-
cepts and role restrictions that can auto-
matically derive classification taxonomies.
Knowledge representation research’s main
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thrust isto provide theories and systemsfor
expressing structured knowledge and for
accessing and reasoning with it in a princi-
pled way. In spite of the discouraging theo-
retical complexity of the results, there are
now efficient implementations for DL lan-
guages, which we explain later. OIL inher-
its from DL its formal semantics and the
efficient reasoning support.

Web standards: XML and RDF
Modeling primitives and their semantics
are one aspect of an ontology language, but
we still have to decide about its syntax.
Given the Web's current dominance and
importance, we must formulate a syntax of
an ontology exchange language with exist-
ing Web standards for information repre-
sentation. First, OIL hasawell-defined syn-
tax in XML based on a document type
definition and an XML Schema definition.
Second, OIL is an extension of RDF and
RDFS. With regard to ontologies, RDFS
providestwo important contributions: astan-
dardized syntax for writing ontologies and
a standard set of modeling primitives such
asinstance-of and subdass-of relationships.

OIL’s layered architecture

A singleontology languageisunlikely to
fulfill all the needs of the Semantic Web's
large range of users and applications. We
therefore organized OIL asaseries of ever-
increasing layers of sublanguages. Each
additional layer adds functionality and com-
plexity to the previous one. Agents (humans
or machines) that can only process alower
layer can still partially understand ontolo-
giesexpressed in any of the higher layers. A
first and very important application of this
principle is the relation between OIL and
RDFS. As Figure 3 shows, core OIL coin-
cides largely with RDFS (with the excep-
tion of RDFS's reification features). This
means that even simple RDFS agents can
process Ol L ontologiesand pick up asmuch
of their meaning as possible with their lim-
ited capabilities.

Sandard OIL aims to capture the neces-
sary mainstream modeling primitives that
provide adequate expressive power and are
well understood, thus precisely specifying
the semantics and making complete infer-
enceviable.

Instance OIL includes athorough individ-
ual integration. Although the previous
|ayer—Standard Ol L—includes modeling
constructs that specify individual fillersin

term definitions, Instance OIL includes a
full-fledged database capability.

Heavy OIL will include additional repre-
sentational (and reasoning) capabilities. A
more expressive rule language and metaclass
facilities seem highly desirable. We will
define these extensions of OIL in coopera-
tionwiththe DAML (DARPA Agent Markup
Language; www.daml.org) initiative for a
rule language for the Weh.

OIL’s layered architecture has three
advantages:

» Anapplicationisnot forced to work with
alanguage that offers significantly more
expressiveness and complexity than is
needed.

» Applicationsthat can only processalower
level of complexity can still catch some of
an ontology’s aspects.

» An application that is aware of a higher
level of complexity can still understand
ontologies expressed in a simpler ontol-

ogy language.

Defining an ontology language as an
extension of RDFS means that every RDFS
ontology isavalid ontology in the new lan-
guage (an OIL processor will also understand
RDFS). However, the other directionisalso
possible: Defining an OIL extension as
closely aspossibleto RDFS allows maximal
reuse of existing RDFS-based applications
and tools. However, because the ontology
language usually contains new aspects (and
therefore anew vocabulary, which an RDFS
processor does not know), 100 percent com-
patibility is impossible. Let's look at an
example. The following OIL expression
defines herbivore as a class, which is a sub-
class of animal and digjunct to all carnivores:

<rdfs:Class rdf:ID="herbivore”>
<rdf:type
rdf:resource="http:/ /www.
ontoknowledge.org/oil /RDFS-
schema/#DefinedClass” />
<rdfs:subClassOf rdf:resource="#animal” />
<rdfs:subClassOf>
<0il:NOT>
<oil:hasOperand rdf:resource="
#carnivore” />
</oil:NOT>
</rdfs:subClassOf>
</rdts:Class>

An application limited to pure RDFS can
still capture some aspects of this definition:

Instance OIL

(Standard OIL + RDFS) |[ RoFs

Standard OIL

Core OIL
(Standard OIL ~ RDFS)

\

Reification

Figure 3. OIL's layered language model.

<rdfs:Class rdf:ID="herbivore”>
<rdfs:subClassOf rdf:resource="#animal” />
<rdfs:subClassOf>

</rdfs:subClassOf>
</rdfs:Class>

It encounters that herbivore is a subclass of
animal and a subclass of asecond class, which
it cannot understand properly. This seemsto
preserve complicated semantics for simpler
applications.

An illustration of the OIL
modeling primitive

An OIL ontology isitself annotated with
metadata, starting with such things as title,
creator, creation date, and so on. OIL follows
the W3C Dublin Core Standard on biblio-
graphical metadate for this purpose.

Any ontology language’s core isits hier-
archy of classdeclarations, stating, for exam-
ple, that DeskJet printers are a subclass of
printers. We can declare classes as defined,
whichindicatesthat the stated propertiesare
not only necessary but also sufficient condi-
tionsfor class membership. Instead of using
singletypesin expressions, we can combine
classes in logical expressions indicating
intersection, union, and complement of
classes.

We can declare slots (relations between
classes) together with logical axioms, stating
whether they are functional (having at most
onevalue), transitive, or symmetric, and stat-
ing which (if any) slots are inverse. We can
state range restrictions as part of asot decla
ration aswell asthe number of distinct values
that aslot may have. We can further restrict
dotsby value-typeor has-valuerestrictions. A
value-type restriction demands that every
value of the property must be of the stated
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class-def Product
slot-def Price
domain Product
slot-def ManufacturedBy
domain Product
class-def PrintingAndDigitallmagingProduct
subclass-of Product
class-def HPProduct
subclass-of Product
slot-constraint ManufacturedBy
has-valve “Hewlett Packard”
class-def Printer
subclass-of PrintingAndDigitallmagingProduct
slot-def PrinterTechnology
domain Printer
slot-def Printing Speed
domain Printer
slot-def PrintingResolution
domain Printer
class-def PrinterForPersonalUse
subclass-of Printer
class-def HPPrinter
subdass-of HPProduct and Printer
class-def LaserJetPrinter
subclass-of Printer
slot-constraint PrintingTechnology
has-valve “Laser Jet”
class-def HPLaserJetPrinter
subdass-of LaserJetPrinter and HPProduct
class-def HPLaserJet1100Series
subclass-of HPLaserJetPrinter and PrinterFor
PersonalUse
slot-constraint PrintingSpeed
has-valve “8 ppm”
slot-constraint PrintingResolution
has-valve “600 dpi”
class-def HPLaserJet1100se
subclass-of HPLaserJet1100Series
slot-constraint Price
has-value “$479”
class-def HPLaserJet1100xi
subdlass-of HPLaserJet1100Series
slot-constraint Price
has-value “$399”

Figure 4. A small printer ontology in OIL.

type; has-valuerestrictionsrequire the slot to
have at |east values from the stated type.

A crucial aspect of OIL is its formal
semantics.’° An OIL ontology isgiven afor-
mal semantics by mapping each classinto a
set of objectsand each slot into aset of pairs
of objects. Thismapping must obey the con-
straints specified by the definitions of the
classes and dlots. We omit the details of this

formal semantics, but it must exist and be
consulted whenever necessary to resolvedis-
putes about the meaning of language con-
structions. It is an ultimate reference point
for OIL applications.

Figure4 showsavery simple example of
an Ol L ontology provided by SemanticEdge
(www.interprice.com). It illustrates OIL’s
most basic constructs.

This defines a number of classes and
organizes them in a class hierarchy (for
example, HPProduct is asubclass of Product).
Various properties (or slots) are defined,
together with the classes to which they
apply (such as a Price is a property of any
Product, but a PrintingResolution can only be
stated for a Printer, an indirect subclass of
Product). For certain classes, these proper-
tieshaverestricted values (for example, the
price of any HPL aserJet1100seisrestricted
to $479). In OIL, we can also combine
classes by using logical expressions—for
example, an HPPrinter is both an HPProduct
and aPrinter (and consequently inheritsthe
properties from both classes).

OIL tools
OIL hasstrong tool support inthree areas:

 ontology editors, to build new ontologies,

 ontology-based annotation tools, to link
unstructured and semistructured informa-
tion sources with ontologies; and

 reasoning with ontologies, which enables
advanced query-answering services, sup-
ports ontology creation, and helps map
between different ontologies.

Ontology editors

Ontology editors help human knowledge
engineersbuild ontol ogies—they support the
definition of concept hierarchies, the defini-
tion attributes for concepts, and the defini-
tion of axioms and constraints. They must
provide graphical interfaces and conform to
existing standards in Web-based software
development. They enable the inspecting,
browsing, codifying, and modifying of
ontologies, and they support ontology devel-
opment and maintenance tasks. Currently,
two editorsfor OIL areavailable, and athird
isunder development:

* OntoEdit (see Figure 5) is an ontology-
engineering environment devel oped at the
Knowledge Management Group of the
University of Karlsruhe, Institute AIFB
(http://ontoserver.aifb.uni-karlsruhe.de/

ontoedit). Currently, OntoEdit supports
Frame-Logic, OIL, RDFS, and XML. Itis
commercialized from Ontoprise (Www.
ontoprise.de).

e OlLedisafredly available and customized
editor for OIL implemented by the Uni-
versity of Manchester and sponsored by
the Vrije Universiteit, Amsterdam, and
SemanticEdge (see http://img.cs.man.ac.
uk/oil). OlLed aims to provide a simple
freeware editor that demonstrates—and
stimulatesinterest in—OIL. OlLed isnot
intended to be afull ontology devel opment
environment—it will not actively support
the devel opment of large-scale ontologies,
the migration and integration of ontolo-
gies, versioning, argumentation, and many
other activities that are involved in ontol-
ogy construction. Rather, it is a NotePad
for ontology editorsthat offersjust enough
functionality to let users build ontologies
and demonstrate how to check them for
consistency.

* Protégé! |lets domain experts build knowl-
edge-based systems by creating and mod-
ifying reusable ontologies and problem-
solving methods (see www.smi.stanford.
edu/projects/protege). Protégé generates
domain-specific knowledge acquisition
tools and applications from ontologies.
More than 30 countries have used it. It is
an ontology editor that can define classes
and class hierarchy, slots and slot-value
restrictions, and relationships between
classes and properties of these relation-
ships. The instances tab is a knowledge
acquisition tool that can acquire instances
of the classes defined in the ontol ogy. Pro-
tégé, built at Stanford University, currently
supports RDF—work on extending it to
OIL isstarting.

Ontology-based annotation tools

Ontologies can describe large instance
populations. In OIL’s case, two tools cur-
rently aid such aprocess. First, we can derive
an XML DTD and an XML Schema defini-
tion from an ontology in OIL. Second, we
can derive an RDF and RDFS definition for
instances from OIL. Both provide meansto
express large volumes of semistructured
information asinstance information in OIL.
More details appear elsewhere #1213

Reasoning with ontologies: Instance
and schema inferences

Inference enginesfor ontologies can rea-
son about an ontology’s instances and
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schema definition. For example, they can
automatically derive the right position of a
new concept in a given concept hierarchy.
Such reasoners help build ontologies and
use them for advanced information access
and navigation. OIL uses the FaCT (Fast
Classification of Terminologies, www.cs.
man.ac.uk/~horrocks/FaCT) system to pro-
vide reasoning support for ontology design,
integration, and verification. FaCT isaDL
classifier that can provide consistency
checking in modal and other similar logics.
FaCT’s most interesting features are its
expressive logic, its optimized tableaux
implementation (which has now become the
standard for DL systems), and its Corba-
based client—server architecture. FaCT’s
optimizations specifically aim to improve
the system’s performance when classifying
realistic ontologies. This results in perfor-
mance improvements of several orders of
magnitude compared with older DL sys-
tems. This performance improvement is
often so great that it isimpossible to mea-
sure precisely because nonoptimized sys-
tems are virtually nonterminating with
ontologiesthat FaCT can easily deal with.14
For example, for alarge medical terminol-
ogy ontology developed inthe GALEN pro-
ject,’> FaCT can check the consistency of
all 2,740 classes and determine the com-
plete class hierarchy in approximately 60
seconds of CPU (450-MHz Pentium 111)
time. FaCT can be accessed through a Corba
interface.

Applications of OIL

Earlier, we sketched three application
areas for ontologies: knowledge manage-
ment, Web commerce, and e-business. Not
surprisingly, we find applications of OIL in
all three areas. On-To-Knowledge (www.
ontoknowledge.org)® extends OIL to afull-
fledged environment for knowledge man-
agement in large intranets and Web sites.
Unstructured and semistructured datais auto-
matically annotated, and agent-based user
interface techniques and visualization tools
help users navigate and query the informa-
tion space. Here, On-To-Knowledge contin-
ues a line of research that began with
SHOE?Y and Ontobroker:18 using ontologies
to model and annotate the semantics of infor-
mation resources in a machine-processable
manner. On-To-Knowledge is carrying out
three industrial case studies to evaluate the
tool environment for ontol ogy-based knowl-
edge management.
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Figure 5. A screen shot of OntoEdit.

Swiss Life: Organizational memory

Swiss Lifel® (www.swisdlife.ch) imple-
ments an intranet-based front end to an
organizational memory with OIL. The start-
ing point is the existing intranet informa-
tion system, called ZIS, which has consid-
erable drawbacks. Its great flexibility
alows for its evolution with actual needs,
but this also makes finding certain infor-
mation difficult. Search engines help only
marginally. Clearly, formalized knowledge
is connected with weakly structured back-
ground knowledge here—experience shows
that thisis extremely bothersome and error-
prone to maintain. The only way out is to
apply content-based information access so
that we no longer have amere collection of
Web pages but a full-fledged information
system that we can rightly call an organi-
zational memory.

British Telecom: Call centers

Call centers are an increasingly impor-
tant mechanism for customer contact in
many industries. What will be required in
the future is a new philosophy in customer
interaction design. Every transaction should
emphasize the uniqueness of both the cus-
tomer and the customer service person—
this requires effective knowledge manage-
ment (see www.bt.com/innovations), in-
cluding knowledge about the customer and
about the customer service person, so that
customers are directed to the correct person
in a meaningful and timely way. Some of
BT’s call centers are targeted to identify
opportunitiesfor effective knowledge man-
agement. More specifically, call center
agents tend to use a variety of electronic
sources for information when interacting
with customers, including their own spe-
cialized systems, customer databases, the
organization’s intranet, and, perhaps most
important, case bases of best practices. OIL
provides an intuitive front-end tool to these

heterogeneous information sources to en-
sure smooth transfer to others.

EnerSearch: Virtual enterprise

EnerSearch is a virtual organization
researching new 1 T-based business strate-
gies and customer services in deregulated
energy markets (www.enersearch.se).?°
EnerSearch is a knowledge creation com-
pany—knowledge that must transfer to its
shareholders and other interested parties.
Its Web site is one of the mechanisms for
this, but finding information on certain top-
ics is difficult—the current search engine
supports free-text search rather than con-
tent-based search. So, EnerSearch applies
the OIL toolkit to enhance knowledge
transfer to researchers in the virtual orga-
nization in different disciplines and coun-
tries and specialists from shareholding
companies interested in getting up-to-date
R& D information.

o IL has several advantages: it is prop-
erly grounded in Web languages such
as XML Schemas and RDFS, and it offers
different levels of complexity. Itsinner lay-
ers enabl e efficient reasoning support based
on FaCT, and it has a well-defined formal
semantics that is a baseline requirement for
the Semantic Web’slanguages. Regarding its
modeling primitives, OIL isnot just another
new language but reflects certain consensus
in areas such as DL and frame-based sys-
tems. We could only achieve this by includ-
ing alarge group of scientistsin OIL’sdevel-
opment. OIL is aso asignificant source of
inspiration for the ontology language
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DAML+OIL (www.cs.man.ac.uk/~horrocks/
DAML-OIL), devel oped through the DAML
initiative. The next step isto start on aW3C
working group on the Semantic Web, taking
DAML+OIL asastarting point.

Defining a proper language is an impor-
tant step to expanding the Semantic Web.
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Biology is rapidly becoming a data-rich science owing to recent
massive data generation technologies, while our biological colleagues
are designing cleverer and more informative experiments owing to
recent advances in molecular science. These data and these experi-
ments hold the keys to the deepest secrets of biology and medicine,
but cannot be analyzed fully by humans because of the wealth and
complexity of the information available. The result is a great need for
intelligent systems in biology.

Intelligent systems probably helped design the last drug your doc-
tor prescribed, and intelligent computational analysis of the human
genome will drive medicine for at least the next half-century. Even as
you read these words, intelligent systems are working on gene expres-
sion data to help understand genetic regulation, and thus ultimately
the regulated control of all life processes including cancer, regenera-
tion, and aging. Modern intelligent analysis of biological sequences
results today in the most accurate picture of evolution ever achieved.
Knowledge bases of metabolic pathways and other biological net-
works presently make inferences in systems biology that, for example,
let a pharmaceutical program target a pathogen pathway that does
not exist in humans, resulting in fewer side effects to patients. Intelli-
gent literature-access systems exploit a knowledge flow exceeding
half a million biomedical articles per year, while machine-learning sys-
tems exploit heterogeneous online databases whose exponential
growth mimics Moore’s law. Knowledge-based empirical approaches
are the most successful method known for general protein structure
prediction, a problem that has been called the “Holy Grail of molecu-
lar biology” and “solving the second half of the genetic code.”

This announcement seeks papers and referees for a special issue
on Intelligent Systems in Biology. Preferred papers will describe an
implemented intelligent system that produces results of significance in
biology or medicine. Systems that
extend or enhance the intelligence of
human biologists are especially wel-
come. Referees are solicited from
experts in the field who do not intend
to submit a paper.
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The Semantic

Web

Theauthorsproposethe
markup of Web services
inthe DAML family of
Semantic\Web markup
languages. Thismarkup
enablesawidevariety of
agent technologiesfor
automated WWeb service
discovery, execution,
composition, and
interoperation. The
authorspresent one
such technology for
automated WWeb service

composition.

