
Active Messenger: filtering and delivery in a heterogeneous network
Page 1 of 19

Active Messenger: filtering and delivery in a
heterogeneous network

Stefan Marti and Chris Schmandt

MIT Media Laboratory
20 Ames Street,

Cambridge, MA 02139, U.S.A.
{stefanm, geek}@media.mit.edu

Abstract. Active Messenger (AM) is a software agent that dynamically filters
and routes email to a variety of wired and wireless delivery channels. More than
just a router, AM is a dynamic process that monitors a message’s progress
through various channels over time. It observes which devices have been used
to originate or respond to messages, recent log ins, and caller-ID when checking
voice or email over the phone. Its goal is to ensure that desired messages always
reach the subscriber, while decreasing message volume when the user is less
reachable. AM also acts as a proxy, hiding the identity of the multiple device
addresses at which the subscriber may be found. It also caches channels to
guarantee seamless information delivery for the user in a heterogeneous
network.

1 Overview

Active Messenger [8][12] is a system that delivers messages, based on priority, to a
variety of devices in a heterogeneous network. Its goal is to ensure delivery of urgent
messages across multiple user access methods, while throttling back delivery of less
important messages. To support these goals, AM may attempt to reach a series of
devices over time, or to resend messages when a device comes back into range, but
without sending redundant messages. AM uses sets of explicit and context sensitive
filtering rules, based on a user’s recent correspondence, calendar, and location. AM
also transcodes messages to fit different display characteristics of mobile text-based
devices, as well as for faxing or speech synthesis for voice delivery. AM infers device
availability from a combination of network supplied information (device in range,
device re-entered range, delivery successful) and observation of user originated
traffic.

As just implied, AM is a two-way system. It acts as a proxy for messages or
replies originated from the mobile devices, rewriting them to appear to originate from
the user’s canonical, published email address, rather than the address of the particular
device. Because the user can originate a message on any device, and expects a reply
to appear promptly on that device, AM tracks “threads” of such messages for special
delivery. It also provides, through short structured messages, access to and
modification of a number of personal information management tools, such as address

Active Messenger: filtering and delivery in a heterogeneous network
Page 2 of 19

book and calendar, and access to limited web-based sources. Additionally, Active
Messenger can explain its behavior in handling a particular message, and the user can
override that specific contextual rule.

Why a heterogeneous network?
Currently, we employ devices with different network coverage and usage fees. For
example, courtesy of sponsor Motorola™ we have campus wide two-way paging
from an in house system. In the US, SMS is available on GSM phones, but GSM is
not available in every metropolitan area and GSM service providers do not always
allow interchange of SMS messages. Other wireless devices exhibit spotty coverage,
where a user may switch to a voice channel such as listening to messages over the
phone or a portable terminal such as Pocketmail™1. Just traveling to a summer home
a few hours from Boston crosses three zones of different device access. There are
also international issues of which devices work in which countries and at which
frequencies.

Additionally, we argue that even if a single mobile device could be employed, a
system such as Active Messenger still needs to be aware of multiple access methods.
First, many messages will be read on a normal computer or laptop screen and need not
be sent to any other device. Second, most users will not want to receive all their
messages on the mobile device, but only the most important ones. Third, there are
situations in which it is very desirable to access messages via fax (perhaps to share
with others or deliver to third party) or listen to via synthetic speech over any
telephone (perhaps a coin-operated roadside phone in a remote area with no wireless
service of any form).

Filtering and delivery
AM relies on several sources to classify messages. Users can specify rules linking
particular kinds of messages to user-defined categories, using a modified version of
the public domain procmail syntax (e.g., [14]). For example, messages from a
daughter or boss may be “very important,” messages to a mailing list may be
“ignore,” and messages from students may be “important.”

Additionally, AM employs the CLUES filtering system [9] written by Matt Marx.
On an hourly basis, CLUES examines a number of personal information databases to
come up with an additional set of regular expressions defining “timely” messages,
after consulting the user's log of sent email, dialed phone calls (if using computer
telephony tools), calendar, and address book. For example, messages containing the
word “Ubicomp” within a few days of a calendar entry such as “Ubicomp paper due”
will be tagged as timely, as would a reply message from the conference chair if the
user had sent him a message yesterday. If the user provides a contact phone number,
or even just an area code, in his calendar, CLUES attempts to associate emails with
location via the address book, and marks as “timely” messages from senders in that
area.

Users indicate the ordering of message priorities, including ordering of the
“timely” category. A message is evaluated for timeliness when it arrives, and is

1 http://www.pocketmail.com/

Active Messenger: filtering and delivery in a heterogeneous network
Page 3 of 19

assigned to the highest priority for which it matches. If a static rule has been created
to identify messages from a boss as “very important” and this category is ranked
higher than timeliness, a message from a boss about something in my calendar
tomorrow would be “very important” and not “timely.”

AM uses the user-defined ordering to determine how hard to attempt to deliver a
message. In to specifying filter categories and ordering them, the user must indicate
which of these categories should be sent to which devices; currently this is done by
editing a text file. Combined with geographic or situational (when a device is carried)
locality, this mapping allows AM to throttle message delivery when a user is in a less
accessible mode.

