
A Layered Brain Architecture for Synthetic Creatures
 Damian Isla Robert Burke Marc Downie Bruce Blumberg
 naimad@media.mit.edu rob@media.mit.edu marcd@media.mit.edu bruce@media.mit.edu

The Media Laboratory

Massachusetts Institute of Technology
 20 Ames St.

Cambridge, MA 02139

Abstract
This paper describes a new layered brain architecture
for simulated autonomous and semi-autonomous
creatures that inhabit graphical worlds. The main
feature of the brain is its division into distinct systems,
which communicate through common access to an
internal mental blackboard. The brain was designed to
encourage experimentation with various systems and
architectures. It has so far proven flexible enough to
accommodate research advancing in a number of
different directions by a small team of researchers.

1.0 Introduction
One approach to designing intelligent systems is to look to
existing biological systems for clues and design principles.
This paper describes C4, the latest in a series of brain
architectures built on this principle by our group. This
architecture is used for simulating the behavior of agents, or
creatures, that inhabit a graphical world. These creatures are
able to sense their environment, learn appropriate actions
based on expectation of external reward and navigate their
environment. C4 sets up a framework to support these and
many other mental abilities. The content and structure of
this framework are inspired by the abilities of real animals
and attempt to deal with some of the constraints that they
face.

Some of the goals for the system were completely
practical: it needed to support graphics with at least a 20Hz
frame rate, input devices (mice and microphones as well as
more exotic interfaces) and network rendering. It also
needed to be scalable enough to support a reasonable
number of autonomous creatures all sensing and reacting to
each other and the world.

But more importantly, the architecture needed to
facilitate the construction and control of synthetic creatures.
Intelligence is often seen as the confluent effect of many
individually unintelligent components (as in [Minsky 1985])
and the architecture needed not only to support those
components individually but also to allow them to coexist

and communicate coherently within one brain. Therefore the
primary goal was to build a system that facilitated:

• Reactive behavior: it should be easy to design and
implement the kind of reactive behavior that many
previous works in the field of autonomous agents
support. [Brooks 1991, Tu et al 1993, Blumberg 1995,
Perlin 1996, Yoon 2000];

• Learning: creatures should adapt their behavior based
on reward and punishment feedback from the world;

• Extensibility: The architecture should be easily
extensible in order to support research in various
different directions by different researchers.
The result is a highly modular architecture with few

essential subsystems and many opportunities for expansion.
The canonical brain includes an internal blackboard,
Sensory and Perception Systems, Working Memory (a
short-term memory model), and Action, Navigation and
Motor Systems.

We have implemented two significant projects to date
with C4. One project is sheep|dog (Figure 1), an interactive
installation piece in which a user plays the role of a
shepherd who must interact through a series of vocal
commands with Duncan, a virtual sheepdog, to herd a flock
of sheep. This system demonstrated some of the basic
reactive, perceptual and spatial abilities of the creatures built
under C4. The other project is Clicker, in which the user
trains Duncan to perform a variety of tricks using the same
“clicker training” technique used to train real dogs.

Figure 1: Duncan the Highland Terrier

The paper proceeds as follows: Section 2.0 will outline
the world model being used; section 3.0 will delve into the
architecture of the brain itself, and the make-up and function
of the various systems that comprise C4; section 4.0 will
present the results of building C4 and the installations that
use it; section 5.0 will present a discussion of various
successful design elements of C4 and sections 6.0 and 7.0
will describe some future and related work.

2.0 World Model
A formal abstraction exists between the agent and the world.
The World model’s primary function is to maintain the list
of creatures and objects and to act as an event blackboard
for the posting and distribution of world events. It also
coordinates network synchronization and manages
rendering.

World events take the form of DataRecords, perceptual
nuggets that can be processed by a creature’s Sensory and
Perception Systems. A DataRecord can represent anything

from an acoustic pattern (Sheep|Dog allowed the user to
“speak” to the dog through a microphone interface) to a
visual or symbolic event. Whether a specific form of
DataRecord can be interpreted depends entirely on the
sensory and perceptual abilities of the sensing creature.

In a single execution of the update loop, events are fed
to each of the creatures and objects and each is prompted to
update itself (this process can happen in parallel). Most
creatures and objects will themselves produce events that
the World will harvest and make available in the next
timestep. Pre- and post-update tasks, including UI updating,
network coordination and rendering, are also performed.