Semantic Web Services

SheilaA. Mcllraith, Tran Cao Son, and Honglei Zeng, Sanford University

T he Web, once solely arepository for text and images, is evolving into a provider

of services—information-providing services, such asflight information providers,

temperature sensors, and cameras, and world-altering services, such as flight-booking

programs, sensor controllers, and a variety of e-commerce and business-to-business

applications. Web-accessible programs, databases,
sensors, and avariety of other physical devicesreal-
izethese services. In the next decade, computerswill
most likely be ubiquitous, and most deviceswill have
some sort of computer inside them. Vint Cerf, one
of the fathers of the Internet, views the population
of the Internet by smart devices as the harbinger of
anew revolution in Internet technol ogy.

Today’s Web was designed primarily for human
interpretation and use. Nevertheless, we are seeing
increased automation of Web service interoperation,
primarily in B2B and e-commerce gpplications. Gen-
erally, suchinteroperationisrealized through APIsthat
incorporate hand-coded information-extraction codeto
locate and extract content from the HTML syntax of a
Web page presentation layout. Unfortunately, when a
Web page changesits presentation layout, the APl must
be modified to prevent failure. Fundamental to having
computer programs or agents' implement reliable,
large-scaleinteroperation of Web servicesistheneed to
make such services computer interpretable—to create
a Semantic Web? of services whose properties, capa-
bilities, interfaces, and effectsare encoded in an unam-
biguous, machine-understandable form.

The realization of the Semantic Web is underway
with the development of new Al-inspired content
markup languages, such as OIL,> DAML+OIL
(Www.daml.org/2000/10/daml-ail), and DAML-L (the
last two are members of the DARPA Agent Markup
Language (DAML ) family of languages).* Theselan-
guages have awell-defined semantics and enable the
markup and mani pulation of complex taxonomic and
logical relations between entities on the Web. A fun-

damental component of the Semantic Web will bethe
markup of Web servicesto makethem computer-inter-
pretable, use-apparent, and agent-ready. This article
addresses precisely this component.

We present an approach to Web service markup that
provides an agent-independent declarative API cap-
turing the data and metadata associated with a service
together with specifications of its properties and capa-
bilities, the interface for its execution, and the prereg-
uisites and consequences of its use. Markup exploits
ontologies to facilitate sharing, reuse, composition,
mapping, and succinct local Web service markup. Our
visonispartidly realized by Web servicemarkupina
didect of thenewly proposed DAML family of Seman-
tic Web markup languages.* Such so-called semantic
markup of Web services creates a distributed knowl-
edgebase. Thisprovidesameansfor agentsto populate
their local KBs so that they can reason about Web ser-
vicesto perform automatic\Web service discovery, exe-
cution, and composition and interoperation.

Toillustrate this claim, we present an agent tech-
nology based on reusable generic procedures and
customizing user constraintsthat exploitsand show-
cases our Web service markup. This agent technol-
ogy isrealized using the first-order language of the
situation calculus and an extended version of the
agent programming language ConGolog,> together
with deductive machinery.

Figure 1 illustrates the basic components of our
Semantic Web services framework. It is composed of
semantic markup of Web services, user congtraints, and
Web agent generic procedures. In addition to the
markup, our framework includesavariety of agent tech-

46

1094-7167/01/$10.00 © 2001 |EEE

IEEE INTELLIGENT SYSTEMS



nologies—specialized services that use an
agent broker to send requests for service to
appropriate Web services and to dispatch ser-
vice responses back to the agent.

Automating Web services

Torealizeour vision of Semantic\Web ser-
vices, we are creating semantic markup of
Web services that makes them machine
understandable and use-apparent. Wearea so
devel oping agent technology that exploitsthis
semantic markup to support automated Web
service composition and interoperability. Dri-
ving the development of our markup and
agent technology are the automation tasksthat
semantic markup of Web serviceswill enable
—in particular, servicediscovery, execution,
and composition and interoperation.

Automatic V\eb service discovery involves
automatically locating Web servicesthat pro-
vide a particular service and that adhere to
requested properties. A user might say, for
example, “Find aservicethat sdllsairlinetick-
ets between San Francisco and Toronto and
that accepts payment by Diner's Club credit
card” Currently, a human must perform this
task, first usng asearch enginetofind aservice
and then either reading the Web page associ-
ated with that service or executing the service
to seewhether it adheresto the requested prop-
erties. With semantic markup of services, we
can specify theinformation necessary for Web
service discovery as computer-interpretable
semantic markup at the service Web sites, and
a service registry or (ontology-enhanced)
search engine can automatically locate appro-
priate services.

Automatic Web service execution involves
acomputer program or agent automatically
executing an identified Web service. A user
could request, “Buy mean airlineticket from
www.acmetravel.com on UAL Flight 1234
from San Francisco to Toronto on 3 March.”
To execute a particular service on today’s
Web, such as buying an airline ticket, a user
generaly must go to theWeb site offering that
service, fill out aform, and click a button to
executethe service. Alternately, the user might
send an http request directly to the service
URL with the appropriate parameters en-
coded. Either caserequiresahuman to under-
stand what information isrequired to execute
theserviceandtointerpret theinformation the
servicereturns. Semantic markup of Web ser-
vices provides a declarative, computer-inter-
pretable APl for executing services. The
markup tellsthe agent what input isnecessary,
what information will bereturned, and how to

Web procedures
ontologies

Web service
ontologies

/
=

=

= E-E=

broker [~ E E E

Agent

==

Semantic markup of
personal or company

==

Semantic markup of
Web service sites

constraints and preferences

Email

/LL

Knowledge
base

Semantic-markup-enabled
agent technology

Figure 1. A framework for Semantic Web services.

execute—and potentially interact with—the
service automatically.

Automatic WWeb service composition and
interoperation involves the automatic selec-
tion, composition, and interoperation of
appropriate Web services to perform some
task, given a high-level description of the
task’s objective. A user might say, “Makethe
travel arrangements for my 1JCAI 2001 con-
ferencetrip.” Currently, if sometask requires
acomposition of Web servicesthat must inter-
operate, then the user must select the Web ser-
vices, manually specify the composition, en-
sure that any software for interoperation is
custom-created, and provide the input at
choice points (for example, selecting aflight
from among severa options). With semantic
markup of Web services, theinformation nec-
essary to select, compose, and respond to ser-
vicesisencoded at the service Web sites. We
can write software to mani pul ate thismarkup,
together with a specification of the task’s
objectives, to achieve the task automatically.
Service composition and interoperation lever-
age automatic discovery and execution.

Of these three tasks, none is entirely real-
izablewith today’sWeb, primarily because of
a lack of content markup and a suitable
markup language. Academic research on Web
service discovery is growing out of agent
matchmaking research such asthe Lark sys-
tem,® which proposes a representation for
annotating agent capabilities so that they can
be located and brokered. Recent industrial

efforts have focused primarily on improving
Web service discovery and aspects of service
execution through initiatives such asthe Uni-
versa Description, Discovery, and Integration
(UDDI) standard service registry; the XML-
based Web Service Description Language
(WSDL), released in September 2000 as a
framework-independent Web service descrip-
tion language; and ebXML, aninitiative of the
United Nationsand OA SIS (Organization for
the Advancement of Structured Information
Standards) to standardize a framework for
trading partner interchange.

E-business infrastructure companies are
beginning to announce platforms to support
somelevel of Web-service automation. Exam-
plesof such productsinclude Hewlett-Packard's
e-gpesk, adescription, registration, and dynamic
discovery platform for e-services, Microsoft's
NET and BizTak tools, Oracle€' sDynamic Ser-
vices Framework; IBM’sApplication Frame-
work for E-Business; and Sun’sOpen Network
Environment. VerticalNet Solutions, anticipat-
ing and wishing to accelerate the markup of
services for discovery, is building ontologies
and tools to organize and customize Web ser-
vicediscovery and—withitsOSM Platform—
is delivering an infrastructure that coordinates
Web services for public and private trading
exchanges.

What distinguishes our work in this arena
isour semantic markup of Web servicesinan
expressive semantic Web markup language
with awell-defined semantics. Our semantic
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markup providesasemantic layer that should
comfortably sit on top of efforts such as
WSDL, enabling aricher level of description
and hence more sophisticated interactionsand
reasoning at the agent or applicationlevel. To
demonstrate this claim, we present agent
technology that performs automatic Web ser-
vice composition, an areathat industry isnot
yet tackling in any great measure.

Semantic Web service markup
Thethree automation taskswe' ve described
are driving the development of our semantic
Web servicesmarkup inthe DAML family of
markup languages. We are marking up

« Web services, such as Yahoo's driving
direction information service or United
Airlines' flight booking service;

* user and group constraintsand preferences,
such as a user’s—Ilet’s say Bob's—sched-
ule, that he prefersdriving over flying if the
driving time to his destination is less than
three hours, his use of stock quotes exclu-
sively from the E* Trade Web service, and
so forth; and

 agent procedures, which are (partial) com-
positions of existing Web services, designed
to perform a particular task and marked up
for sharing and reuse by groups of other
users. Examples include Bob's business
travel booking procedure or his friend’s
stock assessment procedure.

Our DAML markup providesadeclarative
representation of Web service and user con-
straint knowledge. (See the “The Case for
DAML” sidebar to learn why we chose the
DAML family of markup languages.) A key
feature of our markup is the exploitation of
ontologies, which DAML+OIL's roots in
descriptionlogics and frame systems support.

We use ontologies to encode the classes
and subclasses of conceptsand rel ations per-
taining to servicesand user constraints. (For
example, the service BuyUALTicket and Buy-
LufthansaTicket are subclasses of the service
BuyAirlineTicket, inheriting the parameters cus-
tomer, origin, destination, and so forth). Domain-
independent Web service ontol ogies are aug-
mented by domain-specific ontologies that
inherit concepts from the domain-indepen-
dent ontologiesand that additionally encode
concepts that are specific to the individual
Web service or user. Using ontologies
enablesthe sharing of common concepts, the
specialization of these concepts and vocab-
ulary for reuse across multiple applications,

the mapping of concepts between different
ontologies, and the composition of new con-
cepts from multiple ontologies. Ontologies
support the devel opment of succinct service-
or user-specific markup by enabling anindi-
vidual service or user to inherit much of its
semantic markup from ontologies, thus
requiring only minimal markup at the Web
site. Most importantly, ontologies can give
semantics to markup by constraining or
grounding its interpretation. Web services
and users need not exploit Web service
ontologies, but we foresee many domains
where communities will want to agree on a
standard definition of terminology and
encodeit in an ontology.

DAML markup of Web services
Collectively, our markup of Web services
provides

e declarative advertisements of service
properties and capabilities, which can be
used for automatic service discovery;

 declarative APIs for individual services
that are necessary for automatic service
execution; and

« declarative specifications of the prerequi-
sites and consequences of individua ser-
vice use that are necessary for automatic
service composition and interoperation.

The semantic markup of multiple\Web ser-
vices collectively forms a distributed KB of
Web services. Semantic markup can populate
detailed registries of the properties and capa-
bilities of Web servicesfor knowledge-based
indexing and retrieval of Web services by
agent brokers and humans alike. Semantic
markup can also populate individual agent
KBs, to enable automated reasoning about
Web services.

Our Web service markup comprisesanum-
ber of different ontologies that provide the
backbonefor our Web service descriptions. We
define the domain-independent class of ser-
vices, Service, and divideit into two subclasses,
PrimitiveService and ComplexService. In the context
of the Web, a primitive service is an individ-
ual Web-executable computer program, sen-
sor, or device that does not call another Web
service. There is no ongoing interaction
between the user and aprimitive service. The
user or agent callsthe service, and the service
returns aresponse. An example of aprimitive
service is a Web-accessible program that
returnsapostal code, givenavalid address. In
contrast, a complex service is composed of

multiple primitive services, often requiring an
interaction or conversation between the user
and services, so that the user can make deci-
sions. An example might be interacting with
www.amazon.com to buy abook.

Domain-specific Web service ontologies
are subclasses of these general classes. They
enable an individual service to inherit
shared concepts, and vocabulary in a partic-
ular domain. The ontology being used is spec-
ified inthe Web site markup and then simply
refined and augmented to provide service-
specific markup. For example, we might
define an ontology containing the class Buy,
with subclass BuyTicket, which has subclasses
BuyMovieTicket, BuyAirlineTicket, and so forth. Buy-
AirlineTicket has subclasses BuyUALTicket, Buy-
LufthansaTicket, and so on. Each serviceiseither
a PrimitiveService or a ComplexService. Associated
with each service is a set of Parameters. For
example, the class Buy will have the parame-
ter Customer. BuyAirlineTicket will inherit the Cus-
tomer parameter and will also have the para-
meters Origin, Destination, DepartureDate, and so on.
We constructed domain-specific ontologies
to describe parameter values. For example,
we restricted the val ues of Origin and Destination
to instances of the class Airport. BuyUALTicket
inherits these parameters, further restricting
them to Aiports whose property Airlines includes
UAL. These value restrictions provide an
important way of describing Web service
properties, which supports better brokering
of services and simple type checking for our
declarative APIs. In addition, we have used
these restrictions in our agent technology to
create customized user interfaces.

Markup for Web service discovery. To auto-
mate Web service discovery, we associate
properties with services that are relevant to
automated service classification and selec-
tion. In the case of BuyUALTicket, these would
include service-independent property types
such asthe company name, the service URL,
aunique service identifier, the intended use,
and soforth. They would asoinclude service-
specific property types such asvalid methods
of payment, travel bonus plans accepted, and
soforth. Thismarkup, together with certain of
the properties specified | ater, collectively pro-
vides a declarative advertisement of service
propertiesand capabilities, whichiscomputer
interpretable and can be used for automatic
service discovery.

Markup for Web service execution. To auto-
mate Web service execution, markup must
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The Case for DAML

In recent years, several markup languages have been devel-
oped with a view to creating languages that are adequate for
realizing the Semantic Web. The construction of these lang-
uages is evolving according to a layered approach to language
development.'

XML was the first language to separate the markup of Web
content from Web presentation, facilitating the representa-
tion of task- and domain-specific data on the Web. Unfortu-
nately, XML lacks semantics. As such, computer programs can-
not be guaranteed to determine the intended interpretation
of XML tags. For example, a computer program would not be
able to identify that <SALARY> data refers to the same informa-
tion as <WAGE> data, or that the <DUE-DATE> specified at a Web
service vendor’s site might be different from the <DUE-DATE> at
the purchaser’s site.

The World Wide Web Consortium developed the resource
description framework (RDF)? as a standard for metadata.

The goal was to add a formal semantics to the Web, defined

on top of XML, to provide a data model and syntax convention
for representing the semantics of data in a standardized inter-
operable manner. It provides a means of describing the relation-
ships among resources (basically anything nameable by a URI)

in terms of named properties and values. The RDF working
group also developed RDF Schema, an object-oriented type sys-
tem that can be effectively thought of as a minimal ontology-
modeling language. Although RDF and RDFS provide good
building blocks for defining a Semantic Web markup language,
they lack expressive power. For example, you can‘t define prop-
erties of properties, necessary and sufficient conditions for class
membership, or equivalence and disjointness of classes. Further-
more, the only constraints expressible are domain and range
constraints on properties. Finally, and perhaps most importantly,
the semantics remains underspecified.

Recently, there have been several efforts to build on RDF
and RDFS with more Al-inspired knowledge representation
languages such as SHOE,> DAML-ONT,* OIL,> and most recently
DAML+OIL. DAML+OIL is the second in the DAML family of
markup languages, replacing DAML-ONT as an expressive ontol-
ogy description language for markup. Building on top of RDF
and RDFS, and with its roots in Al description logics, DAML+OIL
overcomes many of the expressiveness inadequacies plaguing
RDFS and most important, has a well-defined model-theoretic
semantics as well as an axiomatic specification that determines
the language’s intended interpretations. DAML+OIL is unam-
biguously computer-interpretable, thus making it amenable to

agent interoperability and automated-reasoning techniques,
such as those we exploit in our agent technology.

In the next six months, DAML will be extended with the addi-
tion of DAML-L, a logical language with a well-defined seman-
tics and the ability to express at least propositional Horn clauses.
Horn clauses enable compact representation of constraints and
rules for reasoning. Consider a flight information service that
encodes whether a flight shows a movie. One way to do this is
to create a markup for each flight indicating whether or not it
does. A more compact representation is to write the constraint
flight-over-3-hours — movie and to use deductive reasoning to infer if a
flight will show a movie. This representation is more compact,
more informative, and easier to modify than an explicit enumer-
ation of individual flights and movies. Similarly, such clauses can
represent markup constraints, business rules, and user prefer-
ences in a compact form.

DAML+OIL and DAML-L together will provide a markup lan-
guage for the Semantic Web with reasonable expressive power
and a well-defined semantics. Should further expressive power
be necessary, the layered approach to language development
lets a more expressive logical language extend DAML-L or act
as an alternate extension to DAML+OIL. Because DAML-L has
not yet been developed, our current Web service markup is in a
combination of DAML+OIL and a subset of first-order logic. Our
markup will evolve as the DAML family of languages evolves.

1. D.Fensel, “The Semantic Web and Its Languages,” IEEE Intelligent
Systems, vol. 15, no. 6, Nov./Dec. 2000, p. 67-73.

2. 0. Lassila and R. Swick, Resource Description Framework (RDF)
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5. F.van Harmelen and I. Horrocks, “FAQs on OIL: The Ontology Infer-
ence Layer,” IEEE Intelligent Systems, vol. 15, no. 6, Nov./Dec. 2000,
pp. 69-72.

enable a computer agent to automatically
construct and execute aWeb service request
and interpret and potentially respond to the
service's response. Markup for execution
requires a dataflow model, and we use both
a function metaphor and a process or con-
versation model to realize our markup. Each
primitive service is conceived as afunction
with Input values and potentially multiple
alternative Output values. For example, if the
user orders a book, the response will differ
depending on whether the book isin stock,
out of stock, or out of print.