When a user is known to be online, there is no reason to hold off any messages so
AM simply observes the progress of the message through whatever mail reader the
user employs. Since one of our devices—the in house Motorola pager system named
Canard [2][3]—works only within a few kilometers of campus, and one of the authors
lives out of that range, it is safe to assume that she is “at work” when in range, and a
large number of messages are sent to that device. When further away and using a
more limited or expensive service (such as Skytel™ or Iridium™) he limits his
messages to only the highest priorities. But when he can connect in a more direct and
non-interrupting manner, e.g. by a wireless Palm VII™2 PDA, he again prefers to
receive a fairly large fraction of his rated messages (which is still only about a third of
all his messages). In this way, AM strives to guarantee prompt delivery of very
important messages but pace delivery of other messages to limit their degree of
annoyance.

In order to deliver a message, AM takes a number of timed steps after a message
arrives and is sorted. The following example (Fig. 1) shows what happens when a
new email message arrives. Let’s assume that the user has the following line in her
preference file:

Mapping
important = canard(20), vpager(13), phone(14), fax(35)

This describes the channel sequence for important messages. It means that if a
message is important, it will be sent to the Canard pager (in house paging system),
after that to a Voice Pager3, then to a phone, and then to a fax. The numbers in
brackets mean the delay until a device or channel is used.

Let’s assume furthermore that the user is currently at home and has the following
entries in her preference file:

Home
canard = johndoe@canard.mit.edu, anytime
vpager = 654-4567, not 0-7
phone = 423-7755, not M-F 22-8, not SU
fax = 423-7755, not 2-7:30

This means that at home, she has the channels canard, vpager, phone, and fax
available. For each channel, a number or address is specified, and the time when it is
OK to use the device.

2 http://www.palm.com/products/palmviix/
3 http://www.motorola.com/MIMS/MSPG/Press/PR19980109_3072.html

Active Messenger: filtering and delivery in a heterogeneous network
Page 4 of 19

Fig. 1: Channel sequence example

The message arrives at 6:57am. According to the above channel sequence, the first

channel would be canard in 20 minutes. However, this initial delay is scaled down
indirect proportionally to the user’s idle time: if the user is idle for more than an hour,
the message gets sent immediately. Because our user has checked email half an hour
ago, the delay is scaled down to 10 minutes. Before the agent can schedule this event,
it checks if canard is allowed at that time at that location. The preference file says
anytime is ok for canard at home, so Active Messenger schedules this event, and
waits.

After 10 minutes, if the user hasn’t read the message otherwise, e.g., by reading it
from the mail spool file, Active Messenger sends it to the Canard pager. Right after
the sending, Active Messenger looks up the next channel, which is vpager in 13
minutes from then. It’s now 7:07am; the time of the sending would be 7:20am,
which is a valid time, because the Voice Pager only wants to get messages after
7:00am. Then the agent waits again and checks all available back channels if the
message gets read somehow.

After 13 minutes, if the message’s is still not read, Active Messenger calls up the
Voice Pager number and synthesizes the message with the text-to-speech module.
Right after that, the agent tries to schedule the next event, which would be phone.
The phone call would be in 14 minutes at 7:34am. Unfortunately, the user does not
allow Active Messenger to call her up on the phone at home from Monday until
Friday after 10pm and before 8am. Therefore, this channel is currently not available,

Active Messenger: filtering and delivery in a heterogeneous network
Page 5 of 19

and the agent skips it. The next entry would be fax. It is now 7:20am, the delay for
sending faxes is specified by the users as 35 minutes, and so Active Messenger
schedules a fax sending for 7:55am. Then the agent waits again.

The user, however, happens to log in to her computer and read this email message
at 7:48am. The “message read” level rises over the threshold, and the message is
regarded as read. Therefore, Active Messenger cancels the fax.

Device handoff and intermittent connectivity
In a heterogeneous environment, AM supports graceful device handoff. AM detects
“device” presence in a variety of ways. The Unix “finger” command indicates
computer activity and can give some hints as to whether a login session is local or
remote; if the user is logged in, she is likely to be reading email so AM delays longer
before deciding that a message is not going to be read and sending it to the first in a
series of possible devices. Similarly, if the user phones in to access voice mail or hear
email, caller ID on the call may indicate whether she is at home, or a geographic
location (area code).

For mobile devices, different networks provide different indicators of connectivity.
Some indicate when a device is within range, some indicate when a device newly
arrives in range, some explicitly indicate receipt of a message on the device, and
others provide no indication at all. In all cases, messages originated from a device
and received through AM (as a proxy) indicate that a user is active on that device. If
AM does not know whether a device is in range, it sends a limited number of
messages to it before waiting for some indication of successful delivery; this is
important because some networks buffer messages internally, and when the user
comes back in range, perhaps days later, many stale messages could be waiting,
wasting money, bandwidth, and the time spent deleting them on the device.