3.0 Brain Overview
Figure 2 shows the layout of a typical creature’s brain. C4 is
organized into a collection of discrete systems that
communicate through an internal blackboard. Any part of
the brain can write to or read from specific “slots” in this
blackboard (differentiated by string labels).

A detailed description of each system follows.

3.1 Sensory System
Physical intelligent systems (biological or otherwise) by
necessity feature a set of well-defined sensors through
which information about world-state and world-events pass.
We protect the integrity of this world-agent division by
making use of a Sensory System abstraction.

The Sensory System is a filter through which all world-
events (represented by DataRecords) must pass. Unlike its
physical equivalents, where any data that passes through is
fair game, in C4 the Sensory System plays an active role in
keeping the virtual creature’s virtual sensation honest. In a
simulated world, there is potentially much more accessible
information than the creature, limited by its sensory
apparatus, should be able to sense. For example, though
Duncan the sheepdog could be given the location of the
sheep that is behind him, he shouldn’t be given it. While
often the role of the Sensory System is to filter out data that
can not be sensed, other times its role is to transform it. For
example, it converts visual location information into the
local space of the sensing creature (Duncan receives all
location information from the world in the coordinate frame
of his left eye) or in attenuating the intensity of a sound or
acoustic event proportionally to the square of the distance
from the source. It is because the same piece of data will be
viewed differently by each creature in the world (and
because sometimes we want some creatures to be able to
cheat and not others) that the individual creature’s Sensory
System performs the event filtering rather than the world
itself.

Perceptual honesty is an important theme for our
research, since we feel that more honest perception leads to
more believable behavior. More importantly, creatures in
the real world are able to make generally good decisions
despite noisy, unreliable and occasionally entirely missing

Sensory System

Perception System

Working Memory

Navigation System

The World

Blackboard

Object of Attention

Motor Desired

Motor Actual
Motor System

Primary Motor Group

Look-At Layer

Emotion layer

Action System

Attention Selection

Action Selection

The World

Percept
Memory
Objects

Postings

Action Groups

Layers

Figure 2: The brain architecture

World
Location

Retinal
Location

Bounding
Box

SoundShape

"sit" "down" "away"

Head
Location

Utterance

Everything

Figure 3: The Percept Tree. The Head Location Percept is derived
from the root of the tree because, at present, all events have
locality. Retinal location and shape only apply to visual events, just
as an event can only be classified as an utterance or a specific
utterance if it is an auditory event.

data. This is the point of Brooks’ insistence on situatedness
[Brooks 1991]. While we do not claim that our virtual world
holds anything close to the complexity of a physical
environment, the Sensory System allows us to begin to face
some of the problems like noisy sensation and McCallum’s
perceptual aliasing [McCallum 1995].

3.2 Perception System
Once the stimulus from the world has been “sensed” it can
then be “perceived.” The distinction between sensing and
perceiving is important. A creature may “sense” an acoustic
event, but it is up to the Perception System to recognize and
process the event as something that has meaning to the
creature. Thus, it is within the Perception System that
“meaning” is assigned to events in the world.

The Perception System takes the form of a Percept Tree
(Figure 3). A Percept is an atomic classification and data
extraction unit that models some aspect of the sensory
inputs passed in by the Sensory System. Given a
DataRecord it returns both a match probability (the
SheepShapePercept will return the probability that a
DataRecord represents the experience of seeing a sheep)
and, if the match is above a threshold, a piece of extracted
data (such as body-space coordinates of the sheep). The
details of how the confidence is computed and what exact
data is extracted are left to the individual percept. The
percept structure might encapsulate a neural net or it might
encapsulate a simple “if … then …else” clause. This
freedom of form is one of the keys to making the C4
Perception System extensible, since the system makes no
assumptions about what a percept will detect, what type of
data it will extract or how it will be implemented.

Percepts are organized hierarchically in terms of their
specificity. For example, a ShapePercept will activate on the
presence of any kind of shape whereas one of its children
may activate only on a specific type of shape (e.g. a
SheepShapePercept). The children of a percept will receive
only the data that was extracted by its parent to process.
This hierarchical structure is primarily an efficiency
mechanism (no point in testing whether an event is the
spoken word “sit” if it has already been determined that the
event was not an acoustic one) and is very similar to
previous hierarchy-of-sensors approaches.