Complex servicesare conceived asacom-
position of functions (services) whose output

might require an exchange of information
between the agent and an individual service.
For example, acomplex service that books a
flight for a user might involve first finding
flightsthat meet the user’s request, then sus-
pending until the user selectsoneflight. Com-
plex services are composed of primitive or
complex servicesusing typical programming
languages and business-process modeling
language constructs such as Sequence, lteration,
If-then-Else, and so forth. Thismarkup provides
declarative APIsfor individual Web services
that are necessary for automatic Web service
execution. It additionally provides a process
dataflow model for complex services. For an

agent to respond automatically to acomplex
service execution—that is, to automatically
interoperatewith that service—it will require
some of the information encoded for auto-
matic composition and interoperation.

Markup for Web service composition. The
function metaphor used for automatic Web ser-
vice execution providesinformation about data
flow, but it does not provideinformation about
what the Web service actually does. To auto-
mate service composition, and for servicesand
agents to interoperate, we must also encode
how the service affects the world. For exam-
ple, when auser visitswww.amazon.com and
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successfully executes the BuyBook service, she
knows she has purchased abook, that her credit
card will be debited, and that she will receive
abook at the address she provided. Such con-
sequences of Web service execution are not
part of the markup nor part of the function-
based specification provided for automatic
execution. To automate \Web service composi-
tion and interoperation, or even to select an
individual serviceto meet some objective, we
must encode prerequisites and consequences
of Web service execution for computer use.

Our DAML markup of Web services for
automatic composition and interoperability is
built on an Al-based action metaphor. We con-
ceive each Web serviceasan action—either a
PrimitiveAction or a ComplexAction. Primitive actions
areinturn concelved asworld-altering actions
that changethe state of theworld, such asdeb-
iting the user’scredit card, booking theuser a
ticket, and so forth; asinformation-gathering
actionsthat change the agent’ s state of knowl-
edge, so that after executing the action, the
agent knows a piece of information; or as
some combination of the two.

An advantage of exploiting an action
metaphor to describeWeb servicesisthat it lets
us bring to bear the vast Al research on rea
soning about action, to support automated rea-
soning tasks such as\Web service composition.
In developing our markup, wechoosetoremain
agnostic with respect to an action representa-
tion formalism. In the Al community, thereis
widespread disagreement over the best action
representation formalism. As a consequence,
different agentsusevery different internd rep-
resentations for reasoning about and planning
sequencesof actions. The planning community
has addressed thislack of consensus by devel-
oping a specification language for describing
planning domains—Plan Domain Description
Language (PDDL).” We adopt this language
here, specifying each of our Web servicesin
terms of PDDL-inspired Parameters, Preconditions,
and Effeds. The Input and Ouiput necessary for
automatic Web service execution also play the
roleof KnowledgePreconditions and KnowledgeEffects for
the purposes of Web service composition and
interoperation. We assume, asin the planning
community, that users will compile this gen-
erd representationinto an actionformalismthat
best suits their reasoning needs. Trandators
dready exist from PDDL to avariety of differ-
entAl action formalisms.

Complex actions, like complex services, are
compositionsof individua services, however,
dependencies between these compositionsare
predicated on state rather than on data, asis

the case with the execution-motivated markup.
Complex actions are composed of primitive
actions or other complex actions using typi-
cal programming languages and business-
process modeling-language constructs such
asSequence, Parallel, If-then-Else, While, and so forth.

DAML markup of user constraints
and preferences
Our visionisthat agentswill exploit users

constraints and preferencesto help customize
users requestsfor automatic Web service dis-
covery, execution, or composition and inter-
operation. Examples of user constraints and
preferences include user Bob's schedule, his
travel bonuspoint plans, that he preferstodrive
if thedriving timeto hisdestination islessthan

0ur vision is thaf agents will exploit
Users” constraints and preferences
to help customize users' requests

for aufomafic Web service
discovery, execufion, or
composition and interoperation.

three hours, that he likes to get stock quotes
from the E* Trade Web service, that his com-
pany requires all domestic business travel to
bewith aparticular set of carriers, and soforth.
The actual markup of user constraintsisrela-
tively straightforward, given DAML-L. Wecan
expressmost constraints asthese Horn clauses
(seethesidebar), and ontologies|et usersclas-
sify, inherit, and share constraints. Inheriting
terminology from Web service ontologies
ensures, for example, that Bob's constraint
about DrivingTime isenforced by determining the
value of DrivingTime from a servicethat usesthe
same notion of DrivingTime. More challenging
than the markup itself isthe agent technology
that will appropriately exploit it.

DANML-enabled agent technology

Our semantic markup of Web services
enablesawide variety of agent technologies.
Here, we present an agent technology we are
developing that exploits DAML markup of
Web servicesto perform automated \Web ser-
vice composition.

Consider the example task given earlier:
“Makethetravel arrangementsfor my [JCAI
2001 conferencetrip.” If youwereto perform
thistask using services available on the Web,
you might first find the IJCAI 2001 confer-
ence Web page and determine the confer-
ence'slocation and dates. Based on the loca-
tion, you would choose the most appropriate
mode of trangportation. If traveling by air, you
might then check flight scheduleswith oneor
more Web services, book flights, and so on.

Although the entire procedure is lengthy
and somewhat tedious to perform, the aver-
age person could easily describe how to make
your travel arrangements. Nevertheless, it's
not easy to get someone €else to make the
arrangements for you. What makes this task
difficult is not the basic steps but the need to
make decisionsto customize the generic pro-
cedure to enforce the traveler’s constraints.
Constraints can be numerous and conse-
quently difficult for another persontokeepin
mind and satisfy. Fortunately, enforcing com-
plex congtraintsis something acomputer does
well.

Our objectiveisto develop agent technol-
ogy that will perform thesetypes of tasksauto-
matically by exploiting DAML markup of
Web servicesand of user constraintsand pref-
erences. We argue that many of the activities
users might wish to perform on the Semantic
Web, within the context of their workplace or
home, can be viewed as customizations of
reusable, high-level generic procedures. Our
visionisto construct such reusable, high-level
generic procedures and to represent them as
distinguished servicesin DAML using asub-
set of the markup designed for complex ser-
vices. We also hope to archive them in
sharable generic procedures ontol ogies so that
multiple users can access them. Generic pro-
cedures are customi zed with respect to users
constraints, using deductive machinery.

Generic procedures and customiz-
ing user constraints

We built our research on model-based pro-
gramming® and on research into the agent
programming language Golog and its vari-
ants, such as ConGolog.® Our goa was to
provide a DAML-enabled agent program-
ming capability that supportswriting generic
procedures for Web service-based tasks.

M odé-based programs compriseamodel—
inthiscase, theagent’sK B—and aprogram—
the generic procedure we wish to execute. We
arguethat the situation calculus (alogical lan-
guage for reasoning about action and change)
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Figure 2. The tree of situations.

and ConGologP® provideacompelling language
for redlizing our agent technology. When auser
requestsageneric procedure, suchasageneric
travel arrangements procedure, the agent pop-
ulatesitsloca KB with the subset of the PDDL-
inspired DAML Web servicemarkup thet isrel-
evant to the procedure. It aso adds the user’s
constraints to its KB. Exploiting our action
metaphor for Web services, the agent KB pro-
vides alogica encoding of the preconditions
and effects of the Web service actionsin the
language of the situation calculus.

M odel-based programs, such asour generic
procedures, are written in ConGolog without
prior knowledge of what specific servicesthe
agent will useor of how exactly to usetheavail -
able services. As such, they capture what to
achieve but not exactly how to do it. They use
procedura programming language constructs
(if-then-else, while, and so forth) composed with
concepts defined in our DAML service and
constraints ontologies to describe the proce-
dure. The agent’s model-based program is not
executableasis. Wemust deductively instanti-
ateit in the context of the agent’s KB, which
includes properties of the agent and its user,
properties of the specific servicesweareusing,
and the state of the world. We perform the
ingtantiation by using deductive machinery. An
instantiated program is ssmply a sequence of
primitive actions (individual Web services),
which ConGolog interprets and sends to the
agent broker asarequest for service. Thegreat
advantage of these generic proceduresis that
the samegeneric procedure, called with differ-
ent parameters and user constraints, can gen-
erate very different sequences of actions.

ConGolog

ConGologisahigh-level logic programming
language developed at the University of
Toronto. Its primary useisfor robot program-

ming and to support high-level robot task
planning. ConGolog ishbuilt ontop of situ-
ation calculus. In situation calculus, the
world is concelved as atree of situations,
gtarting at aninitia Stuation, S, and evolv-
ing to anew sSituation through the perfor-
mance of an action a (for example, Web
services such as BuyUALTicket{origin,dest, date)).
Thus, astuation sisahistory of theactions

(a)

(b)

Primitive acfion: a

Test of fruth: ¢?

Sequence: (O1; &2)

Nondeterministic choice between acfions: (&1 | &2)
Nondeterministic choice of arguments: 77x.6
Nondeterministic iteration: &*

Conditiona: if ¢ then &1 else &2 endlf

Loop: while ¢ do dendWhile

Procedure: proc P(v) SendProc

while Ti.(hotel(x) D goodLoc(x, dest)) do
checkAvailability(x,dDate,rDate)
endWhile

if - hotelAvailable(dest, dDate,rDate) then
BookB&B(cust,dest dDate,rDate)
endlf

proc Travel(cust,origin, dest, dDate, rDate, purpose);
If registrationRequired then Register endlf;
BookTranspo(cust,origin, dest, dDate,rDate);
BookAccommodations(cust, dest, dDate, rDate);
UpdateExpenseClaim(cust);
Inform(cust)

endProc

performed from S,. The state of the world
isexpressed intermsof relationsand func-
tions (so-called fluents) that aretrueor false
or have aparticular vduein asituation, s
(for example, flightAvailable(origin,dest, date,s)).

Figure 2 illustrates the tree of situations
induced by a situation calculus theory with
actions a,, ...,a,(ignore the x’s for the time
being). Thetreeisnot actually computed, but
it reflects the search space the situation cal-
culusK B induces. We could have performed
deductive plan synthesis to plan sequences
of Web service actions over this search space,
but instead, we devel oped generic procedures
in ConGolog.

ConGolog provides a set of extralogical
procedural programming constructs for
assembling primitive and complex situation
calculusactionsinto other complex actions.
Let &, and &, be complex actions, and let ¢
and a be so-called pseudo fluents and pseudo
actions, respectively—that is, a fluent or
action in the language of situation calculus
with all its situation arguments suppressed.
Figure 3ashows asubset of the constructsin
the ConGolog language.

A user can employ these constructs to
write generic procedures, which are complex
actionsin ConGolog. Theinstruction set for
these complex actionsis simply the general
Web services (for example, BookAirlineTicket) or
other complex actions. Figure 3b gives exam-
ples of ConGolog statements.

To instantiate a ConGolog program in the

Figure 3. (a) A subset of the constructs in the
ConGolog language. (b) Examples of
ConGolog statements.

context of aK B, the abbreviation Do(d,s,s) is
defined. It says that Do(4,s,s’) holds when-
ever s’ is aterminating situation following
the execution of complex action J, startingin
situation s. Given the agent KB and ageneric
procedure 4, we can instantiate dwith respect
to the KB and the current situation S, by
entailing abinding for the situation variable
s. Because situations are simply the history
of actionsfrom S, the binding for sdefinesa
sequence of actions that leads to successful
termination of the generic procedure d:

KB 8 (s).Do(d, S, 9)

Itisimportant to observethat ConGolog pro-
grams—and hence our generic procedures—
are not programs in the conventional sense.
Although they have the complex structure of
programs—including loops, if-then-el se state-
ments, and so forth—they differ inthat they are
not necessarily deterministic. Rather than nec-
essarily dictating aunique sequence of actions,
ConGolog programsserveto add temporal con-
sraintsto the situation tree of aKB, as Figure
2 depicts. As such, they eliminate certain
branches of theSituation tree (designated by the
x’s), reducing the size of the search space of
situationsthat instantiate the generic procedure.
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Result 2

@ Contacting Web Service Broker:
Result

<B>ACE<B>0ff Airport,

<B>FOX<B>0ff Airport,
<B>PAYLESS<B>Off Airport,

<B>HOLIDAY<B>Off Airport,

@ Select

HERTZ (San Francisco Airport),

@ Contact Web Service Broker:

Result

| ?- travel (’‘Bob Chen’, ‘09/02/00‘, ‘San Francisco’,
Contacting Web Service Broker:

Request Driving Time [San Francisco] - [Monterey]

Request Car Info in [San Francisco]

<B>HERTZ<B>Shuttle to Car Counter<B>Economy Car Automati..
Shuttle Provided<B>Economy Car Aut..
<B>NATIONAL<B>Shuttle to Car Counter<B>Economy Car Auto..
Shuttle Provided<B>Mini Car Automa..
Shuttle Provided<B>Mini Car Au..
<B>ALL INTL<B>Off Airport, Shuttle Provided<B>Economy Ca..
Shuttle Provided<B>Economy Car..
<B>ABLE RENT<B>Off Airport, Shuttle Provided<B>Compact C..

Location: Shuttle to Car Counter, Economy C
ar Automatic with Air Conditioning, Unlimited Mileage

Request Hotel Info in [Monterey]

<B>Travelodge<B>Monterey, CA<B>55 Rooms / 2 Floors<B>No..
<B>Econolodges<B>Monterey, CA<B>47 Rooms / 2 Floors<B> 1.
<B>Lexington Sercies<B>Monterey, CA<B>52 Rooms<B>Not A..

<B>Ramada Inns<B>Monterey, CA<B>47 Rooms<B>Not Availabl..
<B>Best Western Intl<B>Monterey, CA<B>43 Rooms / 3 Floo..
<B>Motel 6<B>Monterey, CA<B>52 Rooms / 2 Floors<B>Not A..
<B>Villager Lodge<B>Monterey, CA<B>55 Rooms / 2 Floors<..
<B>Best Western Intl<B>Monterey, CA<B>34 Rooms / 2 Flo..

I

‘Monterey’, ‘DAML’).

Figure 4. Agent interacting with Web services through OAA.

The Desirable predicate, Desirable(a,s),
which weintroduced into ConGolog to incor-
porate user constraints, also further reducesthe
treeto those situationsthat are desirableto the
user. Because generic procedures and cus-
tomizing user constraints smply serveto con-
strainthe possible evolution of actions, depend-
ing on how they are specified, they can play
different roles. At oneextreme, thegeneric pro-
cedure simply constrains the search space
required in planning. At the other extreme,
a generic procedure can dictate a unique
sequence of actions, much in the way atradi-
tional program might. Weleveragethisnonde-
terminism to describe generic procedures that
havetheleaway to berelevant to abroad range
of users, while at the same time being cus-
tomizable to reflect the desires of individual
users. Wecontragt thisto atraditiona procedurd
program that would have to be explicitly mod-
ified to incorporate unanticipated constraints.

Implementation

To implement our agent technology, we
started with an implementation of an online
ConGolog interpreter in Quintus Prolog 3.2.5
We augmented and extended this interpreter
in avariety of ways (discussed further else-
where®). Someof theissueswededlt with were
balancing the offline search for an instantia-
tion of ageneric procedurewith online execu-
tion of information-gathering Web services,
because they help to further constrain the
search space of possible solutions. We added
new constructs to the ConGolog language to
enable moreflexible encoding of generic pro-
cedures, and we incorporated users cus-
tomizing congtraintsinto ConGolog by adding
the Desirable predicate mentioned earlier.

We also modified the interpreter to com-
municate with the Open Agent Architecture
agent brokering system.’® OAA sendsrequests
to appropriate Web services and dispatches
responses to the agents. When the Semantic
Web isareality, Web serviceswill communi-
cate through DAML. Currently, we must
trandate our markup (DAML+OIL and asub-
set of first-order logic) back and forth to
HTML through a set of Java programs. We
use aninformation extraction program, World
Wide Web Wrapper Factory (http://db.cis.
upenn.edu/W4F), to extract the information
Web servicescurrently produceinHTML. All
information-gathering servicesare performed
this way. For obvious practical and financial
reasons, world-altering aspectsof servicesare
not actually executed.

Example

Here, we illustrate the execution of our
agent technology with a generic procedure
for making travel arrangements. Let's say
Bob wants to travel from San Francisco to
Monterey on Knowledge Systems Lab busi-
ness with the DARPA-funded DAML re-
search project. He has two constraints—one
personal and oneinherited from the KSL, to
which he belongs. He wishes to drive rather
than fly, if the driving timeislessthan three
hours, and as a member of the KSL, he has
inherited the constraint that he must use an
American carrier for businesstravel.

In redlity, our demo doesn’t provide much
to see. The user makes arequest to the agent
through a user interface that is automatically
created from our DAML+OIL agent proce-
dures ontology, and the agent emails the user
thetravel itinerary whenitisdone. For the pur-

poses of illustration, Figure 4 provides awin-
dow into what ishappening behind the scenes.
Itisatracefrom therun of our augmented and
extended ConGolog interpreter, operating in
Quintus Prolog. The agent KB is represented
in aProlog encoding of the situation calculus,
a tranglation of the Semantic Web service
markup relevant to thegenerictravel procedure
being called, together with Bob's user con-
straint markup. We have defined ageneric pro-
cedure for travel not unlike the oneillustrated
in Figure 3b.

Arrow 1 pointsto the call to the ConGolog
procedure travel(user,origin,dest,dDate, rDate, purpose),
with the parameters instantiated as noted.
Arrow 2 showstheinterpreter contacting OAA,
which sends a request to Yahoo Mapsto exe-
cute thegetDrivingTime(San Franciso,Monterey) service
Yahoo Maps provides. Yahoo Mapsindicates
that the driving time between San Francisco
and Monterey istwo hours. BecauseBob hasa
congtraint that hewishesto driveif thedriving
distance is less than three hours, booking a
flight is not desirable. Consequently, as de-
picted at Arrow 3, the agent el ectsto search for
anavailablecar rentd at the point of origin, San
Francisco. A number of available cars are re-
turned, and because Bob hasno constraintsthat
affect car selection, thefirst car is selected at
Arrow 4. Arrow 5 depictsthe call to OAA for
ahotel at the destination point, and so on. Our
agent technology goes on to complete Bob's
travel arrangements, creeting an expenseclaim
form for Bob and filling in as much informa-
tion as was available from the Web services.
The expense claim illustrates the agent’s abil -
ity to both read and write Semantic Web
markup. Finally, the agent sendsan email mes-
sageto Baob, notifying him of hisagenda.