When AM detects that the user has switched devices or a device is newly within
range, it rescans all the messages which might have been sent to the device, to
determine whether they are still unread. If so, it then sends them automatically. This
handoff could be triggered by a signal from the network, change in status of a
previously sent message to “received,” or an incoming message suddenly appearing
from the device. This caching and resending when appropriate has resulted in very
effective “seamless roaming” across devices and networks.

Another aspect of modifying device priority is “threaded” messages. A user can
send a message to any Internet address from any device. This could be someone who
appears in some predefined filter rule. If not, on the next hour when CLUES runs,
that person will become “timely”; until then a reply from that person would most
likely be unrated.

In any case, the device from which the message was sent my not be configured to
receive a message of whatever category, if any, the reply would have, so it would be
missed. In order to avoid this unwanted behavior, AM tracks message “threads,” i.e.
new messages originated from each device. An incoming message is matched against
these threads, and if a match is found, the message is immediately sent to the original
originating device. It is then sent through the normal chain of devices, in case that
device is no longer in range.

Similar behavior is required to notify the user of rejected messages, perhaps
because of ill-formed or mis-typed destination fields. It is very frustrating to send a

Active Messenger: filtering and delivery in a heterogeneous network
Page 6 of 19

message and be wondering why the recipient has not replied when, in fact, the
message was never delivered and the rejection notification was missed!

Role as proxy mailer
Although most AM devices are email-addressable, an AM user may not wish to reveal
their addresses, for a variety of reasons. Different devices may be in use at different
times, so a message sent to any one may not be delivered for some time. We may
change devices from time to time and don’t wish to bother having to so inform all our
correspondents. Most important, we may wish to keep the addresses of these devices
secret and rely on filtering agents to make sure that only the desired messages are
delivered to them. Similarly, if our correspondents use filters, these filters may not
recognize the addresses of our devices as “ours.”

Our correspondents need not to know our “physical” device addresses, but only the
unique “logical” one: our canonical email address. AM transforms it to the
appropriate physical address, ensuring that device addresses will be used purely as
physical addresses.

To this end, AM users do not mail directly from their devices, but rather send
specially formatted messages to themselves (messages of the form “m <recipient list>
(optional subject) message body”). The recipient list is interpreted at the AM server,
allowing the use of nicknames (Unix mail aliases) or last names from one's address
book, in addition to canonical Internet addresses. The AM server repackages these
messages so that they appear to come from our normal home email addresses. It also
updates files to track outgoing message threads.

Similarly, incoming messages sent to the devices actually appear to the device to
come from our home mail accounts. This means that any reply will be sent back to
that account; AM puts enough information in the subject line of the message that a
reply can be matched against the message for which the reply is intended. So the reply
message, too, is repackaged, with the original subject, our canonical mail address, and
a copy of the original message appended (this “original copy” can be suppressed by
terminating the reply text with the '-' character).

These methods hide the identity of our devices and make all messages appear to
originate with our normal email system.

Connectivity vs. PDA
We have tried to avoid allegiance to any particular device, and instead have
emphasized AM's ability to function in a heterogeneous network, including multiple
media. We may equally well read a message on a small screen as listen to it spoken
over a mobile phone; the choice will depend on which device has connectivity, the
content of the message, and the user's current activity (e.g. driving vs. riding on the
train). In fact we have been pleased at how easily AM can be extended to support any
text-based device with an email address.

However, one advantage of a “primary” device is its role as a PDA, keeping a
user's calendar, address book, etc. So we incorporated these features into our mobile
messaging architecture. In addition to sending mail by proxy, as just described, over
the phone or by text pager a user may access and modify his address book, calendar,
and to-do list. Over both media users may also access a variety of local and web-

Active Messenger: filtering and delivery in a heterogeneous network
Page 7 of 19

based databases, including weather forecasts, dictionary lookups, news headlines, and
traffic reports. Additionally, from a text device one may execute an arbitrary Unix
command line on one’s office computer; the output (stdout and stderr) are sent to the
pager as a response.

For the telephone-based interface, these features are activated by touch-tone or
speech recognition user interfaces. From text devices, the features are activated by
sending structured messages. For example, initial keywords such as “wx,” “traf,” and
“def” take the rest of the message and send it to the weather, traffic, or definition
(dictionary) service. A sub-system called Knothole [6] parses these incoming
messages, contacts the appropriate databases or services, and filters down the text
responses as appropriate for small screen devices.

Besides the convenience of “one device does it all,” this additional functionality
has another desirable side effect: increased network traffic. The more useful any
device is, the more it will be used. The more any of a set of devices is used, the more
accurately AM can track device usage and infer which device is currently active and
hence should receive urgent messages.

Confidence in the system
This leads to a sensitive topic from the user's perspective: confidence in the system.
Almost by definition, when the user is really depending on a mobile system such as
AM, he is away from normal desktop computers and will have difficulty accessing
system logs, glancing at his mailbox, etc. If a long period has elapsed since the last
message, does the system know where (logically) the user is? Is the system running?
Is the system filtering correctly? Why hasn't a reply to an urgent message been
received?