Many percepts are plastic, using statistical models to
characterize and refine their response properties. These
percepts can not only modulate their “receptive fields” (the
space of inputs to which they will respond positively), but,
in concert with the Action System, can modify the topology
of the tree itself, dynamically growing a hierarchy of
children in a process called innovation. As will be described
in section 3.5, the process of innovation is reward-driven,
with only percepts that are believed to be correlated with
increasing the reliability of an action in producing a
desirable outcome being prompted to innovate.

Both the confidence and the extracted data of every
percept are cached in a PerceptMemory object. When a

DataRecord enters the Perception System, a new
PerceptMemory is created, and as the DataRecord is pushed
through the Percept Tree, each percept that registers a
positive match adds its respective data to the new
PerceptMemory. Thus, given a sensory stimulus, the
PerceptMemory represents all the creature can know about
that stimulus.

3.3 Working Memory
Like other agent-control architectures (e.g. [Rosenbloom et
al. 1993]), C4 contains a Working Memory structure whose
function mirrors that of the pyschological conception of
Working Memory – an object-based memory that contains
information about the immediate task or context. The
ultimate goal of Working Memory is to provide a sensory
history of objects in the world. It is on the basis of these
histories that action-decisions will be made, internal credit
for reward assigned, motor-movements modulated, etc. In
C4, Working Memory is a repository for persistent
PerceptMemory objects. Taken together, they constitute the
creature’s “view” of the world.

The PerceptMemory is itself a useful structure. By
caching together the various perceptual impressions made
by a world event (“the thing that was in front of me was also
blue,” blueness and relative location being separate
Percepts) they solve (or perhaps avoid) the infamous
perceptual binding problem ([Treisman 1998]). They also
allow us to submit complex queries to WorkingMemory:
“which is the sheep that is nearest me?”

PerceptMemory objects become even more useful when
they incorporate a time dimension with the data they
contain. On any one timestep, the PerceptMemory objects
that come out of the Perception System will by necessity
only contain information gathered in that timestep.
However, as events often extend through time, it is possible
to match PerceptMemory objects from previous timesteps.
Thus a recent visual event may represent only the latest
sighting of an object that we have been tracking for some
time. In the case of visual events, matching is done on the
basis of shape, or on the basis of location when shape is not
enough to disambiguate incoming visual events (e.g.
distinguishing between two sheep). Location matching is
also used to combine perception information of different
modalities, for example a visual event and an auditory one
that originate from the same location. Assuming that a
match is found, the data from the new PerceptMemory is
added to the history being kept in the old one.

The new confidence is also added to a history of
confidences. On timesteps in which percept data is not
observed, the confidence in the existing data is decayed. The
rate of decay is in part determined by the percept. Roughly,
the rate of decay should be proportional to the observed
variability of the data.

3.4 Prediction and Surprise
The “view” that Working Memory provides of the world
can be informed by more than just direct perception. Much
like our own perception, where unobserved data is
subconsciously “filled in” by low level predictions and
assumptions, creatures implemented under C4 can be
designed to act upon events that are likely to occur, or
qualities that objects are likely to have. We believe that the
ability to recognize temporal patterns and act on them is an
essential component of common sense intelligence.

Sometimes prediction is used not to predict the future
but simply to maintain a coherent view of the present. The
stream of sensory data coming from an object can easily be
interrupted – for example, because the object is out of the
creature’s visual field, or because it is occluded by another
object. In these cases, prediction can allow a creature to
maintain a reasonable estimate of where the object is, even
though it is not being observed.

The actual mechanisms of prediction can take many
forms. Since PerceptMemory objects contain histories of
percept data, it is possible, if the data are vector or scalar, to
use function approximation techniques to extrapolate values.
In more complex cases, periodic behaviors or percept-
activity correlations (the bell always rings before the food
appears – classical conditioning, essentially) can be
recognized and exploited. These prediction-mechanisms
could conceivably extend to common sense knowledge
about the world – if an object is suspended with no visible
support, it might be predicted to fall.