To demonstrate the merits of our approach,
we often contrast such an execution of the
generictravel procedurewith oneadifferent
user called, with different user constraints.
The different user and constraints produce a
different search space, thus yielding a dif-
ferent sequence of Web services.

Related work

Our agent technology broadly relatesto the
plethora of work on agent-based systems.
Three agent technologies that deserve men-
tion are the Golog family of agent technolo-
giesreferenced earlier, thework of researchers
at SRI on Web agent technology,* and the
softbot work developed at the University of
Washington.12 The last also used a notion of
action schemas to describe actions on the
Internet that an agent could use to achieve a
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god. Also of noteisthe lbrow system, anintel-
ligent brokering servicefor knowledge-com-
ponent reuse on the Web.13 Our work issimi-
lar to Ibrow in the use of an agent brokering
system and ontologies to support interaction
with the Web. Nevertheless, we are focusing
on developing and exploiting Semantic Web
markup, which will provide us with the KB
for our agents. Our agent technology performs
automated service composition based on this
markup. Thisisaproblem the lbrow commu-
nity hasyet to address.

T he DAML family of semantic Web
markup languages will enable Web
service providers to develop semanticaly
grounded, rich representations of Web services
that a variety of different agent architectures
and technologiescan exploit to avariety of dif-
ferent ends. The markup and agent technology
presented in thisarticleisbut one of many pos-
siblerealizations. Weare building on the mark-
up presented here to provide a core set of
Web service markup language constructsin a
languagewe recalling DAML-S. We' rework-
ing in collaboration with SRI, Carnegie Mel-
lon University, Bolt Baranek and Newman,
and Nokia, and we' [l eventually publish the
language at www.daml.org. Our agent tech-
nology for automating Web service composi-
tion and interoperation is also fast evolving.
WEe'll publicize updates at www.kdl.stanford.
edu/projectsDAM L /webservices.
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The Semantic

Without semantically
enriched content, the
Web cannot reach its
full potential. The
authorsdiscusstools
and techniquesfor
generating and
processing such
content, thus setting a
foundation upon
which to build the
Semantic Web.

Web

A Portrait of the
Semantic Web in

Action

Jeff Heflin and James Hendler, University of Maryland

T heWeb'’s phenomenal growth rate makesit increasingly difficult to locate, orga-

nize, and integrate the available information. To cope with the enormous quan-

tity of data, we need to hand off portions of these tasks to machines. However, because

natural-language processing is still an unsolved problem, machines cannot understand

the Web pages to the extent required to perform the
desired tasks.

An alternative is to change the Web to make it
more understandable by machines, thereby creating
aSemantic Web. Many researchersbelieve thekey to
building this new Web lies in the development of
semantically enriched languages. Early languages,
such as the resource description framework,* Sim-
ple HTML Ontology Extensions (SHOE),2 and
Ontobroker,3 have led to more recent efforts, such as
the Defense Advanced Research Projects Agency’s
Agent Markup Language (DAML). Some say that
languages such as these will revolutionize the Web.
If so, how will the new Web work?

In this article, we put a Semantic Web language
through its paces and try to answer questions about
how people can useit, such as:

* How do authors generate semantic descriptions?

* How do agents discover these descriptions?

¢ How can agents integrate information from dif-
ferent sites?

e How can users query the Semantic Web?

We present a system that addresses these ques-
tionsand describetoolsthat help usersinteract with
the Semantic Web. We motivate the design of our
system with a specific application: semantic markup
in the computer science domain.

Producing semantic markup

Describing a set of Web pages using a Semantic
Web language can be challenging. (For an overview
of Semantic Web languages, seetherelated sidebar.)
Thefirst step is to consider the pages’ domain and
choose an appropriate ontology. As Semantic Web
languages evolve, knowledge engineers will likely
provide huge ontology libraries, aswell asnumerous
search mechanismsto hel p usersfind relevant ontolo-
gies. Meanwhile, some of the common languages
provide starter ontology libraries. (Knowledge engi-
neering, which coversthedifficult process of design-
ing ontologies, isoutside this article's scope.)

Our running example uses the SHOE language,
which has served asatestbed for Semantic Web ideas
over the past five years, although technically the dis-
cussion could apply to any Semantic Web language.
SHOE has acomputer science department ontology
that includes classes such as Student, Faculty, Course,
Depariment, Publication, and Research, and relations such
aspublicationAuthor, member, emailAddress, and advisor. This
ontology’s scope makesit relevant to faculty and stu-
dent homepages, department Web pages, research
project Web pages, and publicationindices. Authors
can use a number of methods to produce SHOE
markup for these pages.

Authoring tools
Aswith HTML, authors can use a text editor to
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add semantic markup to a page. However,
unlike HTML processors, Semantic Web
processorsare not very forgiving, and errors
can result in the processors ignoring large
portions of the annotations. Onesolutionisto
provide authoring tools that let authors cre-
ate markup by making selections and filling
in forms. For the SHOE project, we devel-
oped the Knowledge Annotator (see Figure
1) to perform this function.

In SHOE, a document references a set of
ontologies that provide the vocabulary used
to describe entities (called instances). Each
assertion about an instance is called aclaim,
to denote that it may not necessarily be true.

The Knowledge Annotator has an interface
that displaysinstances, ontologies, and claims,
and a user can add, edit, or remove any of
these objects. When creating anew object, the
Knowledge Annotator prompts the user for
the necessary information. In the case of
claims, the user can choose the source ontol-
ogy from alist and then choose categories or
relations defined in that ontol ogy from another
list. The available relations are automatically
filtered based on whether theinstances entered
can fill the argument positions.

Users have access to various methods for
viewing the knowledge in the document.
Theseincludeaview of thesource HTML, a

Overview of Semantic Web languages

logical notation view, and a view that orga-
nizes claims by subject and describes them
using simple English. In addition to prompt-
ing the user for inputs, thetool performserror
checking to ensure correctness and converts
theinputsinto legal SHOE syntax. For these
reasons, only a rudimentary understanding
of SHOE isnecessary to mark up Web pages.
If developers enhance contemporary Web
authoring tools with semantic markup
authoring capabilities, adding semantic
markup could become aregular activity in
the Web-page design process.

Members of our research group provided
markup for their homepages and those of the

Unlike Extensible Markup Language (XML), which uses a
name or prose description to imply meaning in documents, a
Semantic Web language must describe meaning in a machine-
readable way. Therefore, the language needs not only the
ability to specify a vocabulary, but also to formally define the
vocabulary so that it will work in automated reasoning. As
such, the subfield of Al known as knowledge representation
greatly influences Semantic Web languages.

However, to meet the needs of the Web, Semantic Web lan-
guages must also differ from traditional KR languages. The
most obvious difference is syntactical: Language designers
base Semantic Web syntaxes on existing standards such as
Hypertext Markup Language (HTML) or XML so that integra-
tion with other Web technologies is possible. Other differences
depend on the nature of the Web.

Because the Web is decentralized, the language must allow
for the definition of diverse—and potentially conflicting—
vocabularies. To handle the Web's rapid evolution, the lan-
guage must let the vocabularies evolve as human understand-
ing of their use improves. Finally, the Web's size requires that
scalability play a role in any solution.

An author can formally specify a Semantic Web vocabulary
using an ontology or a schema. Such ontologies and schemas
are also typically sharable (so users can agree to use the same
definitions) and extensible (so users can agree on some common
set of definitions but add terms and definitions as necessary).
Researchers expect that ontology hierarchies will develop, with
top-level abstract ontologies at the root and domain-specific
ontologies at the leaves. Thus, automatic interoperability
between a pair of ontologies exists to the degree that they
share a common ancestor. The language’s expressivity deter-
mines the potential richness of an ontology’s definitions. Most
languages let ontologies define class taxonomies so that it is
possible to say, for example, a car is a type of vehicle. They also
allow for the definition of properties for each class and relation-
ships between multiple classes. Some languages might also
allow the formation of more complex definitions, using axioms
from some form of logic.

Major differences exist between the leading Semantic Web
languages. The resource description framework (RDF) Schema'
is the least expressive. It is based on a semantic network

model, with special links for defining category and property
taxonomies and links for applying domain and range
constraints to properties. Simple HTML Ontology Extensions
(SHOE)? is based on a frame system but also allows Horn clause
axioms (essentially, simple if-then rules), which authors can use
to define things not possible in RDF. More so than its peers,
SHOE focuses on dealing with the problems of a dynamic, dis-
tributed environment.3 The Ontology Inference Layer (OIL),
based on a frame system augmented with description logic,
lets authors express different kinds of definitions.? The
Defense Advanced Research Projects Agency Agent Markup
Language (DAML) is a language under development with the
intent to combine the best features of RDF, SHOE, and OIL.

Although ontologies are crucial to making a Semantic Web
language work, they merely serve to standardize and provide
interpretations for Web content. To make this content machine
understandable, the Web pages must contain semantic
markup—that is, descriptions which use the terminology that
one or more ontologies define. The semantic markup might
state that a particular entity is a member of a class, an entity has
a particular property, or two entities have some relationship
between them. By committing to an ontology, the semantic
markup sanctions inferences based on the ontology definitions
and lets agents conclude things that the markup implies.

1. O. Lassila, “Web Metadata: A Matter of Semantics,” IEEE Internet
Computing, vol. 2, no. 4, July 1998, pp. 30-37.

2. S. Luke et al., “Ontology-Based Web Agents,” Proc. First Int’l Conf.
Autonomous Agents, ACM Press, New York, 1997.

3. J. Heflin and J. Hendler, “Dynamic Ontologies on the Web," Proc.
17th Nat’l Conf. Al (AAAI-2000), MIT-AAAI Press, Menlo Park,
Calif.,, 2000, pp. 443-449.

4. S.Decker et al., “Knowledge Representation on the Web,” Proc.
2000 Int’l Workshop on Description Logics (DL2000), Sun SITE
Central Europe (CEUR), Aachen, Germany, 2000, http:/sunsite.
informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-33/.
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The

Semantic Web

File WView Instance Use Ontalogy Claim Help

Instances:

Use Ontologies:

http:/fweane.C5 Umd.edusprojects/plus/SHOE!

http:itwn.cs.umd.edusprojects/plus/SHOEA Expose

http:fdweiay.cs.umd. edu/projects/plus/SHOE/aaai-paper.html
S o umd.edudprojects/plus/SHOE/aa- paper.ps

nd.eduip 3

e % Delete

Claims:

ci-dept-ontology, v.1.0

Add

cs.publicationDateime, "1935")
is-—a(me, "cs.ConferenceFaper")

cs.publicationResearchime, "httpdtwaay cs umd edu/projects/plus/SHOE™)

cz.name(me, "Reading Between the Lines: Using SHOE to Discover Implicit Knowledge from the Weh™)
cz.publicationAuthar{me, "httpAfdwsy ce umd. edususersdhefling)

cs.publicationAuthar{me, "hitpfwey.cs.umd edufusersshendler™)

cs.publicationAuthar{me, "httpdfweeny. cs umd edususerséseanl™)

M % Delete

Figure 1. The Knowledge Annotator. Here, the interface is being used to view semantic
markup about a Simple HTML Ontology Extensions (SHOE) publication.

group’sWeb site. Most used the Knowledge
Annotator, but some preferred a text editor.
Although we produced detailed markup for
aset of pages, the set istoo small to be of use
for anything but controlled demos.

Generating markup on a large
scale

For semantic markup to be really useful,
it needsto be ubiquitous, but using an author-
ing tool to generatealot of markupistedious.
Detractors of the Semantic Web language
approach often cite the difficulty of produc-
ing markup asthemain reason it won't work.
Fortunately, there are automatic and semi-
automatic approachesfor generating seman-
tic markup.

Running SHOE. Some Web pages havereg-
ular structure, with labeled fields, lists, and
tables. Often, an analyst can map these struc-
tures to an ontology and write a program to
translate portions of the Web page into the
semantic markup language. We devel oped
Running SHOE (see Figure 2), atool that
helps users specify how to extract SHOE
markup from these kinds of Web pages. The
user selects a page to markup and creates a
wrapper for it by specifying aseriesof delim-
itersthat describe how to extract interesting
information. These delimiters indicate the
start of alist (so that the program can skip
header information) and end of alist (so that
it can ignore trailing information); the start
and end of arecord; and for each field of

interest, apair of start and end delimiters.

A fundamental problem in distributed sys-
temsisknowing when markup from different
peopl e describesthe same entity. If weareto
integrate descriptions about such an entity,
we must use a common identifier (or key)
when referring to it. A URL can often serve
as this key because it identifies exactly one
Web page, which a single person or organi-
zation owns. Theregular pagesthat work best
with Running SHOE tend to have lists of
things, and each item in each list typically
contains a hyperlink to athing's homepage.
However, these hyperlinks often userelative
URLSs, which are not unique. To handle this
problem, the user can specify that a particu-
lar fieldisaURL, so that when the program
extractsthe data, it expandsall relative URLs
using the page’'s URL asabase.

After the user has specified the delimiters,
the tool can display atable with a row for
each record and a column for each field.
Irregularities in a page’'s HTML code can
often cause the program to extract fields or
records improperly; this table |ets the user
verify theresultsbefore proceeding. The next
step is to convert the table into SHOE
markup. In the top-right panel, the user can
specify ontology information and a series of
templates for SHOE classification and rela-
tion declarations.

For each classification or relation argu-
ment, the user can specify aliteral value or
referenceafield. At the user’'scommand, the
tool can theniterate through these templates

and the table of records to create a series of
SHOE statements. Using thistool, atrained
user can extract substantial markup from a
Web pagein minutes. Furthermore, because
Running SHOE lets users save and retrieve
templates, it iseasy to regenerate new SHOE
markup if the page’s content changes.

Computer science department Web sites
often have faculty, project, course, and user
lists that have ideal formats for Running
SHOE. Eachitemin eachlist containsan <A>
tag that providesthe URL of theitem’shome-
page, and this element’s content is often the
name of the entity being linked to, providing
uswith avaluefor the*name” relation. Other
properties of theinstance oftenfollow and are
delimited by punctuation, emphasis, or spe-
cia spacing. With thistool, asingle user can
create SHOE markup about the faculty,
courses, and projects of 15 major computer
science departmentsin aday.

Although there are many pages for which
Running SHOE is useful, there are other
important resources from which it cannot
extract information. An example of such asite
isCiteSeer (http://citeseer.nj.nec.com/cs), an
index of online computer science publications
that we wanted to integrate with our depart-
ment Web pages. Interaction with CiteSeer
involves issuing a query to one page, view-
ing aresults page, and then selecting aresult
to get a page about a particular publication.
This multistep process prevents Running
SHOE from extracting markup from the Cite-
Seer site.

Publication SHOE Maker. To extract SHOE
from CiteSeer, we built atool called Publi-
cation SHOE Maker. PSM issuesaquery to
get publications likely to be from a particu-
lar institution and retrieves a fixed number
of publication pages from the results. The
publication pages contain the publication’s
title, authors, year, linksto online copies, and
occasionally additional BibTex information.
Each publication page'slayout isvery simi-
lar, so PSM can extract the values of the
desired fields easily.

An important issue is how to link the
author information with the faculty instances
extracted from the department Web pages.
Fortunately, CiteSeer includes homepage
information, which HomePageSearch (http:/
hpsearch.uni-trier.de) generates for each
author. By using these URL s (as opposed to
the authors’ names), PSM can establish links
to the appropriate instances.

Running SHOE and PSM are only two
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examples of tools with which authors can
generate markup. Other extraction tools
might include machine-learning®® or natural-
language-processing techniques. As Exten-
sible Markup L anguage becomes ubiquitous
on the Web, generating wrappers will
become easier, and authors will be able to
use style sheetsto transform asimple XML
vocabulary into asemantically enriched one.
If a Web page's provider is willing to
include semantic markup, the process can be
even easier. For example, databases hold
much of the Web’s data, and scripts produce
Web pagesfrom that data. Because databases
are structured resources, an analyst can deter-
mine the semantics of a database schema,
map the schemato an ontology, and modify
the scripts that produce the Web pages to
include the appropriate semantic markup.

Integrating resources

After authors have described anumber of
diverse Web siteswith semantic markup, the
next problem isdetermining how to integrate
theinformation. Information integration sys-
tems, such asAriadne,® can be useful when
devel oping an application that combines data
from a finite number of predetermined
sources, but are less helpful when integrat-
ing information “on the fly” is necessary.
One solution mirrors the operation of con-
temporary search engines by crawling the
Web and storing the information in acentral
repository.

Exposé

ExposéisaWeb crawler that searchesfor
Web pages with SHOE markup and interns
the knowledge. A Web crawler essentially
performs a graph traversal where the nodes
areWeb pages and the arcs are the hypertext
links between them. When Exposé discovers
anew URL, it assigns the page a cost and
uses this cost to schedule when it will load
that page. Thus, the cost function determines
atraversal order. We assume SHOE pages
will tend to belocalized and interconnected.
Therefore, we use a cost function that
increases with distance from the start node,
where paths through nonSHOE pages are
more expensive than those through SHOE
pages, and paths that stay within the same
directory on the same server are cheaper than
those that do not.

Exposé parses each Web page, and if a
page references an ontology that Exposé is
unfamiliar with, it loads the ontology also.
To update its list of pages to visit, Exposé

File Wiew
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Figure 2. Running SHOE. A user can specify delimiters for recognizing fields and
records, verify that they are extracted correctly, then create templates that translate

the data into SHOE format.

identifiesall of the hypertext links, category
instances, and relation argumentswithin the
page and evaluates each new URL aswedis-
cussed. Finally, the agent stores SHOE cat-
egory and relation statements and any new
ontology information in aknowledge base.