AM users can employ several methods to verify system integrity. The first is to
simply send a request for any personal information, such as an address book lookup;
absence of a prompt reply indicates severe problems, although these could be in the
device or its network as well as in the AM server. For more detail about message
forwarding, a user may send a “sum” request, which summarizes recent email
received and forwarded; lost messages may then be retransmitted on request. (Note:
this feature is mostly obsolete due to the success of the “seamless roaming” methods
described above.)

Since a system such as AM is never going to do what the user wants all the time, it
resorts to several methods to at least explain what it did. The first is a web page that
shows how it rated each message and what steps were taken when (Fig. 2).

Fig. 2. Part of AM status web page: its main table lists 35 parameters for each email message

Active Messenger: filtering and delivery in a heterogeneous network
Page 8 of 19

This provides a first level of help facility, though it is useful only when the user has
access to a browser.

A more portable confidence builder is an explanation facility for the CLUES
dynamically filtered messages, written by Sean Wheeler. At the time that CLUES
generates its rules, it generates an explanation template for each rule. Later, a user
who receives a questionable message can send a request “explain <message number>”
and receive back a response such as “You sent mail to this person yesterday at
5:15pm” or “This mail comes from a domain which matches an entry in your calendar
tomorrow.” Users are in fact much more tolerant of apparently incorrect system
behavior when (1) there is at least a reasonable explanation and (2) the explanation
can be delivered promptly, when and where the behavior is first noticed.

Additionally, AM users can cancel a rule. For example, one of the authors was
bombarded with messages about “how to change the toner cartridge in the HP printer
on the 3rd floor” because he had a visit with HP later in the week, according to his
calendar. Cancellation prevents that rule from firing again, at least for a few days,
and avoids similar deluges of unwanted messages.

2 Related work

IPulse™
IPulse™4 is a commercial product that mediates between two subscribers by finding a
way to get a text message or audio stream through, according to the preferences of the
receiver. It can connect users to each other by computer, phone, pager or mobile
phone through a simple point-and-click contact. It also allows users to customize
their communications by setting up individual profiles that indicate when, by whom
and how they want to be reached. It alleviates the contacting person from the burden
of finding the right channel. The iPulse™ framework consists of a client application
and a back-end server system. The main function of the framework is to provide
users with a simple and secure way of establishing communication sessions with other
users or services, running either on IP or other networks like PSTN.

Active Messenger addresses the same problems as iPulse™. However, iPulse™ is
a proprietary system that is directed towards service providers. Although the
manufacturer writes that new services can be implemented easily, legacy services
such as stand-alone paging systems or fax may not be integrated.

OnTheMove
OnTheMove5 is a three-year project that ended 1997. It focused on how to deliver
multimedia content to mobile devices. It is based on the a middleware prototype
called Mobile Application Support Environment (MASE) that is located between the
wireless networks, e.g., GSM, DECT, UMTS, and the applications, e.g., video

4 http://www.ericsson.com/ipulse/
5 http://www.sics.se/~onthemove

Active Messenger: filtering and delivery in a heterogeneous network
Page 9 of 19

conferencing, personal newspaper, etc. MASE stores user preferences, detects the
location of the user, and adapts to the status of the wireless networks and the available
bandwidth. “It hides the complexity of networks from applications, making different
wireless networks appear as a seamless and homogeneous communication medium.
Multimedia conversion allows content to be delivered to a mobile device in a format
that is appropriate to its capabilities and also the characteristics of the network in use.
The location manager provides a means of determining geographical position (…) A
session manager provides resilience to unplanned disconnection and a replica
manager shows how file synchronization can be achieved.” [4]

Although this project addresses the same problems as Active Messenger, no
information is available about if or how MASE filters and prioritizes communication.
It is also not clear how the user specifies her preferences for certain channels
depending on the importance of an event. Active Messenger fits well in the general
framework set by the OnTheMove project.

The Mobile People Architecture
The Mobile People Architecture (MPA) [1][13][10] is a framework for connecting
people instead of their devices. It focuses on finding people and communicating with
them personally, as opposed to communicating only with their possibly inaccessible
machines like cellular phones and pagers that are turned off. The personal proxy has
a dual role. As a tracking agent, the proxy maintains the list of devices or
applications through which a person is currently accessible. As a dispatcher, the
proxy directs communications and uses application drivers to convert the message
into a format that the recipient can see immediately.

The framework of the MPA is more general than the one of Active Messenger,
because it includes also stream-to-message conversion. E.g., if the user receives a
phone call and is currently reachable through email only, the personal proxy converts
the voice mail to an email and sends it to the user's computer. The system looks at the
pitch of an incoming voice message to decide where the message has to be forwarded.

A significant difference between Active Messenger and the Mobile People
Architecture is that the MPA does not take several steps over time to guarantee the
delivery of a message, trying multiple channels and awaiting possible user reactions.