The occasional deviation of predictions from the actual
state of the world – and the magnitude of that deviation –
also provide a basis for surprise. Surprise is an excellent
method for focusing perception, and a PerceptMemory
which has just provided a surprising stimulus is an excellent
candidate for the creature’s object of attention. [Kline 1999]
includes an excellent discussion of expectation and surprise
in synthetic characters. C4 does not currently make use of
surprise.

3.5 Action System
Given a set of PerceptMemory objects that detail the
perceived state of the world, the creature must decide what
action(s) it is appropriate to perform. Many types of
decision-making processes are possible here, however, this
section will discuss the action system that we have
implemented in C4.

3.5.1 ActionTuples
Any Action-representation must address a number of
fundamental questions, namely:

• What do I do?
• When do I do it?
• What do I do it to?
• How long do I do it for?
• What is it worth?

Our representation of action, the ActionTuple, directly
addresses these five questions through its five
subcomponents:
Primitive Action(s) (what do I do?): A piece of code that

actually executes the action in question. An
ActionTuple’s set of primitive actions typically modify
the contents of the blackboard. These postings in turn act
as messages to other parts of the system. For example, the
MOTOR_DESIRED posting holds the name of a physical
behavior requested of the Motor or Navigation Systems.

TriggerContext (when do I do it?): A piece of code that
returns a scalar value representing the relevance of an
ActionTuple given the current state of Working Memory.
Triggers are typically references to percepts in the Percept
Tree (a trigger that points to the “Sheep Shape” percept
will return a high relevance given any PerceptMemory
that has a high “Sheep Shape” confidence). However, the
TriggerContext is general enough that more complex
trigger-conditions can be hand-crafted. As we will see,
Percept-based triggers are useful because they can be
automatically generated through the learning process.

ObjectContext (what do I do it to?): A piece of code that
chooses a target for the action. Again, it is often defined
in terms of percepts (“perform the action on something
that is sheep-shaped AND blue”). When an ActionTuple
is active, the ObjectContext posts the PerceptMemory
chosen into the OBJECT_OF_ATTENTION posting of
the internal blackboard, thereby making it available to the
rest of the system. The ObjectContext is an optional
component, since not all actions are necessarily targeted.

DoUntilContext (how long do I do it for?): A piece of code
that returns a scalar representing the continuing relevance
of an ActionTuple while it is active. This could take the
form of a timer, which drops to zero after a specific
period of time, or some code that looks for more
complicated ending conditions in Working Memory.

Intrinsic Value (what is it worth?): ActionTuples are
ascribed an intrinsic value, which is an indicator of how
generally “good” the ActionTuple is. This is similar to the
Q-value in Q-learning (see [Ballard 1997]). This value
can be used to bias the Action-Selection process and can
be modified through learning (see below).

3.5.2 Action-Selection
The intrinsic value and the relevance (as determined by the
Trigger or the DoUntil contexts) can be combined into a
single evaluated value corresponding to the amount of
reward expected to result from performing an action.
ActionTuples can then compete for expression on the basis
of this evaluated value.

ActionTuples are grouped into ActionGroups that are
responsible for deciding at each moment which single
ActionTuple will execute. Each ActionGroup can have a
unique Action-Selection scheme, but the most common
scheme is described below.

When ActionTuples are added to an ActionGroup they
may be placed on either the Startle or the Default tuple list.
The Startle list contains high priority ActionTuples that
compete deterministically, i.e. the one with the highest non-
zero evaluated-value wins. If no ActionTuple on the Startle
list is relevant, the ActionTuples on the Default list are
allowed to compete probabilistically for expression on the
basis of their e-values.

If an ActionTuple is active, it is generally allowed to
stay active until its DoUntil condition is met. When it is
met, the selection process takes place again. There are two
cases in which an active ActionTuple can be interrupted: if a
StartleTuple becomes relevant (or more relevant than the
current one, if the current one is also a startle) or if the
world changes significantly. This change is measured in
terms of the evaluated values of inactive tuples: if an
inactive ActionTuple’s evaluated value has more than
doubled recently, then another probabilistic tuple selection
takes place between that tuple and the current one.

In C4’s canonical Action System, there are two main
ActionGroups. These are (in order of execution):
• AttentionGroup: Chooses the creature’s focus of attention

(e.g. things that are large, things that are moving fast,
etc.). This decision will often be overridden by later-
executed actions.