ThisKB will determinethe system’squery
capabilities, and thus we must choose an
appropriate knowledge representation sys-
tem. Our SHOE toolsall use ageneric appli-
cation programming interfacefor interaction
with the KB, letting us easily use different
backends. We have implemented versions of
thisAPI for Parka, ahigh-performance frame
system;” XSB, a deductive database;® and
Open Knowledge Base Connectivity-com-
pliant KBs.®

By changing the back-end knowledgerep-
resentation system, we get varying trade-offs
between query response time and the degree
to which the system uses inference to com-
pute answers. For example, Parka answers
recognition queries on large KBs (contain-
ing millions of assertions) in seconds, and
when used on parallel machines, it provides
even better performance. However, Parka's
only inferential capabilities are class mem-
bership and inheritance, so it cannot use the
extra Horn clause rules that SHOE allows.
However, XSB can reason with these rules

but is not as efficient as Parka. Alternately,
the KB could be arelational or object data-
base, providing the greatest scalability and
best query response times but sacrificing the
ability to infer additional answers. Clearly,
the choice of the back-end system depends
on the application’s expected query needs.

We et Exposé crawl the various computer
science Web pages described earlier, and it
was able to gather approximately 40,000
assertions. The crawler stored these asser-
tions in both Parka and XSB KBs. Techni-
cally wedid not need aWeb crawler for our
example, because we knew the locations of
all the relevant pages a priori. However, in
anideal SemanticWeb situation, the markup
is the product of many individuals working
independently, and users could not easily
locate it without acrawler.

Querying the Semantic Web

Both general -purpose and domain-specific
query tools can access the SHOE knowledge
after it has been loaded into the KB. The
SHOE Search tool (see Figure 3) isagen-
eral-purposetool that gives users anew way
to browse the Web by letting them submit
structured queries and open documents by
clicking onthe URLsintheresults. The user
first chooses an ontology against which to
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Figure 3. SHOE Search. With this tool, a user issues a query by choosing an ontology,
choosing a category from that ontology, and then filling in desired values for proper-
ties that instances of that category might have.

issuethe query (which essentially establishes
acontext for the query).

The user then choosesthe desired object’s
classfromahierarchical list and is presented
withalist of all propertiesthat could apply to
that object. After entering desired values for
one or more of these properties, the user
issuesaquery and receivesaset of resultsin
atable. If the user double-clicks on a bind-
ing that is a URL, the corresponding Web
page will open in a new browser window.
Thus, the user can browse the Semantic Web.

If SHOE markup does not describe all of
therelevant Web pages, SHOE Search’sstan-
dard query method will not beableto return an
answer or might only return partial answers.
Therefore, we also have aWeb Search feature
that trandates the user’s query into asimilar
search engine query and submitsit to any of a
number of popular search engines. Using
SHOE Searchin thisway hastwo advantages
over using the search engines directly:

« By prompting the user for values of prop-
erties, itincreasesthe chance that the user
will provide distinguishing information for
the desired resullts.

» By automatically creating the query, it can
exploit helpful features that users often
overlook, such asquoting phrasesor using
theplussign to indicate amandatory term.

We build a query string that comprises a
quoted short name for the selected category

and, for each property value that the user
specifies, ashort phrase describing the prop-
erty. The user’s value, which we quote and
precede with aplussigntoindicatethatitis
a mandatory phrase, follows the phrase
describing the property.

With SHOE Search, a user can submit
many queries pertinent to our computer sci-
ence domain. Figure 3 showsasample query
to locate University of Washington faculty
members and their publications. The com-
puter science ontology serves as a unifying
framework for integrating information from
the university’sfaculty page with publication
information from CiteSeer. Furthermore, the
ontology letsthe query system recognize that
anyone declared a Professor is also Faculty.

Sample queries to the KB exposed one
problem with the system: Sometimesit didn’t
integrate information from adepartment Web
page and CiteSeer as expected. These sites
occasionally use different URLs to refer to
the same person. Thisisafundamental prob-
lem with using URLs as keys in a Semantic
Web system: Multiple URLs can refer to the
same Web page because of multiple host
names for a given |P address, default pages
for adirectory URL, host-dependent short-
cuts such as atilde for the users directory,
symbolic links within the host, and so on.
Additionally, some individuals might have
multiple URL s that make equally valid keys
for them, such as the URLSs of both profes-
sional and persona homepages. These prob-

lemswould be partially aleviated if the lan-
guageincluded the ability to specify identifier
equivalence—a feature absent from SHOE
but presentin DAML.

We created a search engine called Se-
mantic Search that is based on the tech-
nologies we describe. Semantic Search
usesthe SHOE Search tool asaquery inter-
face and provides utilities for authors,
including links to an ontology library, the
Knowledge Annotator, an online SHOE
validation form, and aform for submitting
new pages to the repository. We encourage
readers to add markup to their own Web
pages and submit them. Semantic Search
is available at http://www.cs.umd.edu/
proj ects/plus/SHOE/search/.

We have described a simple archi-
tecture for a Semantic Web system
that parallels the way contemporary Web
tools and search engines work. As Figure 4
shows, authors use various tools to add
markup to Web pages, and a\Web crawler dis-
covers the information and stores it in a
repository, which other tools can then query.
Generally, authors need not produce all
markup by hand; in many cases, simple
extraction tools can generate accurate mark-
up with minimal human effort. Although the
tools that comprise this architecture are
designed for use with the SHOE language,
developers can create similar tools for other
Semantic Web languages. Because any hum-
ber of tools can produce and process the
semantic markup on aWeb page, other archi-
tectures are also possible. For example,
developerscould create an agent that queries
pages directly as opposed to issuing queries
to aWeb-crawler-constructed repository.

If we achieve the Semantic Web vision,
locating useful information on the Internet
will be easier, and integrating diverse
resourceswill be simpler. Thefirst stepisto
design languages that we can use to express
explicit semantics. The next step is to
improve the systems and tools we describe,
so users can naturally provide and receive
information on the Semantic Web. Obvi-
ously, we must still overcome some obsta-
cles: We need better schemes for ensuring
interoperability between independently
developed ontologies and approaches for
determining who and what to trust. However,
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Figure 4. A simple Semantic Web system based on the tools we describe.

these challenges do not appear to be insur-
mountable, and the Semantic Web could be
just around the corner. =
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The Semantic

Web

Asresearcherscontinue
to create new languages
in the hope of developing
a Semantic\Web, they il
lack consensuson a
gandard. Theauthors
describe how Protégé-
2000—a tool for
ontology development
and knowledge
acquisition—can be
adapted for editing
modelsin different
Semantic\Web

languages.

Creating Semantic
Web Contents with
Protege-2000

Natalya F. Noy, Michael Sintek, Stefan Decker, M onica Crubézy, Ray W. Ferger son, and

Mark A. Musen, Stanford University

B ecause we can process only atiny fraction of information available on the Web,

we must turn to machinesfor help in processing and analyzing its contents. With

current technol ogy, machines cannot understand and interpret the meaning of theinfor-

mation in natural-language form, which is how most Web information is represented

today. We need a Semantic Web to expressinforma-
tion in aprecise, machine-interpretable form, so soft-
ware agents processing the same set of datasharean
understanding of what the terms describing the data
mean.t

Consequently, we've recently seen an explosion
in the number of Semantic Web languages devel-
oped. Because researchers and devel opers haven't
yet reached a consensus on which language is the
most suitable, which features each language must
have, or which syntax isthe most appropriate, we are
likely to see even more languages emerge. We need
to develop toolsthat will let us experiment with these
new languages so we can compare their expressive-
ness and features, change language specifications,
and select a suitable language for a specific task.

Inthisarticle, we describe Protégé-2000, agraph-
ical tool for ontology editing and knowledge acqui-
sition that we can adapt to enable conceptual model-
ing with new and evolving Semantic Web languages.
Protégé-2000 | ets us think about domain modelsat a
conceptual level without having to know the syntax
of the language ultimately used on the Web. We can
concentrate on the concepts and relationshipsin the
domain and the facts about them that we need to
express. For example, if we are developing an ontol-
ogy of wines, food, and appropriate wine-food com-
binations, we can focus on Bordeaux and lamb
instead of markup tags and correct syntax.

Naturally, designing anew tool specifically for a
new language could be better than adapting an exist-
ing tool. We can offer several reasons, however, for

adapting an existing tool at the stage where no sin-
gle language has emerged as the winner. First, we
can experiment with emerging languages without
committing enormous amounts of resourcesto cre-
ating tools that are custom-tailored for these lan-
guages—only to decide later that the languages are
not suitable. Second, Protégé-2000 already provides
considerable functionality that anew tool will need
to replicate, both at the modeling and user-interface
levels. Third, using different customizations of the
same tool to edit ontologies in different languages
gives us most of the translation among the models
inthelanguages“for free” Trand ating amodel from
one language to another becomes as easy as select-
inga“saveas...” item from amenu.

Semantic Web languages

Al researchers have used ontologies for along
time to express formally a shared understanding of
information. An ontology isan explicit specification
of the conceptsin adomain and the relations among
them, which providesaformal vocabulary for infor-
mation exchange. Specific instances of the concepts
defined in the ontol ogies—instance data—paired
with ontol ogies constitute the basis of the Semantic
Web. In recent experimentsto prototype the Seman-
tic Web, membersof different communitieswith dif-
ferent backgrounds and goals in mind have created
amultitude of languagesfor representing ontologies
and instance dataon the Web (see Tablel). Typically,
a Semantic Web language for describing ontologies
and instance datacontains a hierarchical description
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Table 1. A selection of Semantic Web languages.

Language Description URL

XOL XML-based ontology-exchange language www.ai.sri.com/~pkarp/xol

Topic Maps IS0 standard for describing knowledge structures www.topicmaps.org

SHOE Simple HTML Ontology Extensions www.cs.umd.edu/projects/plus/SHOE
RDF and Resource description framework and www.w3.0rg/RDF

RDFS RDF Schema

DAML+OIL DARPA Agent Markup Language + www.daml.org

Ontology Inference Layer

of important conceptsin adomain (classes).
Individuals in the domain are instances of
these classes, and properties (slots) of each
classdescribe variousfeatures and attributes
of the concept. Logical statements describe
relations among concepts. For example, con-
sider an ontology describing wines, food, and
appropriate wine-food combinations. Some
of the classes describing thisdomain are Wine,
Wineries, and different types of Food. Some
propertiesof the Wine classincludethewine's
flavor, body, sugar level, and the winery that pro-
duced it.

These notions are present in many Seman-
tic Web languages existing today including
SHOE, Topic Maps, XOL, RDF and RDFS,
and DAML+OIL.

The SHOE (Simple HTML Ontology
Extensions) language, devel oped at the Uni-
versity of Maryland, introduces primitivesto
define ontology and instance data on Web
pages. Classesare called categoriesin SHOE.
Categoriescongtituteasimpleis-a hierarchy,
and slots are binary relations. SHOE also
allowsrelationsamong instances or instances
and data to have any number of arguments
(not just binary relations). Horn clauses
expressintensional definitionsin SHOE.

The Hytime community developed Topic
Maps, a recent ISO standard (ISO/IEC
13250). Topic Maps aim to annotate docu-
ments with conceptual information. Topics
correspond to classes in other ontology lan-
guages and can be linked to documents. Top-
icsareinstances of Topic Types (other topics),
which can berelated to one another with Asso-
ciations. Associations correspond closely to
slots in other ontology languages. Associa-
tions belong to Association Types, which are
again Topics. Topic Maps do not have a spe-
cialized primitive for representing instances.
Any instance of atopic type can act asatopic
typeitself.

The bioinformatics community designed
XOL for the exchange of ontologies in the
field of bioinformatics. It evolved to become
ageneral language for interchange of ontol-
ogy and instance data. Being an interchange
language, XOL includes primitivesfoundin
many knowledge-representation systems,
object databases, and relational databases. It
provides meansto define classes, aclasshier-
archy, slots, facets, and instances.

RDF (resource description framework)
provides agraph-based data model, consist-
ing of nodes and edges. Nodes correspond to

objects or resources and the edges to prop-
erties of these objects. The labels on the
nodes and edges are Uniform Resource I den-
tifiers (URIs). However, RDF itself does not
defineany primitivesfor creating ontologies.
Itisthe basisfor several other ontol ogy-def-
inition languages such as RDFS and
DAML+OIL.

RDF Schema? defines the primitives for
creating ontologies. Figure 1 showsan exam-
ple of a graph representing our ontology of
wines as an RDFS. In RDFS, there are
classes of concepts, which constitute a hier-
archy with multiple inheritance. For exam-
ple, the class Wine is a subclass of the class
Drink. Classes typically have instances (for
example, a specific red wine is an instance
of the Red Wine class) and aresource can bean
instance of more than one class (for exam-
ple, Romariz Port is an instance of both the Red
Wine and the Dessert Wine classes). Resources
have properties associated with them (for
example, Wine hasflavor). Properties describe
attributes of a resource or a relation of a
resource to another resource. RDFS defines
aproperty’s domain—resources that can be
subjects of the property—and a property’s
range—resources that can be objects of the

rdf:type

d:White_wine

rdfs:subClassOf

rdfs:Class

rdf:Property

rdfs:range

d:Winery

Figure 1. An RDF Schema graph representing the Wine ontology.
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Figure 2. A snapshot of the ontology representing wines. The tree on the left represents a class hierarchy. The form on the right

shows the definition of the Wine class.

property. For example, the property maker
may have a class Wine as its domain and a
class Winery asitsrange.

DAML+OIL (DARPA Agent Markup lan-
guage + Ontology Inference Layer)? takes a
different approach to defining classes and
instances. In addition to defining classes and
instances declaratively, DAML+OIL and
other description-logics languages et us cre-
ateintensional classdefinitionsusing Boolean
expressions and specify necessary, or neces-
sary and sufficient, conditionsfor classmem-
bership. These languages rely on inference
engines (classifiers) to compute a class hier-
archy and to determine class membership of
instances based on the properties of classes
and instances. For example, we can define a
class of Bordeaux wines as “aclass of wines
produced by awinery inthe Bordeaux region.”
In DAML+OIL, we can aso specify global
properties of classes and dots. For example,
we can say that the location ot istransitive: if
awinery islocated in the Bordeauix region and
theBordeaux regionislocated in France, then
the winery is in France. We will describe
DAML+OIL in more detail later.

We can see from this discussion that
Semantic Web languages for representing
ontologies and instance data have many fea-
turesin common. At the sametime, thereare
significant differences stemming from dif-
ferent design goals for the languages. In
adapting Protégé-2000 as an editor for these
languages, we build on the similarities
among them and custom-tailor the tool to
account for theindividual differences.

Protégé-2000

For many years now, experts in domains
such as medicine and manufacturing have
used Protégé-2000 for domain modeling. We
show not only how we adapt Protégé-2000
to the new world of the Semantic Web—
reusing its user interface, internal represen-
tation, and framework—Dbut also how our
changes enable conceptual modeling with the
new Semantic Web languages.

Protégé-2000 is highly customizable,
which makesits adaptation asan editor for a
new language faster than creating anew edi-
tor from scratch. The following features
make this customization possible:

* An extensible knowledge model. We can
redefine declaratively the representational
primitives the system uses.

« Acustomizable output file format. We can
implement Protégé-2000 components that
translate from the Protégé-2000 internal
representation to a text representation in
any formal language.

¢ A customizable user interface. We can
replace Protégé-2000 user-interface com-
ponents for displaying and acquiring data
with new componentsthat fit the new lan-
guage better.

¢ An extensible architecture that enables
integration with other applications. We
can connect Protégé-2000 directly to
external semantic modules, such as spe-
cific reasoning engines operating on the
modelsin the new language.

Protégé-2000 knowledge model
Protégé-2000's representational primi-
tives—the elements of its knowledge
model4—are very similar to those of the
Semantic Web languages that we described
earlier. Protégé-2000 has classes, instances
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of these classes, slots representing attributes
of classes and instances, and facets express-
ing additional information about slots.

Figure 2 shows an example definition of a
class, whichispart of an ontology describing
wines, food, and desirable wine-food com-
binations. In the figure, the tree on the left
representsaclass hierarchy. The class of Pail-
lac wines, for instance, is a subclass of the
class of Médoc wines. In other words, each
Pavillac wineis aMédoc wine. The class of Médoc
winesis, in turn, a subclass of Red Bordeaux
winesand so on. Theformontherightin Fig-
ure 2 represents the definition of the selected
class (Wine). There is the name of the class,
its documentation, a list of possible con-
straints, and definitions of slots that the
instances of thisclasswill have. Instances of
the classWine will have slots describing their
flavor, body, sugar level, the winery that produced
the wine, and so on.

Theformin Figure 3 displays an instance
of the class Pavillac representing Chiteau Lofite
Rothschild Pavillac, and the fields display the slot
valuesfor that instance. Therefore, we know
that Chéteau L afite Rothschild Pavillac hasa
full body and strong flavor among other
properties. Both the class-definition forms
(the right-hand side in Figure 2) and the
instance-definition forms (Figure 3) are
knowledge-acquisition forms in Protégé-
2000. The fields on the knowledge-acquisi-
tion forms correspond to slot values, and we
define classesand instancesby filling in slot
values in these fields. Protégé-2000 gener-
atesknowledge-acquisition forms automati-
cally based on the types of the slots and
restrictions on their values.

The Protégé-2000 user interface (Figure
2) consists of several tabsfor editing differ-
ent elements of a knowledge base and cus-
tom tailoring the layout of the knowledge-
acquisition forms, such as the forms in
Figures 2 and 3. The Classes tab defines
classes and slots, and the Instances tab
acquires specific instances. The Forms tab
allows us to change the layout and the con-
tents of the knowledge-acquisition forms.

We can customize almost al of the Pro-
tégé-2000 features we have described to fit
aspecific domain or task by

» changing declaratively the standard class
and slot definitions;

« changing the content and the layout of the
knowledge-acquisition forms; and

* developing plug-ins using the Protégé-
2000 application-programming interface.

Let’slook at how we can customize Pro-
tégé-2000 and then see how we can use this
flexibility to create Protégé-based editorsfor
new Semantic Web languages.