Priorities and Mobile Manager
Microsoft Research’s Notification Platform6 contains several projects that are about
context-sensitive services and incoming messages. Priorities [5] is trained by the user
to assign certain priority levels to incoming email. Using an adaptation of the Support
Vector Machine method to determine the urgency of each message, the program can
announce important email with special audio cues. Priorities senses when the user is
busy by monitoring her activity. Given a stream of sensed keystrokes and mouse
movements, the agent waits an appropriate amount of time after she has stopped
inputting text to interrupt her with a message. Priorities will forward the high priority
email messages and scheduled alerts to the user's cell phone or pager if it senses that
she is away from her desk.

6 http://www.microsoft.com/billgates/speeches/2001/04-02chi.asp

Active Messenger: filtering and delivery in a heterogeneous network
Page 10 of 19

Mobile Manager7 delivers email, calendar, and reminder information from the
user’s Outlook email manager to her mobile device, taking in account information
from Priorities. The user can set up to four different profiles, each with different
notification rules. It can also deliver notifications at customized time intervals, after a
specific number of messages have been accumulated, or after the user’s desktop PC
has been idle for a specified time.

Although these projects include some features of CLUES filtering and AM, they do
not allow sending messages to several devices in turn, awaiting user reactions. AM
goes further by, e.g., supporting graceful device handoff, taking in account if a
message was read on a mobile device, and which communication channels are active.

Others
There are commercial products that implement a partial functionality of AM, mainly
the information request functionality for two-way wireless devices. Most of them do
not have any forwarding or routing capabilities.

PocketGenie™8 by the WolfeTech Corporation™ is an add-on service for two-way
pagers. It provides limited browsing and query-and-response access to Internet
content. A content menu includes directories, reference sections, package tracking,
financial updates, news, sports, horoscopes, traffic and road conditions.

The cross-modal messaging platform by MessageMachines™9 is a service for
delivering messages to instant messaging, mobile phones, pagers, Palm™, and other
devices. Through automatic and remote controls, the subscriber determines where and
how messages should be delivered, absolving the sender from knowing the best way
to reach them.

Thinmail Inc.10 is a forwarding system that filters email attachments and creates
private links. Users sending email from wireless devices can use Thinmail to reformat
messages, stripping and storing attachments, changing HTML mail to plain text, and
previewing documents while a filter selectively blocks senders. A scanning
mechanism interprets commands sent as email messages: document forwarding,
converting it to text, or printing it to any fax machine. The service also acts as a
proxy, so that all email appears as if it came from the user's standard address.

3 Implementation

The Active Messenger was built for the specific communication needs of the
members of the MIT Media Laboratory Speech Interface Group. They have a
multitude of communication channels and devices available. First, there are
networked PC’s and workstations in the offices, and all users have PC’s with dial-up
or even permanent network connections at home. Email can be delivered to
alphanumeric pagers with different ranges (Canard [2][3] is MIT Campus wide,

7 http://www.microsoft.com/office/outlook/mobile/default.htm
8 http://www.wolfetech.com/
9 http://www.messagemachines.com/
10 http://www.thinmail.com/

Active Messenger: filtering and delivery in a heterogeneous network
Page 11 of 19

SkyTel™ USA nation wide in major metropolitan areas), as well as to text-capable
cellular telephones (Short Messaging Service based on the GSM standard). Email can
also be transformed to fax messages and sent to the most likely location of the user,
be it at home or in the office. Furthermore, AM can call up wired or cellular phones
and read the email message using a text-to-speech module, or leave messages on
answering machines and voice mail systems. Additionally, a user can read email and
listen to voice mail from Phoneshell [11], the Speech Group's phone interface to email
and voice mail.

3.1 Channels

One of the challenges of Active Messenger is its need to support a variety of channels
with different characteristics (Table 1). The different characteristics of the devices
and the networks that communicate with them require varying message handling
strategies on the part of the forwarding agent.

One characteristic is whether the channel is full duplex or not. Some paging
systems are do not support any reply or acknowledgement mechanism; old style text
pagers are one example, the Iridium™ worldwide system was another, and the voice
pagers a third. It is very difficult for AM to know whether a one-way channel has
successfully delivered a message.

A second characteristic is buffering. Many channels store undelivered messages
and send them when the target device is back in range or powered up. AM would
prefer that a channel support minimal buffering. If it sends many messages to a
buffered channel that is not sending to the target device, these messages will
eventually be delivered, but at that date, they may no longer be relevant, as they user
may have read them using some different access method. Unwanted messages are
annoying to the recipient, as they may trigger a per-message charge and must be
deleted by hand on the target device. So AM in fact does its own buffering, and relies
on channel buffering only for short periods after a device has been seen to be active.

A third channel characteristic is clearly the supported medium. Text messages can
be sent as text to a pager, converted to image for faxing, or synthesized to speech for a
telephone or voice pager. A voice message cannot currently be converted to text;
instead we send a text message displaying the caller's number (and name, if we can
find it in a personal address book or campus-wide phonebook) and message length.