• Primary ActionGroup: The ActionGroup whose actions
determine large-scale body motion.

3.5.3 Learning in the Action System
Learning is an important focus of our research, particularly
the kind of learning that is observed in animals. The Action
System implements three types of learning that together
allow creatures to be trained in a manner similar to that used
to train real dogs ([Wilkes, personal communication]).
Credit Assignment: When a new ActionTuple with a high

intrinsic value is activated (for example, the startle tuple
“eat”, which can only be run in the presence of food) we
wish to give credit to the action that led to that tuple being
activated. This back-propagation of value scheme is very
similar to that seen in temporal difference learning
[Sutton 1998]. However, unlike classical temporal
difference learning, it is not always the tuple that actually
ran that is given credit – it can be a tuple with a similar
primitive action list with a more specific trigger that was
relevant at the time. This choice is based on a
combination of reliability and novelty metrics (the length
of the paper precludes going into too much detail).
Whichever tuple is ultimately given credit, some
percentage of the intrinsic value of the newly-activated
tuple is added to the intrinsic value of the credited tuple.

State-space discovery: When Duncan the sheepdog is
rewarded for sitting in response to the utterance “sit”,
there are two conclusions he can make: first, that sitting in
response to “sit” is a good idea; second, the specific
acoustic pattern that was reacted to must be a good
example of the utterance “sit.” Since the “sit” classifier

(in the form of a percept in the Perception System) is
actually represented by an example-based statistical
model, we can use reward information to update that
model. When Duncan receives a large amount of reward
for responding to an utterance, that utterance is added
back into the statistical model that recognized it in the
first place. Thus at the same time as Duncan learns the
value of actions, he refines his conception of the
appropriate context for those actions.

Innovation: Most ActionTuple triggers are direct references
to percepts in the percept tree. When they are, the triggers
keep statistics about the reliability of the percept’s
children in predicting reward. The hope is that one of the
children of the current trigger is actually a better
predictor. For example, sitting in response to “Any
Utterance” (assume “Any Utterance” is a percept with
several children) may be quite a good thing, but
sometimes fails entirely to procure reward. By examining
the reliability statistics, however, we may discover that
sitting in response to a “sit utterance” (assume a “sit
utterance” percept is a child of “Any utterance”) is far
better and more reliable. If this is the case, the
ActionTuple in question will create a copy of itself,
replacing its trigger with a new trigger that references the
“sit utterance” percept. This new ActionTuple will be
added as a “child” to the old one, and will supercede its
parent when both are relevant in an action selection
round. This approach was inspired, in part, by [Drescher
1991] who proposed a very similar scheme for exploring
what are essentially state-action pairs.

Innovation can also be prompted in the percept tree.
Some forms of statistical models allow hierarchical
classifications to be grown (for example, hierarchical
clustering algorithms). If an ActionTuple that references
such a classifier decides to innovate, it prompts the
classifier also to innovate. How this mechanism works
ultimately depends on the kind of model the percept
contains (clustering algorithms can isolate subclusters and
spawn new percepts to represent them). Thus reward
feedback can also drive the growth of the percept tree.

Both state-space discovery and innovation illustrate the
intimate coupling between perception and action selection.
The creature only bothers to refine senses that ultimately
allow it to make better decisions about what to do.

3.6 Navigation System
The deceptively simple act of “eating the food” involves a
host of problems: the creature must be near the food, be
oriented toward it and if approaching it is necessary, must
avoid physical obstacles on the way. The Navigation
System allows such spatial competencies to be included
implicitly in the Action System’s high-level behaviors.

The Navigation System typically functions by
overriding the motor commands passed down by the Action
System. In some cases this command is for an explicit
Navigation task, such as “APPROACH.” In other cases, the

command is directed to the Motor System but with extra
approach and orientation conditions specified which the
Navigation System must work to satisfy. In either case, the
original decision of the Action System is overridden with a
more immediately appropriate motor command. If the
Action System requests an “APPROACH”, the Navigation
System might decide that the best way to implement that
request is through a “GALLOP”. If the Action System
requests a “BEG” but the Navigation System is instructed to
orient the creature first, that command might be replaced
with a “TURN”. The “BEG” will continue to be overridden
until the orientation condition is satisfied.