Changing the notion of classes
and slots

The definition of the Wine classin Figure 2
isastandard class definition in Protégé-2000,
with a class name, documentation, list of
dlots, and so on. What if we need to add more
attributesto aclass definition, or change how
aclasslooks, or changethe default definition
of aclass in the system? For instance, we
might want to add alist of afew best winer-
ies for each type of wine in the hierarchy.
Such alist is a property of aclass (such as
Pavillac wines) rather than a property of spe-
cific instances of the class (such as Chéteau
Lafite Rothschild Pavillac). The list of the best
wineriesfor aclassisnot inherited by itssub-
classes: The best wineries producing red Bor-
deaux are not necessarily the same asthe best
Médoc or Pauillac wineries (although, they
may overlap). Therefore, this list must
become a part of aclass definition the same
way asdocumentation isapart of aclassdef-
inition. The Protégé-2000 metaclass archi-
tecture lets us do just that.*°

Metaclasses are templates for classesin
the same way that classes are templates for
instances. We can define our own meta-
classesand effectively change adefinition of
what aclassis, in the same way we would
defineanew class. The default Protégé-2000
template (the standard metacl ass) definesthe
fieldsthat we seein Figure 2. We can extend
declaratively this standard definition of what

Name

‘Chateau Lafite Rothschild Pauillac

g% Chateau Lafite Rothechild Pauillac [Pauillac)

a class is with new fields of any type by
defining a new metaclass, which simply
becomes a part of the knowledge base. Fig-
ure 4 shows a definition of the Red Bordeaux
classthat includesthe additional field with a
list of the best Bordeaux wineries.

Similarly, we can define new metaslots as
user-defined templates for new dots. If slot
definitionsin our system must havefieldsin
addition to the ones that Protégé-2000 has,
we simply define new templates where we
describe these new fields.

Custom-tailoring slot widgets for
value acquisition

Thelook and behavior of thefieldson the
knowledge-acquisition forms in Figures 2
and 3 depend on the types of the values that
thefields cantake. A field for astring value,
such as aclass name, has asimple text win-
dow. A field that contains alist of complex
valuesis alist box with buttons to add and
remove values and to create new values.
Thesefieldsare called ot widgets. They not
only display the values appropriately, but also
help to ensure that the values are correct
based on the slot definitionsin the ontology.
For example, the maker of awine must be a
winery—an instance of the Winery class. The
slot widget for the maker slot in Figure 3 lets
us set the value only to a Winery instance.

Developers can extend Protégé-2000 by
implementing their own slot widgetsthat are
tailored to acquire and verify particular kinds
of values. Suppose we wanted to be more
precise about the sugar level in wine and to
mark it on ascale rather than simply choos-
ing among three values—dry, sweet, or off-dry.

ok NEED

<I» Chateau Lafite Rothschild

el

Grape

i Cabernet Sauvignon grape

Boky Color

FuLL - |

Flavor Tannin Level

| STRONG ~| |MODERATE  ~
Sugar

|DRY |

Figure 3. An instance of the class Pauillic representing the (hteau Lafite Rothschild Pavillac. This
wine has a full body, a sirong flavor, and a moderate tannin level, among other properties.
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S| name String single
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= bz e s o e e

Figure 4. A class definition that uses a nonstandard template. We added the best wineries slot to the standard class-definition template.

We could store the value as a number in the
sugar slot. We could use a slot widget that
would let usselect thevalue on adlider rather
than enter anumber (see Figure 5). Whenwe
customize knowledge-acquisition forms, we
choose not only the layout of the fields on
the form, but also the slot widgets that must
be used for different fields. The slot widgets
we choose do not usually affect the contents
of theknowledge baseitself, but their use can
makethelook and feel of thetool much more
suitablefor aparticular domain or language.
Slot widgetsaso can help ensuretheinternal
consistency of a knowledge base by check-
ing, for example, that an integer value that
we enter is between the allowed maximum
and minimum for that slot.

Using a back-end plug-in to
generate the right output

When we develop adomain model in Pro-
tégé-2000, we do not need to think about the
specificfileformat that Protégé-2000 will use

to save our work. We think about our domain
at the conceptudl level and create classes, dots,
facets, and instances using the graphical user
interface. Protégé-2000 then savesthe result-
ing domain models in its own file format.
Developers can change thisfile format in the
sameway they plugin dot widgets. Back-end
plug-inslet devel opers substitute the Protégé-
2000 text file format with any other file for-
mat. For example, suppose we wanted to use
XML to publish the wine ontology and other
domain model swe create using Protégé-2000.
We would then need to create an XML back
end that substitutes filesin the Protégé-2000
format with thefilesin XML. A back end cre-
ates a mapping between the in-memory rep-
resentation of aProtégé-2000 knowledge base
and thefile output in therequired format. The
back end also enables usto import thefilesin
that format into Protégé-2000. The new file
format hasthe same status asthe Protégé-2000
native file format, and the users can choose
either format for their files.

Editing Semantic Web languages
with Protégé-2000

Armed with the arsenal of toolsto custom-
tailor Protégé-2000 quickly and easily, let’s
look at what isinvolved in creating a Protégé-
2000 editor for anew Semantic Web language.
We will use the Protégé-RDFS editor devel-
oped in our laboratory as an example, but the
ideas are the same for any new language.

We start creating a Protégé-2000 editor for
our new language by determining the differ-
ences between the knowledge model s of the
two languages: the knowledge model of Pro-
tégé-2000 and the knowledge model under-
lying our language of choice. Wethen decide
which of the avail able tool s—metacl asses,
custom user-interface components, or acus-
tom back end—we will use to reconcile the
differences or to hide them from the user.

In practice, the overlap between the knowl -
edge models underlying the Semantic Web
languages available today is very large. The
models might use different terminology for
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the same notion (for example, slotsin Pro-
tégé-2000 and properties in RDFS). How-
ever, the structure of the concepts, the under-
lying semantics, and therestrictionsare often
similar.

When we compare the two knowledge
models, we identify four categories of con-
cepts (see Figure 6):

1. Conceptsthat are exactly the sameinthe
two languages (possibly with different
names). Usually, classes, inheritance,
ingtances, dotsaspropertiesof classesand
instances, and many of thed ot retrictions
fall into this category.

2. Conceptsthat arethe same but expressed
differently in the two languages. For
example, Protégé-2000 associates slots
with classesby attaching aslot to aclass.
RDFS defines essentially the same rela-
tionship by defining adomain of aproperty.

3. Conceptsin our language of choice that
do not have an equivalent in Protégé-2000.
For example, RDFS dlowsan instance to
have more than onetype, whereasin Pro-
tégé-2000 each instance hasauniquedirect
type.

4. Conceptsthat Protégé-2000 supportsand
our language of choice doesnot. For exam-
ple, Protégé-2000 alows a slot to have

Name

E3 Chateau Lafite Rothschild Pauillac (Pauillac) _ (O x|

Maker

[v]e]

|Chateau Lafite Rothschild Pauillac

| <I> Chateau Lafite Rothschild

vic]

<I> Cahernet Sauvignon grape

Grape

Body Color
|FULL |
Flavor Tannin Level
| STRONG ~| |MODERATE ~
Sugar

N

A slider widget for
numeric values

<

Al

[ »

Figure 5. Changing a slot widget. We use a slider instead of a simple field to acquire

numeric values for the sugar level.

morethan oneallowed classfor itsvalues,
whereas the range of aproperty in RDFS
islimitedto asingleclass.

Naturally, we can express al the features
of our languagethat fall into thefirst category
directly in Protégé-2000. We ded with thedif-
ferencesin the other three categoriesby defin-
ing appropriate metaclasses and metad otsand
by resolving the remaining changes in the
back end. We hide the differences from the
user behind custom-tailored slot widgets.

The second item on the list, the concepts
that do not have adirect equivalent in Protégé-
2000 but that can be mapped to native Pro-
tégé-2000 concepts, deserves a specia dis-
cussion. Consider domains of propertiesin
RDFS (rdfs:domain). A domain specifiesaclass
onwhich aproperty might be used. For exam-
ple, the domain of theflavor property isthe Wine
class. Protégé-2000 dlots are similar to prop-
ertiesin RDFS. Attaching adot to aclassin
Protégé-2000 al so specifiesthat aslot can be
used with that class. For example, theflavor slot

Protégé-2000

3

The new language

/

\

(1) Concepts
that are identical
semantically

(2) Concepts that can be
encoded as native Protégé
concepts

(3) Concepts that do not
have an equivalent
in native Protégé

(4) Concepts in Protégé that
do not have an equivalent
in the language

Use Protégé

Modeling concepts directly

Use native
Protégé concepts

Use metaclasses and
metaslots to encode
the information

User interface

Use custom labels and
slot widgets to hide
the differences

Use custom slot widgets
to facilitate
knowledge entry

Use knowledge-acquisition
forms to disable
the features

Map directly into
the model required
by the language

Back end

Map between the model in
Protégé and the model
required by the language

Map between the model in
Protégé and the model
required by the language

Define the means of storing
the information in the
language format

Figure 6. Comparing the knowledge models of Protégé-2000 and a new Semantic Web language.
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Table 2. Creating the Protégé-based RDFS editor.

Category (1) Concepts in RDFS

to Protégé concepts

Modeling

rdfs:subClassOf =
subclass of

rdf:type = instance of

rdf:Property =
“STANDARD-SLOT

rdfs:subPropertyOf =
subslot of

rdfs:Resource = :THING

rdf:comment =
:DOCUMENTATION

User Custom labels on class

interface  and slots forms (for
example, “Properties”
and “Comment”)

Back end  Map Protégé concepts

directly to RDFS concepts

(2) Concepts in RDFS
that are (nearly) identical that can be encoded
as native Protégé concepts

rdfs:Class = :stanparD-cLAss Do not use explicit rdfs:domain and
rdfs:range for properties; rdfs:

domain encoded as slot attachment;
rdfs:range encoded as allowed class

(3) Concepts in RDFS
that do not have an
equivalent in native Protégé

rdfs:Class is a default for
metaclass, and rdf:Property is a
default metaslot; add properties
rdfs:isDefinedBy, rdfs:seeAlso

(4) Concepts in Protégé
that do not have
an equivalent in RDFS

Cardinality, inverse slot,
and default value facets;
multiple allowed classes
for a slot

Instance-typed slots

Translate slot attachments
as rdfs:domain for
properties and allowed

as core slots; add

rdfs:ConstraintProperty and
rdfs:ConstraintResource as
core classes; multiple types of

an instance

Plug-in URI slot widget for
validating URI-type slots.

types.

classes as rdfs:range

isattached to the Wine class. We havetwo ways
to encodethe RDFSdomain informationina
Protégé-RDFS editor. First, we can add a
domain dlot to atemplate (metasl ot) that wewill
use for all our slots. Then, afield for domain
will appear on each form for aslot, and we
will fill itinthere. Second, we can simply use
the native Protégé-2000 notion of slot attach-
ment and trandl ate the attachments of dotsto
classesinto domainsof propertiesin the back
end. The second solution lets us use the Pro-
tégé-2000 user interfacedirectly and hidesthe
features of a specific language used to store
theinformation.

Wefind it extremely beneficia to adopt the
paradigm of using the native Protégé-2000 fea-
tures wherever possible and of resorting to
additional definitions, such asmetaclassesand
metaslots, only when absolutely necessary.
This approach maximally facilitates the
exchange of domain models among different
languages, which we edit (or will edit) with
Protégé-2000. As new languages emerge and
weexperiment with them, theknowledge mod-
€els underlying these languages will undoubt-
edly overlap. By encoding asmuch aspossible
inthe native Protégé-2000 structuresand leav-
ing part of thetrandation between the Protégé-
2000 model and the language to the back end,
we maximize the amount of information that
we will preserve by smply loading a knowl-
edge base in one language supported by Pro-
tégé-2000 and saving it to another language.
Even though there would often be some parts

of these models that will not be part of this
overlap, we are maximizing the amount of
information that gets ported among modelsin
different languagesfor free.

Having generated the four groups of con-
cepts after comparing the two knowledge
models (see Figure 6), we can reconcile the
differences using

1. modeling—by changing default defini-
tionsof classesand slotsat the modeling
level;

2. the user interface—by developing spe-
cialized user-interface components; and

3. theback end—by implementing the new
back end that will translate between the
domain model in Protégé-2000 and the
domain model in our language of choice.

Let'slook at how each of these three lev-
elsworks using the development of a Pro-
tégé-based RDFS editor as an example (see
Table 2 for asummary of the entire process).

The modeling level

We start by determining which conceptsin
our language of choiceareidentical to Protégé-
2000 conceptsor that can be represented using
the native Protégé-2000 concepts. We use the
native Protégé-2000 as ameansto model this
group of concepts, even if it is not how these
elements are directly expressed in our lan-
guage. We then define the new templates for
classand dot definitionsif necessary.

On import, create new class
as a subclass of the multiple

Disable default-value and
inverse-slot widgets on
slot forms.

Write out extra facet information
as Protégé-specific properties
on properties. If a slot has
multiple allowed classes, create
a new class for rdfs:range

value. On import, do the reverse.

Consider, for example, the two attrib-
utes—rdfs:seeAlso and rdfs:isDefinedBy—that are
associated with each class and each property
in RDFS. The rdfs:seeAlso property specifies
another resource containing information
about the subject resource, and the rdfs:isDe-
finedBy property indicates the resource defin-
ing the subject resource. The values of these
properties are other resources or URIs point-
ing to other resources. We must add thesetwo
fields that the Protégé-2000 itself does not
haveto each classand ot formin our knowl-
edge base. To add these fields, we define a
new metaclass that will serve as atemplate
for RDFS classes. Thismetaclassis, in fact,
equivalent to the RDFS class rdfs:Class. Figure
7 shows the definition of rdfs:Class with the new
template slotsthat will appear on each class
form that uses thistemplate.

The user-interface level

When creating a Protégé-based editor for a
new language, we can change both the behav-
ior and the look and feel of the knowledge-
acquisition forms to reflect the terminology
and thefeatures of thelanguage. First, we can
changethelabelson theforms—the simplest
type of customization. For example, we can
easily replace Protégé's “Template slots”
label in a class definition with the RDFS
“Properties’ label to give theform an RDFS
look. Other elements that we can easily con-
figure by manipulating the forms include
whether or not afield should bevisibleto the
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Figure 7. A template definition for classes in RDFS. The class rdfs:Cluss inherits most of the slots from the standard class template, but
the two slots at the top of the list of properties are the ones that we defined for RDFS.

user, the buttonson thefields, the position and
size of the fields, and the slot widgets to be
used for each field. We perform this configu-
ration entirely in the Protégé-2000 Formstab
and not in the programming code.

We could also develop our own slot-wid-
get plug-insto allow editing and verification
of elementsthat are unique to our language.
For example, a URI widget in the Protégé-
RDF editor can validate that the user has
entered a correct URI or even take the user
to the corresponding Web page.

Disabling fieldsfor some slotson theform
prevents the user from exercising Protégé-
2000 featuresthat the particular Semantic Web
language does not support. For example, we
can disable the field for entering default slot
values in the Protégé-RDFS editor, because
RDFS does not support default values.

The back-end level

Whatever the differences between Protégé-
2000 and our language that we could not
resolve at the modeling and user-interface lev-
els, we will need to reconcile in the module
that saves the internal Protégé-2000 repre-

sentation in therequired output file format—
the back-end plug-in. The back-end plug-in

1. savesaProtégé-2000 knowledge basein
afileformat that conformsto the syntax
of our language of choice;

2. maps the elements of the Protégé-2000
knowledge base that do not have adirect
equivaent in our language to the appro-
priate set of elementsin thislanguage; and

3. importsdomain modelsin thislanguage
that were devel oped elsewhere for edit-
ing in Protégé-2000.

Usually, when developers define a lan-
guagewith anew syntax, they quickly imple-
ment a parser that allows devel opersto read
and write files in that language’s syntax.
Many of the new languages are extensions of
XML or RDF, and thus we can often usethe
existing XML and RDF parsersto take care
of the syntactic part of adapting to the new
language.

In RDFS, the back end must deal with a
number of issues that we did not resolve at
themodeling level or inthe user interface. We

might have resolved some of these issues
there, but it would have unnecessarily com-
plicated the editor for the user. For example,
instances in Protégé-2000 are of a single
class, whereas in RDFS they can be direct
instances of several classes (for example, they
have several direct types). Becausethe RDFS
model is more general, we have no problem
in saving a Protégé-2000 knowledge basein
RDFS. However, when we import RDFS
instance datainto Protégé-2000, we must deal
with instances that have several direct types.
Suppose we have aclassfor red winesand a
classfor dessert wines. We have Romariz Port as
an instance of both classesin RDFS. When
we import this RDFSinstance datainto Pro-
tégé-2000, the back end can cresteanew class
that is a subclass of both classes (for exam-
ple, denoting a concept of dessert red wines)
and make the Romariz Port instance an instance
of thisnew class. We can record thetwo orig-
inal classes of Romariz Port as additional slots
on the newly created class (as shown in Fig-
ure4). When saving back to RDFS, the back
end can extract the information fromthissot,
thus preserving the original model.
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Figure 8. The definition for the spicy-red-meat-course class in the Protégé-OIL editor. In addition to the standard fields, such as those
shown in Figure 2), we have OIL-specific fields such as hasPropertyResriction and subClassOf for specifying complex class expressions.
These slots use the OIL-specific slot widget to display expressions. The tree on the left contains the auxiliary core classes we

defined for OIL.

Any user-defined back end has the same
status as all the other back ends, including
the ones that are part of the core Protégé-
2000 system: it can be used as a storage for-
mat for Protégé-2000 knowledge bases.
Therefore, there is another, no less impor-
tant, goal of a back-end plug-in: to ensure
that when we create aknowledge basein Pro-
tégé-2000, saveit using the back-end plug-in,
and load it again, we have preserved all the
information. Hence, we must find a way to
store the elements that Protégé-2000 sup-
ports, but that our language of choice does
not. Most Semantic Web languages are flex-
ible enough to easily store thisinformation.
For example, in RDFS, we simply add new
Protégé-specific propertiesto slotsto record
default values, which RDFS does not have.
These properties have no meaning to another
RDFS agent, but if we read the knowledge

base back in Protégé-2000, we will have the
default values preserved.