Fourth, a channel may be asynchronous—messages arrive when sent and generate
an alert, such as a pager—or it may be synchronous—messages are delivered when
the user polls the network, such as the Palm™ VII or voice mail. AM doesn't need to
know this characteristic directly, but it does influence the manner in which it relies on
the channel for buffering. Additionally, the synchronous channels will also buffer
outgoing messages from the device, which means they tend to arrive all at once when
the user “sends” them. This has resulted in some software race conditions that needed
to be worked out, but had not been present when only asynchronous devices were
used.

Finally, and perhaps most important, the channels reveal varying amounts of
information as to the status of a sent message and the state of the device. We were
able to modify the in-house paging system to send back notification from the channel

Active Messenger: filtering and delivery in a heterogeneous network
Page 12 of 19

when the device was detected “back in range” of the transmitter, and also ascertain
when a message had arrived at the pager. (Since the pager radio is much lower
strength than the base station, it is actually possible for the message to arrive at the
pager, but for the acknowledgement message to be too weak to be received, however).
Many channels (Palm™, Pocketmail™, and SMS messaging) provide zero feedback.
We were able to obtain partial feedback from the Skytel™ network by using their web
interface, which allows the sender to check message receipt; the cost to AM is that
this is a more complicated protocol than simply using SMTP to send a text email.

Active Messenger tries different strategies to compensate for this missing
information. The agent watches the user and tries to infer from her behavior if a
device may be able to receive messages, if a single message arrived and was read by
the user.

Table 1: Characteristics of some communication channels

 Is device

two-way?
Is device
buffered?

Info about
device in
range?

Info about
message
received?

Info about
message
read?

Canard pager
[2][3]

Yes Only for 10
minutes

Only back
in range

Yes Possible

SkyTel™ pager Yes Yes No Yes No
Short Messaging
Service (GSM)

Yes Yes No No No

Iridium™ pager No Yes No No No
Palm7 Yes Yes No No No
Pocketmail Yes Yes No No No
Fax machine Yes Yes Yes Yes No
Playing message
to Voice Pager

No Yes No No No

Playing message
to phone

Yes Yes (answering
machine)

Yes Yes No

Playing message
to cellular phone

Yes Yes (voice
mail)

Yes Yes Yes

Phoneshell [11] Yes Yes Yes Yes Yes
UNIX mail spool
file

Yes Yes Yes Yes Yes

New channels can be added easily to AM by adding subroutines that are specific to
the new channel. In many cases, existing device driver subroutines can be recycled
and adapted easily by an average programmer.

Active Messenger: filtering and delivery in a heterogeneous network
Page 13 of 19

3.2 Software Architecture

AM consists of two main programs: the event driven code, and the server process.

Event Driven Code
Whenever a message arrives to the user’s mail spool file, this code gets executed,
once per message, and then stops. It has the following structure (Fig. 3):

First, the email gets read into memory and parsed. MIME elements like
attachments are stripped. Then the user’s preference file is loaded to determine if the
message should be ignored. Next, CLUES generates the message category. Finally,
AM tries to determine if the new message is part of a thread by comparing it with
earlier message subject lines and addresses. All this information is stored in files.

If the message originates from the user’s mobile devices, AM scans it for
information requests from the user. E.g., by typing “wx bos,” the user can request the
weather forecasts for Boston. The most generic message though is a “reply,”
generated using the pager's “reply” mechanism. Back on the subscriber's computer (or
rather, that computer which received the message), the sequence number is detected in
the pager's reply, and the subscriber's message is re-packaged with a return address
that is the subscriber's normal email address, an appropriate subject line, and the
original message attached.

Server Process
The server process—one instance per user—has the following structure (Fig. 4): After
initialization, it goes into a loop where a sequence of modules is executed
sequentially.

First, AM checks if new messages have arrived. If there are new messages, they are
loaded into the main data structure that keeps track of all messages and events per
message. Immediately after loading a new message, a first event is scheduled for this
message: Where and when has this message to be sent to, if at all? The events are
stored in the main data table.

Then AM tries to determine the current location of the user by using the Unix
“finger” command, caller ID information from Phoneshell [11], as well as information
from Activity Server [7], a proprietary location server developed by the Speech
Interface Group. In addition to the Unix “finger” information, this system collects
location information by monitoring the user's telephone lines, as well as from a
network of active IR badges.

In the next step, AM checks the message read status of all messages, going through
the list of messages: What is the likelihood that each message is read? It does that by
checking the user’s mail spool file, web pages of external channels (Canard,
Skytel™), and other resources. After that, AM checks the status of all communication
channels: Did a mobile device register and come back in range? If so, is it necessary
to resend messages?

Then AM goes through the message list and checks if events are due. If so, the
messages get sent to the specified channels, using channel specific device drivers.

Active Messenger: filtering and delivery in a heterogeneous network
Page 14 of 19

Fig. 3. Event driven AM code

Active Messenger: filtering and delivery in a heterogeneous network
Page 15 of 19

Fig. 4: AM server process

Active Messenger: filtering and delivery in a heterogeneous network
Page 16 of 19

After a message is sent, AM immediately schedules the next event for this message,
taking in account the user’s preferences, her current location, the current time, the
current status of the channels, etc. After that, AM stores all content of its data
structures to a web page so that the activities of the agent can be monitored. If the user
preference file has changed, it also reloads all users preferences. Like that, changes
can be made to the behavior of the agent without restarting the program.

By editing the user preference file, the user can change most of the internal
variables. Eventually, AM conducts a self-check and determines if it has to be
restarted.

4 Why is this a difficult problem?

From a user's perspective, the hard part of this problem is ensuring that desired
messages are received in a timely manner minimizing annoying device behaviors.
From a system's perspective, the challenge is monitoring a number of asynchronous
processes and channels and inferring message delivery status from channels that may
reveal minimal information. From a user interface perspective, the challenge is to
exhibit the right behavior at the right time, presenting messages in a manner
appropriate to the characteristics of the channel.

As explained earlier, AM actually runs as two components, one triggered by an
incoming message and the other running continuously to monitor message traffic
channel events. The first is simpler, but is prone to many race conditions, since
multiple messages can arrive in quick succession, and some databases must be shared
among all processes, and locked accordingly. We also need to avoid using temporary
files without assigning each a name unique to the file system, lest multiple processes
write to the same file out of order.

For the server process, first and foremost is that this process needs to be highly
reliable. In fact, a shell process spawns and monitors the Active Messenger; AM
performs periodic internal consistency checks, e.g. to guard against memory leaks,
and self-terminates if its operation is questionable. Another aspect to this problem is
that AM connects to a variety of services using protocols such as http and telnet; these
connections may time out, or the remote server may be very slow, and AM must
handle these service failures gracefully.

Finally, it is difficult to keep even dedicated users satisfied when they are on the
road. Users struggle with marginally reliable communication channels and are often
connecting while busy doing other tasks, or late at night when they would rather be
sleeping. In these times of distraction, lapses in performance are very frustrating. For
example, from time to time AM buffering has had bugs and multiple copies of a
single or, worse, batch of messages gets sent. This results in many irrelevant
interrupts, or in large message upload time over synchronous channels. It is also
difficult while on the road for a user to check the status of AM or restart it, so we
quickly get frustrated. This has made reliability a higher priority than new features.

Active Messenger: filtering and delivery in a heterogeneous network
Page 17 of 19

5 Summary/Evaluation

Two people have used Active Messenger continuously for approximately two years
and find it an essential part of their everyday communication infrastructure. The two
users have different filtering settings. User A, who gets on average 53 messages per
day, lets the agent process almost 90 percent of these messages. User B gets on
average 132 messages per day and lets the agent process 38 percent of them.
Processing nearly 40000 messages per user over a duration of two years puts a high
responsibility on the agent. These two users have depended on AM for over a year
and have found that it significantly impacts their communication habits; they grow
very frustrated when AM is not operational. While this endorsement is of limited
value as these users are the system designers, AM must be providing value if they rely
on it 24/7 for handling their mail in work and social environments. As with any
emerging technology, it is hard to appreciate the value of a new service; the authors
have relied on this system since 1999 and find it hard to imagine life without it.

This project has evolved over several years, and the evolution shows the
development of features that were desired by its users; even a small user base can
reveal significant differences between message handling approaches.

The predecessors of Active Messenger relied on the telephone for message delivery
and spawned CLUES because a non-visual user interface does not support message
browsing well. Although highly filtered phone access is quite powerful, the
asynchronous nature of even one-way text pagers vastly enhanced the communication
potential of a rapid exchange of messages.

Since this was before GSM service (with SMS messaging) was available in the US,
we had immediate need for multiple devices; asynchronous delivery was very difficult
to give up once users had “tasted” it.

As wireless networks proliferated additional paging options became available, with
various costs and coverage areas. The immediate precursor to AM was a scheme
whereby a user could specify, by sending a text message or choosing from a
telephone-based voice menu, which device should receive messages. A per-device set
of filters was also invoked. Additionally, as Knothole was developed, one of the first
features it supported was “message summary” and delivery of relevant messages that
had been missed while using a more restrictive device. This led to a flurry of
intentional activity when entering or leave transmission range to make sure
forwarding was set up correctly and to retransmit missed messages. The switch to
automatic network sensing, and prompt delivery of previously unsent messages when
back in range, were very powerful and almost immediately became “how did we live
without this?” features.

Managing message threads has been a relatively recent feature, occasioned by user
frustration on the road. Once we began to accept AM as a reliable system, it was
increasingly assumed that if an expected message did not arrive, it had not been sent.
But without thread management, a message sent from a “high priority” device would
not receive the response; we quickly forgot this while busy and on the road and would
simply assume that we would get the reply. So threading was added.

The explanation facility has been valuable mostly for debugging and understanding
system behavior, but also, combined with the web page, provides reassurance that
AM is operating as expected, or at least has a good excuse for a sometimes surprising

Active Messenger: filtering and delivery in a heterogeneous network
Page 18 of 19

message delivery. It has also influenced user behavior in some ways. For example, if
I send a message with “hi” in the subject, CLUES will flag all incoming messages
with the same or similar subject as a timely possible reply. This has fostered a move
away from such generic subject lines.