Creating new tabs to include
other semantic modules

In addition to creating a Protégé-based
editor for a new Semantic Web language,
developers can plug in other applicationsin
the knowledge-base—editing environment. In
addition to the standard tabs that constitute
the Protégé-2000 user interface (Figures 2
and 4), devel opers can create tab plug-insin
the sameway they can plug in new slot wid-
gets. These tabs can include arbitrary appli-
cations that benefit from the live connection
to the knowledge base. These applications
then become an integral part of the knowl-
edge-base—editing environment.

Consider our wine example again. Having
created a knowledge base of wines and food

and the appropriate combinations, we might
want to build an application that produces
winesuggestionsfor ameal courseinarestau-
rant. Such an application would actively use
the data in the knowledge base but it would
a soimplement itsown reasoning mechanism
to analyze suggestions. We canimplement this
wine-selection application asatab plug-in.

In practical terms, atab plug-inisasepa-
rate application, a developer’'s own user-
interface space from which the devel oper can
connect to, query, and update the current Pro-
tégé-2000 knowledge base.

In the realm of the Semantic Web, a tab
can include any applicationsthat would help
us acquire or annotate the knowledge base.
Such applications can

» enable direct annotation of HTML pages
with semantic elements;
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* provide connection to external reasoning
and inference resources;

 acquire the semantic data automatically
from text; and

 present agraphical view of aset of inter-
related resources.

Using Protégé to edit DANIL+OIL

DAML+OIL, the Semantic Web language
that was heavily inspired by research in
description logics (DL ), alows more types
of concept definitionsin ontol ogiesthan Pro-
tégé-2000 and RDFS do. The DL-inspired
languages usually include thefollowing fea-
turesin addition to the onesfound in thetra-
ditional frame-based languages:

 We can specify not only necessary but also
sufficient conditionsfor class membership.
For example, if awineis produced by a
winery from the Bordeaux region, it isa
Bordeaux wine.

» Wecan usearbitrary Boolean expressions
in class and slot definitions to specify
superclasses of aclass, domain and range
of aslot, and so on. For example, a spicy
red-meat course must contain red meat and
must contain food that isitself spicy or
food containing something that is spicy.

» We can specify global slot properties. For
example, location is atransitive property: if
the Chéteau Lafite Rothschild winery isin the Bor-
deaux region and the Bordeaux region isin
France, then the Chiiteau Lafite Rothschild winery
isin France.

» We can define global axiomsthat express
additional propertiesof classes. For exam-
ple, we can say that the classification of
the class of al wines into the subclasses
for red, white, and rosé winesis digjoint:
Each instance of the Wine class belongs
only to one of these subclasses.

We have adapted Protégé-2000 to work as
an OIL editor. (The OIL languageis a pre-
cursor for DAML+OIL.) In doing so, wefol-
lowed the same steps we described in creat-
ing the Protégé-based RDFS editor. In
addition, we haveintegrated external services
for OIL ontologies into Protégé-2000. Inte-
grating DAML+OIL would require nearly
identical steps.

The modeling level

We introduce the new class and dlot tem-
plates, OilClass and OilProperty, to specify com-
plex class and slot definitions. Asaresult, a

class template, for example, acquires these
three new fields (see Figure 8):

1. type—to specify whether the class defin-
ition contains only necessary or both
necessary and sufficient conditions for
class membership;

2. hasPropertyRestriction—to specify complex
expressionsfor slot restrictions; and

3. subclassOf—to specify complex expres-
sions describing the position of the class
in the class hierarchy.

Tointegrate OIL into Protégé-2000, we used
the namesfrom the RDFS serialization syntax
of (Standard-)OIL and not the plan ASCI| ver-
sion. Seewww.ontoknowledge.org/oil/ for the
various syntaxes and versions.

Just as for RDFS, we use as many native
Protégé-2000 mechanismsfor modeling OIL
ontologies as possible. If anew classissim-
ply asubclass of several existing classesin
the hierarchy, we use Protégé' s own notion of
subclasses by placing the new class where it
belongsinthehierarchy. However, if asuper-
class definition requires boolean expres-
sions—something Protégé-2000 does not
allow—we use the subClassOf field that we see
on the template. Even though Protégé-2000
does not understand the semantics of this
field, we can represent this additional super-
classinformation declaratively, and then pass
itto aclassifier or simply savein OIL.

We use the hasPropertyRestriction field when we
need complex expressions or when we need
to specify existential dot constraints: Protégé-
2000 allows definition of value-type con-
straintson dots (“All values of thisslot must
beinstances of thisclass’). OIL alowsexis-
tentia dot constraintsin addition to thevalue-
type constraints (“ One value of thisslot must
come from this class and one value must
comefromthat class’). We build the complex
expressions declaratively by creating
instances of core auxiliary classes. We can
see some of these core classesin thetreein
Figure 8. In the example, we specify a sub-
class of ameal-course, spicy-red-meat-course, which
we define as “a course that must contain red
mesat and must contain food that isitself spicy
or food containing something that is spicy.”

Even though Protégé-2000 does not sup-
port some of the semanticsthat OIL has, we
can still encode the additional information
declaratively. Protégé-2000 will “ignore” the
information, but it will be able to passit on
toaclassifier or toencodeitin OIL sothat an
OIL agent can understand it.

The user-interface level

Apart from changing labels and rearrang-
ing fields on the forms for the OilClass and Oil-
Property templates, we created anew slot widget
to alow easier editing of nested expressions
such as the ones representing “food that is
itself spicy or food containing something that
isspicy” in Figure 8. This widget augments
the standard Protégé-2000 widget for select-
ing and creating values for instance-valued
dotswith adisplay of the nested expressions
inamorepractical form. A further extension
of this simple but effective slot widget can
include a full context-sensitive, validating
expression editor.

The back-end level

We describe herean OIL back end that pro-
duces the RDFS output for OIL. Therefore,
we can build largely on the existing RDFS
back end. In defining the classand slot names
and the structure of the auxiliary core classes
inthe OIL editor, we have mainly adhered to
the RDFS specification of OIL. As aresullt,
just using the RDFS back end, described ear-
lier, givesusan output that is very close but
not identical to the RDFS OIL output that we
need. Thus, to create the OIL back end, we
started with the existing RDFS back end. We
adapted it to add the parts of definitions spec-
ified by the native Protégé-2000 meansto the
complex class expressions.

The OIL back end encodes the concepts
that Protégé-2000 has and OIL does not
(global cardinality restrictions on slots, for
example) by defining additional statements
in a Protégé namespace. An OIL agent will
not understand these statements and will
ignore them, but Protégé-2000 will beableto
extract the necessary information from them.

Because many Semantic Web languages
areintheir infancy and already comein many
different versions, there is an alternative
approach to developing specific back ends
for each of these versions. We can create a
general RDF back end for Protégé-2000 and
then use a declarative and easily adaptable
RDF transformation language for generating
the desired outputs. Some research groups
are currently investigating such a back end
and the corresponding RDF transformation
(and query) language.

Accessing external services through
a tab plug-in

The DL languages, such as OIL and
DAML+OIL, traditionally rely on an infer-
ence component—a classifier—to find the
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Figure 9. Tab plug-in for classification of OIL ontologies. On the right, we see a hierarchy of meal courses before classification. The
middle pane shows interactions with the FaCT classifier. The hierarchy on the right is the one that the classifier computed.

right position of a classin the class hierar-
chy and to determine which class definitions
are unsatisfiable (cannot have any instances).
Therefore, it is crucia to have a connection
toaDL classifier aspart of the environment
for editing OIL and DAML+OIL ontologies.
Having created a set of definitions, we can
invoke the classifier to determine how the
evolving class hierarchy looks. We can see
the effects that changes in class definitions
will have on the evolving hierarchy. We can
immediately check if logical expressions
defining aclass contradict one another mak-
ing the class unsatisfiable.

Therefore, in order to create afull-fledged
Protégé-based OIL editor, we need to con-
nect Protégé-2000 to such an inference com-
ponent and present the resultsto the user. We
implemented this connection as a Protégé-
2000 tab plug-in.

Figure 9 showsthe OIL tabin action. Ini-
tially, the class hierarchy hasthe various meal-
course subclasses as siblings. In addition, we
specify that an oyster-shellfish-course is a meal-
course that has ovstess as the valuefor itsroop Slot;

a shellfish-course is a meal-course that has shellfish
asitsfood, and so on. Wethen usethe OIL tab
to connect to a DL classifier, FaCT,® and to
haveit rearrange the class hierarchy accord-
ing to the class definitions. In the resulting
hierarchy, the oyster-shellfish-course class, for
example, is correctly classified as being a
subclass of the shellfish-course class.

With the advent of the Semantic Web,
the current network of online
resources is expanding from a set of static
documents designed mainly for human con-
sumption to a new Web of dynamic docu-
ments, services, and devices, which software
agents will be able to understand. Devel op-
erswill likely create many different repre-
sentation languages to embrace the hetero-
geneous nature of these resources. Some
languages will be used to describe specific
domains of knowledge; others will model
capabilities of services and devices. These

languages will have different emphasis,
scope, and expressive power.

Protégé-2000 provides full-fledged sup-
port for knowledge modeling and acquisi-
tion. Developersalso can custom-tailor Pro-
tégé-2000 quickly and easily to be an editor
for a new Semantic Web language. A Pro-
tégé-based editor enablesmodeling at acon-
ceptual level that allows developersto think
in terms of concepts and relations in the
domain that they are modeling and not in
terms of the syntax of thefinal output.

By adapting Protégé-2000 to edit a new
Semantic Web language rather than creating
anew editor from scratch or using atext edi-
tor to create ontologiesin the new language,
we obtain a graphical, conceptual-level
ontology editor and knowledge-acquisition
tool. We get anew editor to experiment with
the new language without investing many
resources into it. And we can use Protégé-
2000 as an interchange module to translate
most of the models in other Semantic-Web
languages into our new language and vice
versa. In our experience, it takes afew days
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to adapt Protégé-2000 to a new Semantic-
Web language—a lot less time than is
required to create any sophisticated software
from scratch. We were able to create these
editors even for alanguage like OIL, which
takes a knowledge-modeling approach that
is different from the frame-based approach
for which Protégé originally was designed.
The extensible and flexible knowledge model
and the open plug-in architecture of Protégé-
2000 constitute the basis for developing a
suite of conceptual-level editorsfor Seman-
tic Web languages. B
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The Semantic

The authors present
an ontology-learning
framework that
extendstypical
ontology engineering
environments by using
semiautomatic
ontology-construction
tools. The framework
encompasses ontology
import, extraction,
pruning, refinement,

and evaluation.

Web

Ontology Learning for
the Semantic Web

Alexander Maedche and Steffen Staab, University of Karlsruhe

T he Semantic Web relies heavily on formal ontologies to structure data for com-

prehensive and transportabl e machine understanding. Thus, the proliferation of

ontologiesfactorslargely in the Semantic Web's success. Ontology learning greatly helps

ontology engineers construct ontologies. The vision of ontology learning that we propose

includesanumber of complementary disciplinesthat
feed on different types of unstructured, semistruc-
tured, and fully structured data to support semiauto-
matic, cooperative ontology engineering. Our ontol-
ogy-learning framework proceedsthrough ontology
import, extraction, pruning, refinement, and evalua-
tion, giving the ontology engineer coordinated tools
for ontology modeling. Besides the general frame-
work and architecture, this article discusses tech-
niquesin the ontology-learning cyclethat weimple-
mented in our ontol ogy-learning environment, such
asontology learning from freetext, dictionaries, and
legacy ontologies. We also refer to other techniques
for future implementation, such as reverse engi-
neering of ontologies from database schemata or
learning from XML documents.

Ontologies for the Semantic Web

The conceptua structuresthat define an underlying
ontology provide the key to machine-processable data
on the Semantic Web. Ontologies serve as metadata
schemas, providing acontrolled vocabulary of concepts,
each with explicitly defined and machine-processable
semantics. By defining shared and common domain the-
ories, ontologies hel p people and machinesto commu-
ni cate conci sel y—supporting semantics exchange, not
just syntax. Hence, the Semantic Web'ssuccessand pro-
liferation depends on quickly and cheaply constructing
domain-specific ontologies.

Although ontol ogy-engineering tool s have matured
over the last decade,® manual ontology acquisition
remains a tedious, cumbersome task that can easily
result in a knowledge acquisition bottleneck. When

developing our ontology-engineering workbench,
OntoEdit, we particularly faced this question as we
were asked questionsthat dealt with time (“ Can you
develop an ontology quickly?”), difficulty, (“Isit dif-
ficult to build an ontology?"), and confidence (“How
do you know that you' ve got the ontology right?”).

These problems resemble those that knowledge
engineers have dealt with over the last two decades
as they worked on knowledge acquisition method-
ologies or workbenches for defining knowledge
bases. Theintegration of knowledge acquisition with
machine-learning techniques proved extremely ben-
eficial for knowledge acquisition.2 The drawback to
such approaches,® however, was their rather strong
focus on structured knowledge or databases, from
which they induced their rules.

Conversely, in the Web environment we encounter
when building Web ontologies, structured know!-
edge bases or databases are the exception rather than
the norm. Hence, intelligent support tools for an
ontology engineer take on a different meaning than
the integration architectures for more conventional
knowledge acquisition.*

Inontology learning, weaim to integrate numerous
disciplinesto facilitate ontology construction, partic-
ularly machine learning. Because fully automatic
machine knowledge acquisition remainsin the distant
future, we consider ontology learning as semiauto-
matic with human intervention, adopting the paradigm
of balanced cooperative modeling for constructing
ontologies for the Semantic Web.> With this objective
in mind, we built an architecture that combines knowl-
edge acquisition with machine learning, drawing on
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resourcesthat we find on the syntactic Web—
free text, semistructured text, schema defini-
tions (such as document type definitions
[DTDg]), and so on. Thereby, our framework’s
modules serve different stepsin the engineer-
ing cycle (see Figure 1):

» Merging existing structures or defining
mapping rules between these structures
alows importing and reusing existing
ontologies. (For instance, Cyc's ontolog-
ical structures have been used to construct
adomain-specific ontology.)

» Ontology extraction models major parts
of the target ontology, with learning sup-
port fed from Web documents.

» Thetarget ontology’srough outline, which
resultsfrom import, reuse, and extraction,
is pruned to better fit the ontology to its
primary purpose.

 Ontology refinement profitsfrom the pruned
ontology but completes the ontology at a
fine granularity (in contrast to extraction).

» Thetarget application servesasameasure
for validating the resulting ontology.”

Finally, the ontology engineer can begin this
cycle again—for example, to include new
domains in the constructed ontology or to
maintain and update its scope.

Architecture

Given thetask of constructing and main-
taining an ontology for a Semantic Web
application such as an ontology-based
knowledge portal 8 we produced support for
the ontology engineer embedded in a com-
prehensive architecture (see Figure 2). The
ontology engineer only interacts via the
graphical interfaces, which comprise two of
the four components: the OntoEdit Ontol-
ogy Engineering Workbench and the Man-
agement Component. Resource Processing
and the Algorithm Library are the architec-
ture’s remaining components.

The OntoEdit Ontology Engineering
Workbench offers sophisticated graphical
meansfor manua modeling and refining of the
final ontology. Theinterface givestheuser dif-
ferent views, targeting the epistemol ogical
leve rather than aparticul ar representation lan-
guage. However, the user can export the onto-
logica structures to standard Semantic Web
representation languages such as OIL (ontol-
ogy interchange language) and DAML-ONT
(DAML ontology language), aswell asour own
F-L ogic-based extensons of RDF(S)—weuse
RDF(S) torefer to the combined technologies

Legacy and application data

Ontology Prune
learning
Extract
Refine
ontology
Ontology
Import and reuse learning

Apply

Legacy and application data ==

Figure 1. The ontology-learning process.
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Figure 2. Ontology-learning architecture for the Semantic Web.
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Semantic Web

of the resource description framework and
RDF Schema. Additionally, users can gener-
ate and access executabl e representations for
constraint checking and application debugging
through SiIRi (smplelogic-based RDF inter-
preter, www.ontoprise.de), our F-Logic infer-
ence engine, which connects directly to
OntoEdit.

Weknew that sophisticated ontol ogy-engi-
neering tools—for example, the Protégé mod-
eling environment for knowledge-based sys-
tems'—would offer capabilities roughly
comparable to OntoEdit. However, in trying
to construct a knowledge portal, we found
that alarge conceptual gap existed between
the ontology-engineering tool and the input
(often legacy data), such asWeb documents,
Web document schemata, databases on the
Web, and Web ontologies, which ultimately
determine the target ontology. Into thisvoid
we have positioned new components of our
ontology-learning architecture (see Figure 2).
The new components support the ontology
engineer inimporting existing ontology prim-
itives, extracting new ones, pruning given
ones, or refining with additional ontology
primitives. In our case, the ontology primi-
tives comprise

e aset of stringsthat describelexica entries
L for concepts and relations;

* a set of concepts C (roughly akin to
synsetsin WordNet?);

e ataxonomy of concepts with multiple
inheritance (heterarchy) H;

e a set of nontaxonomic relations R
described by their domain and range
restrictions;

» aheterarchy of relations—Hp;

e relations F and G that relate concepts and
relationswith their lexical entries; and

* aset of axioms A that describe additional
constraints on the ontology and make
implicit facts explicit.

This structure corresponds closely to
RDF(S), except for the explicit consideration
of lexical entries. Separating concept refer-
ence from concept denotation permits very
domain-specific ontologies without incur-
ring an instantaneous conflict when merg-
ing ontologies—a standard Semantic Web
request. For instance, thelexica entry school
in one ontology might refer to abuilding in
ontology A, an organization in ontology B,
or both in ontology C. Also, in ontology A,
we can refer to the concept referred to in
English by school and school building by the

German Schule and Schulgebéaude.

Ontology learning relies on an ontology
structured along these lines and on input data
asdescribed earlier to propose new knowledge
about reasonably interesting concepts, rela-
tions, and lexical entriesor about linksbetween
these entities—proposing some for addition,
deletion, or merging. The graphical result set
presents the ontology-learning process's
resultsto the ontology engineer (we' Il discuss
thisfurther inthe“Association rules’ section).
The ontology engineer can then browse the
resultsand decideto follow, delete, or modify
the proposals, asthe task requires.