6 Acknowledgements

We would like to thank the members of the Media Lab Speech Interface group who
helped during the design and evaluation phase of this project: Sean Wheeler, Keith
Emnett, Natalia Marmasse, Nitin, Sawhney, Kwan Lee; Allen Milewski and Walter
Bender for reading early drafts of this paper; Pascal Chesnais and Joshua Randall for
helping with Canard issues.

References

1. Appenzeller, G., Lai, K., Maniatis, P., Roussopoulos, M., Swierk, E., Zhao, X., Baker, M.:
The Mobile People Architecture. Technical Report CSL-TR-99-777, Computer Systems
Laboratory, Stanford University (1999).
http://gunpowder.stanford.edu/~laik/projects/mpa/publications/TechReport/html/TechRep
ort.html (last visited 2002, February 18)

2. Chesnais, P. R.: Canard: A framework for community messaging. In First International
Symposium on Wearable Computers, Cambridge, Massachusetts (1997) 108-115.
http://computer.org/proceedings/8192/pdf/81920108.pdf (last visited 2002, February 20)

3. Chesnais, P. R.: A Framework for Designing Constructionist Approaches to Community-
Centered Messaging. Ph.D. thesis, Massachusetts Institute of Technology (1999)

4. Harmer, J.: The OnTheMove project. BT Laboratories, Martlesham Heath, Ipswich,
England (1998).

5. Horvitz, E., Jacobs, A., Hovel, D.: Attention-Sensitive Alerting. Proceedings of UAI ’99,
Conference on Uncertainty and Artificial Intelligence (1999) 305-313.
ftp://ftp.research.microsoft.com/pub/ejh/priorities.pdf (last visited 2002, February 20)

6. Knothole homepage [WWW Document].
http://www.media.mit.edu/~stefanm/pager/ (last visited 2002, February 20)

7. Manandhar, S.: Activity Server: You Can Run But You Can’t Hide. Proceedings of the
1991 USENIX Conference, Nashville, TN (1991) 299-312.

8. Marti, S.J.W.: Active Messenger: Email Filtering and Mobile Delivery. Master’s thesis,
Massachusetts Institute of Technology (1999).
http://www.media.mit.edu/~stefanm/thesis/am.html (last visited 2002, February 20)

9. Marx, M., Schmandt, C.: CLUES: Dynamic Personalized Message Filtering. Proceedings
of CSCW ’96 (1996) 113-121.
http://www.media.mit.edu/speech/papers/1996/marx_CSCW96_clues.pdf (last visited
2002, February 20)

10. Roussopoulos, M., Maniatis, P., Swierk, E., Lai, K., Appenzeller, G., Baker, M.: Person-
Level Routing in the Mobile People Architecture. To appear in Proceedings of the
USENIX Symposium on Internet Technologies and Systems (1999).
http://mosquitonet.Stanford.edu/publications/USITS1999/USITS1999.html (last visited
2002, February 20)

http://gunpowder.stanford.edu/~laik/projects/mpa/publications/TechReport/html/TechReport.html
http://gunpowder.stanford.edu/~laik/projects/mpa/publications/TechReport/html/TechReport.html
http://computer.org/proceedings/8192/pdf/81920108.pdf
ftp://ftp.research.microsoft.com/pub/ejh/priorities.pdf
http://www.media.mit.edu/~stefanm/pager/
http://www.media.mit.edu/~stefanm/thesis/am.html
http://www.media.mit.edu/speech/papers/1996/marx_CSCW96_clues.pdf
http://mosquitonet.stanford.edu/publications/USITS1999/USITS1999.html

Active Messenger: filtering and delivery in a heterogeneous network
Page 19 of 19

11. Schmandt, C.: Phoneshell: The Telephone as a Computer Terminal. Proceedings of ACM
Multimedia ’93 (1993) 373-382.
http://www.media.mit.edu/speech/papers/1993/schmandt_ACM93_phoneshell.pdf (last
visited 2002, February 20)

12. Schmandt, C., Marmasse, N., Marti, S., Sawhney, N., Wheeler, S.: Everywhere
Messaging. IBM Systems Journal, Vol. 39, Nos. 3&4 (2000) 660-677.
http://www.research.ibm.com/journal/sj/393/part1/schmandt.pdf (last visited 2002,
February 20)

13. The Mobile People Architecture homepage [WWW Document].
 http://mpa.stanford.edu/ (last visited 2002, February 20)

14. Procmail homepage [WWW Document].
http://www.procmail.org/ (last visited 2002, February 20)

First version: April 2001
This version: February 20, 2002 (links updated)

http://www.media.mit.edu/speech/papers/1993/schmandt_ACM93_phoneshell.pdf
http://www.research.ibm.com/journal/sj/393/part1/schmandt.pdf
http://mpa.stanford.edu/
http://www.procmail.org/