Components
By integrating the previoudly discussed con-

In frying fo consfruct a
knowledge portal, we found that a
large conceptual oap existed

berween the ontology-
engineering fool and the input
[offen legacy data).

siderationsinto acoherent generic architecture
for extracting and maintaining ontologiesfrom
Web data, we haveidentified severa corecom-
ponents (including thegraphical user interface
discussed earlier).

Management component
graphical user interface

The ontology engineer uses the manage-
ment component to select input data—that is,
relevant resources such asHTML and XML
documents, DTDs, databases, or existing
ontologiesthat the discovery process can fur-
ther exploit. Then, using the management
component, the engineer chooses from a set
of resource-processing methods availablein
theresource-processing component and from
aset of algorithmsavailablein the algorithm
library.

Themanagement component al so supports
the engineer in discovering task-relevant
legacy data—for example, an ontol ogy-based
crawler gathersHTML documentsthat arerel-
evant to agiven core ontology.

Resource processing

Depending on the availableinput data, the
engineer can choose various strategies for
resource processing:

* Index and reduce HTML documents to
freetext.

e Transform semistructured documents,
such asdictionaries, into apredefined rela-
tional structure.

e Handle semistructured and structured
schema data (such as DTDs, structured
database schemata, and existing ontolo-
gies) by following different strategies for
import, as described later in this article.

e Process free natural text. Our system
accesses the natural-language-processing
system Saarbriicken Message Extraction
System, a shallow-text processor for Ger-
man.’® SMES comprises a tokenizer
based on regular expressions, a lexical
analysis component including various
word lexicons, an amor phological analy-
sis module, a named-entity recognizer,
a part-of-speech tagger, and a chunk
parser.

After first preprocessing dataaccording to one
of theseor similar strategies, theresource-pro-
cessing module transforms the data into an
agorithm-specific relational representation.

Algorithm library

We can describe an ontology by anumber
of setsof concepts, relations, lexical entries,
and links between these entities. We can
acquire an existing ontology definition
(including L, C, H¢, R, Hg, A, F, and G),
using various algorithms that work on this
definition and the preprocessed input data.
Although specific algorithms can vary
greatly from one type of input to the next, a
considerable overlap exists for underlying
learning approaches such as association
rules, formal concept analysis, or clustering.
Hence, we can reuse algorithms from the
library for acquiring different parts of the
ontology definition.

In our implementation, we generally use
amultistrategy learning and result combina-
tion approach. Thus, each algorithm plugged
into thelibrary generates normalized results
that adhere to the ontology structureswe've
discussed and that we can apply toward a
coherent ontology definition.

import and reuse
Given our experiences in medicine,
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Figure 3. Screenshot of our ontology-learning workbench, Text-To-Onto.

telecommuni cations, tourism, and insurance,
we expect that domain conceptualizationsare
availablefor amost any commercialy signif-
icant domain. Thus, we need mechanismsand
strategies to import and reuse domain con-
ceptualizationsfrom existing (schema) struc-
tures. We can recover the conceptualizations,
for example, from legacy database schemata,
DTDs, or from existing ontologies that con-
ceptualize some relevant part of the target
ontology.

In the first part of import and reuse, we
identify the schema structures and discuss
their general content with domain experts.
We must import each of these knowledge
sources separately. We can also import man-
ually—which can include a manual defini-
tion of transformation rules. Alternatively,
reverse-engineering tools—such as those
that exist for recovering extended entity-
relationship diagrams from a given data-
base’s SQL description (see the sidebar)—
might facilitate the recovery of conceptual
structures.

In the second part of theimport and reuse
step, we must merge or align imported con-

ceptual structures to form a single common
ground from which to springboard into the
subsequent ontology-learning phases of
extracting, pruning, and refining. Although
the general research issue of merging and
aligning is still an open problem, recent pro-
posal s have shown how to improve the man-
ual merging and aligning process. Existing
methods mostly rely on matching heuristics
for proposing the merger of conceptsand sm-
ilar knowledge base operations. Our research
alsointegrates mechanismsthat use an appli-
cation-data—oriented, bottom-up approach.
For instance, formal concept analysisletsus
discover patterns between application data
and the use of concepts, on one hand, and
their heterarchies' relationsand semantics, on
the other, in aformally concise way (see B.
Ganter and R. Wille'swork on formal con-
cept analysisin the sidebar).

Overall, the ontology-learning import and
reuse step seemsto bethe hardest to general -
ize. The task vaguely resembles the general
problems encountered in data-warehousing
—adding, however, challenging problems of
itsown.

Extraction

Ontology-extraction models major
parts—the complete ontology or large
chunks representing a new ontology sub-
domain—uwith learning support exploiting
various types of Web sources. Ontology-
learning techniques partially rely on given
ontology parts. Thus, we here encounter an
iterative model where previous revisions
through the ontology-learning cycle can
propel subsequent ones, and more sophis-
ticated algorithms can work on structures
that previous, more straightforward algo-
rithms have proposed.

To describethis phase, let’slook at some
of the techniques and algorithms that we
embedded in our framework and imple-
mented in our ontology-learning environ-
ment Text-To-Onto (see Figure 3). We
cover asubstantial part of the overall ontol-
ogy-learning task in the extraction phase.
Text-To-Onto proposes many different
ontology learning algorithms for primi-
tives, which we described previously (that
is, L, C, R, and so on), to the ontology engi-
neer building on several types of input.
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A Common Perspective

Until recently, ontology learning—for comprehensive ontol-

ogy construction—did not exist. However, much work in numer-
ous disciplines—computational linguistics, information retrieval,
machine learning, databases, and software engineering—has
researched and practiced techniques that we can use in ontol-
ogy learning. Hence, we can find techniques and methods rel-
evant for ontology learning referred to as

“acquisition of selectional restrictions,” 2

“word sense disambiguation and learning of word senses, "3
“computation of concept lattices from formal contexts,”4 and
“reverse engineering in software engineering.”®

Ontology learning puts many research activities—which focus
on different input types but share a common domain conceptu-
alization—into one perspective. The activities in Table A span a
variety of communities, with references from 20 completely dif-
ferent events and journals.
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Frequency-based Syntax Prune
Pattern matching — Extract
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Knowledge base Concept induction, Relations Extract
A-Box mining
Semistructured Naive Bayes Relations Reverse engineering
schemata
Relational Data correlation Relations Reverse engineering
schemata
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Table A. A survey of ontology-learning approaches.

Papers
Paul Buitelaar,® H. Assadi,” and David Faure and Claure Nedellec®
Frederique Esposito et al.?

Alexander Maedche and Steffen Staab'®
Joerg-Uwe Kietz et al."!

Emanuelle Morin'2

Udo Hahn and Klemens Schnattinger'®

Marti Hearst,'* Yorik Wilks,'> and Joerg-Uwe Kietz et al.!!
Jan Jannink and Gio Wiederhold'®
Joerg-Uwe Kietz and Katharina Morik'” and S. Schlobach'8

Anahai Doan et al.'®

Paul Johannesson? and Zahir Tari et al.2!
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Lexical entry and concept extraction

One of thebaseline methods applied in our
framework for acquiring lexical entries with
corresponding conceptsiis lexical entry and
concept extraction. Text-To-Onto processes
Web documents on the morphological level,
including multiword terms such as* database
reverseengineering” by n-grams, asmplesta-
tistics-based technique. Based onthistext pre-
processing, we apply term-extraction tech-
niques, which are based on (weighted)
statistica frequencies, to propose new lexical
entriesfor L.

Often, the ontology engineer follows the
proposal by the lexical entry and concept-
extraction mechanismand includesanew lex-
ical entry in the ontology. Because the new
lexical entry comeswithout an associated con-
cept, the ontology engineer must then decide
(possibly with help from further processing)
whether tointroduce anew concept or link the
new lexical entry to an existing concept.

Hierarchical concept clustering
Given alexicon and a set of concepts, one
major next step istaxonomic concept classifi-
cation. One generally applicable method with
regard to thisishierarchical clustering, which
exploitsitems’ similarities to propose a hier-
archy of item categories. We computethesim-
ilarity measure on the properties of items.
When extracting a hierarchy from natural-
language text, term adjacency or syntactical
rel ationships between terms yield consider-
abledescriptive power to induce the semantic
hierarchy of conceptsrelated to these terms.
David Faure and Claure Nedellec give a
sophisticated examplefor hierarchical clus-
tering (seethe sidebar). They present acoop-
erative machine-learning system, Asium
(acquisition of semantic knowledge using
machine-learning method), which acquires
taxonomic relations and subcategorization
frames of verbs based on syntacticinput. The
Asium system hierarchically clusters nouns
based on the verbsto which they are syntac-
tically related and vice versa. Thus, they
cooperatively extend thelexicon, the concept
set, and the concept heterarchy (L, C, H).

Dictionary parsing

Machine-readable dictionaries are fre-
quently availablefor many domains. Although
thelr internal structureismostly freetext, com-
paratively few patterns are used to give text
definitions. Hence, MRDs exhibit a large
degree of regularity that can be exploited to
extract adomain conceptualization.

We have used Text-To-Onto to generate a
concept taxonomy from an insurance com-
pany’'s MRD (see the sidebar). Likewise,
we've applied morphological processing to
term extraction from free text—this time,
however, complementing several pattern-
matching heuristics. Take, for example, the
following dictionary entry:

Automatic Debit Transfer: Electronic service
arising from adebit authorization of theYellow
Account holder for arecipient to debit billsthat
fall due direct from the account....

We applied several heuristics to the mor-
phologically analyzed definitions. For
instance, one simple heuristic relates the defi-
nition term, hereautomatic debit transfer, with

Targeling completeness for the
domain model appears fo be
practically unmanageable and

computationally intractable, but
targefing the scarcest model
overly limits expressiveness,

thefirst noun phrasein thedefinition, hereelec-
tronic service. The heterarchy H-: H- (auto-
matic debit transfer, electronic service) links
their corresponding concepts. Applying this
heuriticiteratively, we can proposelarge parts
of the target ontology—more precisely, L, C,
and H to the ontology engineer. In fact,
because verbstend to be modeled asrel ations,
we can aso use this method to extend R (and
thelinkage between R and L).

Association rules

One typically uses association-rule-learn-
ing dgorithmsfor prototypica applicationsof
data mining—for example, finding associa-
tionsthat occur between items such as super-
market products in a set of transactions for
example customers' purchases. The general-
ized association-rule-learning algorithm ex-
tendsits baseline by aiming at descriptions at
the appropriatetaxonomy level—for example,
“snacks are purchased together with drinks,”
rather than “chips are purchased with beer,”
and “ peanuts are purchased with soda.”

In Text-To-Onto (see the sidebar), we use
a modified generalized association-rule-
learning algorithm to discover relations
between concepts. A given class hierarchy
H - serves as background knowledge. Pairs
of syntactically related concepts—for exam-
ple, pair (festivalisland) describing the
head—-modifier relationship contained in the
sentence “ The festival on Usedom attracts
touristsfrom all over theworld.”—are given
asinput to the algorithm. The a gorithm gen-
eratesassociation rulesthat comparetherel-
evance of different ruleswhileclimbing up or
down the taxonomy. The a gorithm proposes
what appears to be the most relevant binary
rules to the ontology engineer for modeling
relationsinto the ontol ogy, thus extending R.

As the algorithm tends to generate a high
number of rules, we offer variousinteraction
modes. For example, the ontology engineer
can restrict the number of suggested relations
by defining so-called restriction conceptsthat
must participate in the extracted relations.
The flexible enabling and disabling of taxo-
nomic knowledge for extracting relations is
another way of focusing.

Figure 4 shows various views of the
results. We can induce ageneralized relation
from the exampl e data given earlier—relation
rel(event,area), which the ontology engineer
could name locatedin, namely, events located in
anarea (which extends L and G). Theuser can
add extracted relations to the ontology by
dragging and dropping them. To explore and
determine the right aggregation level of
adding arelation to the ontol ogy, the user can
browsetherelation viewsfor extracted prop-
erties (seetheleft side of Figure 4).

Pruning

A common theme of modeling in various
disciplines is the balance between com-
pleteness and domain-model scarcity. Tar-
geting completeness for the domain model
appears to be practically unmanageable and
computationally intractable, but targeting the
scarcest model overly limits expressiveness.
Hence, we aim for abal ance between the two
that works. Our model should capture arich
target-domain conceptualization but exclude
the parts out of its focus. Ontology import
and reuse as well as ontology extraction put
the scale considerably out of balance where
out-of-focus concepts reign. Therefore, we
appropriately diminish the ontology in the
pruning phase.

We can view the problem of pruning in at
least two ways. First, we need to clarify how
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The Semantic Web

Results

lnsen| Damain | Range Score |I| Creator | Exists | Sort by:
1 |Ereignis Unterkuntt 0,001 AR S:0.01 C: 0.063, [ :
[] |Unterkuntt Ereignis 0,01 J|AR S:0.01 C:1.0, ] ‘ Domain - l
[[] Ereignis Region 0,001 ]AR 5:0.013 C: 0.082, [
[] |Region Ereighis 0,013 AR S 0.013 ¢ 1.0, ] _
] Ereignis Ausstattung,. 0,007 JAR 5:0.024 C: 0.219, O Selection:
[] |Ausstattung... [Ereignis 0,034 AR S:0.034 C:1.0, [l ’ Al ‘
[ |Michtprivate... [Touristische... 0,005 JAR S:0.01 C:0.553, [
[[1 Touristizche... Michtprivate... 0,006 J|AR S: 0,01 C: 0,667, (] ‘ Toggle ‘
[ |Ausstattung | Qualitatives... 0,004 AR S:0.012 C: 0.304, [
[ |qualitatives... |Ausstattung 0,003 1/AR S: 0.012 C: 0.298, ] ‘ Pane |
[[] |Jahresahsc.. |Ausstattung 0,008 JAR S:0.01 C:0.519, [
[[] |Ausstattung  |Jahresabsc.. - :
[ |Ausstattung  Urlaub (] Visualize Relations
[ |Urlaub Ausstattung
[]  |Ereignis Infarmatian Infnrmatlon usstaﬁung der Unterkunﬂ|
[1 lInfarmation  |Ereignis
[ |Telefon Ereignis |Tnurlstlsche E|nnchtung
[_] |Ereignis Telefon Region
1 |Ereignis Zirmmeraus.. \
L] |Zimmeraus... Ereignis |Qualnatwes_Zenkonzept|
[ |Gualitatives... Ausstattung... [ =
(] Ausstattung... Qualitatives... E,emng,;arg;e 7 DL
1 |Ereignis Freizeiteinric... f
[] |Freizeiteinric... Ereignis
[ |Elektranisch... Ereignis
[1 |Ereignis Elektronisch. ..
[ |Stadt Urlauk
[ Uraub Stadt

Figure 4. Result presentation in Scramble ﬂ Shake | [" stress [ Randam
Text-To-Onto.

pruning particular parts of the ontology (for
example, removing a concept or relation)
affects the rest. For instance, Brian Peterson
and his colleagues have described strategies
that leave the user with a coherent ontology
(that is, no dangling or broken links).® Second,
wecan consider strategiesfor proposing ontol-
ogy itemsthat we should either keep or prune.
Given aset of application-specific documents,
several strategies exist for pruning the ontol-
ogy that are based on absolute or relative
counts of term frequency combined with the
ontology’'s background knowledge (see the
Sidebar).

Refinement

Refining plays a similar role to extract-
ing—the difference is on a sliding scale
rather than aclear-cut distinction. Although

extracting serves mainly for cooperative
modeling of the overall ontology (or at least
of very significant chunksof it), therefine-
ment phase is about fine-tuning the target
ontology and the support of its evolving
nature. The refinement phase can use data
that comes from a concrete Semantic Web
application—for example, log files of user
queries or generic user data. Adapting and
refining the ontology with respect to user
requirements plays a major role in the
application’s acceptance and its further
development.

In principle, we can use the same algo-
rithms for extraction and refinement. How-
ever, during refinement, we must consider
in detail the existing ontology and its exist-
ing connections, while extraction works
more often than not practically from scratch.

Udo Hahn and Klemens Schnattinger
presented a prototypical approach for re-
finement (see the sidebar)—although not
for extraction! They introduced a method-
ology for automating the maintenance of
domain-specific taxonomies. This incre-
mentally updates an ontology asit acquires
new concepts from text. The acquisition
process is centered on the linguistic and
conceptual “quality” of various forms of
evidence underlying concept-hypothesis
generation and refinement. Particularly, to
determine a particular proposal’s quality,
Hahn and Schnattinger consider semantic
conflicts and anal ogous semantic structures
from the knowledge base for the ontology,
thus extending an existing ontology with
new lexical entriesfor L, new concepts for
C, and new relationsfor H.
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o ntology learning could add significant
leverageto the Semantic Web because

it propel sthe construction of domain ontolo-
gies, which the Semantic Web needs to suc-
ceed. We have presented a comprehensive
framework for ontology |earning that crosses
the boundaries of single disciplines, touch-
ing on a number of challenges. The good
newsis, however, that you don't need perfect
or optimal support for cooperative ontology
modeling. At least according to our experi-
ence, cheap methods in an integrated envi-
ronment can tremendously help the ontology
engineer.

While a number of problems remain
withinindividual disciplines, additional chal-
lenges arisethat specifically pertain to apply-
ing ontology learning to the Semantic Web.
With the use of XML-based namespace
mechanisms, the notion of an ontology with
well-defined boundaries—for example, only
definitions that are in one file—will disap-
pear. Rather, the Semantic Web might yield
an amoeba-like structure regarding ontol ogy
boundaries because ontologies refer to and
import each other (for example, the DAML-
ONT primitive import). However, we do not
yet know what the semantics of these struc-
tureswill look like. Inlight of thesefacts, the
importance of methods such as ontology
pruning and crawling will drastically
increase. Moreover, we have so far restricted
our attention in ontology learning to the con-
ceptual structures that are almost contained
inRDF(S). Additional semantic layersontop
of RDF (for example, future OIL or DAML-
ONT with axioms, A) will require new
means for improved ontology engineering
with axioms, too! E
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