The Navigation System allows a convenient level of
representation in the Action System, because it relieves the
Action System of the burden of implementing the decisions
it makes. “Approaching” may indeed precede each “eating”,
but behaviorally, both should be part of a single “eating” act
– especially from the point of view of any learning that
takes place. Ultimately, the majority of animal behaviors
follow the “approach, orient and do” model, and the
Navigation System allows these behaviors to be represented
with high-level atoms.

3.7 Motor System
Ultimately, the primary output of a virtual creature is
motion, whether it be motion for the purposes of
locomotion, gesticulation or expressivity. This lowest level
– the level of joint-angle control of the transform hierarchy
that represents the body of the creature – is controlled by the
Motor System. This system takes its inputs from
MOTOR_DESIRED and MOTOR_ADVERB entries of the
internal blackboard.

The design of the Motor System was inspired by the
work of Rose et al [Rose 1999]. The system is organized as
a Verb Graph in which the nodes represent hand-made
animations (Verbs) and the edges represent allowed
transitions between Verbs. The Verb Graph in this way
represents some of the basic physical and continuity
constraints of having a body. Multiple labeled examples of
the same Verb may be provided that span an Adverb space.
If multiple examples are provided, the Motor System does
multi-target interpolation at runtime based on blend
coefficients provided externally by the MOTOR_ADVERB
entry of the blackboard. For example, examples of left-,
straight- and right-walks are used to create a continuous
space of directional walks.

Layering as discussed in [Perlin et al. 1996] is also
supported by the Motor System. Layering allows multiple
non-conflicting animations to be played concurrently (for
example, walking and waving hand). Duncan the sheepdog
has a number of layers corresponding to body-pose, head-
layer (for look-ats), tail-layer etc.

Space limitations preclude a full discussion of recent
research in motor control, which has centered around an
extension of the Verb Graph system called a Pose-Graph.
Pose-Graphs allow source animation files to be decomposed

into atomic animation-chunks which can then be connected
into a directed graph through a “pose-space”. Creatures can
then use this graph to explore new animations, potentially
adding these new animations to its existing list of motor
skills. This system can also be used to demonstrate simple
and complex shaping, a training technique through which
motor skills are perfected through successive
approximations, and luring, in which a trainer can lure a
creature into a certain pose and then reward that pose. For a
complete discussion of the Pose-Graph motor system and its
integration into learning, see [Downie 2001].

4.0 Results
Sheep|dog was created to demonstrate some of the basic
abilities of the creatures implemented under C4. The project
showed creatures acting and reacting to each other and the
world. It also employed some of the group’s acoustic pattern
recognition research to allow Duncan to classify user
utterances as one of six possible commands. This
classification could be trained through a “one-shot learning”
interface so that a new user could achieve a high recognition
rate after a very short (about 15 seconds) training routine.

The project also served as a stress test for the system’s
engineering. It featured two creatures with full brains
(Duncan and the shepherd) and six sheep (flocking
according to Reynolds’ BOIDS algorithm [Reynolds 1987])
and a number of world-obstacles, all running scaled-down
versions of C4. The project also featured distributed
rendering, with two clones running subsets of the system
rendering the same world from different views.

The learning algorithms being developed by our group
were put to use in Clicker, in which a user can train Duncan
using “clicker training” – an actual dog-training technique
in which behaviors are “marked” (by a salient click sound)
and then reinforced with food reward. In this simulation,
Duncan can be trained to associate vocal commands with
behaviors, and demonstrates a number of the phenomena
that one sees in real dog training (i.e. Thorndike’s Law of
Effect, shaping, resistance to extinction etc.). Given an
initial repertoire of a dozen basic behaviors (e.g. “sit”,
“shake”, “lie-down”, “beg”, “jump”, “go-out”) together with
basic navigational and behavioral competencies we have
been able to train him to respond to both symbolic gestures
(i.e. game-pad button presses), and more significantly to
arbitrary acoustic patterns (indeed one user trained Duncan
to respond to commands in Gha, the language of Ghana). A
dozen such tricks can be trained in real-time within the
space of 15 minutes. We have also demonstrated simple
shaping with both motor systems and complex shaping and
luring with the Pose-Graph based motor system

5.0 Discussion

5.1 Heterogeneous Design
Heterogeneity of decision-policy and representation is seen
at multiple levels in C4. The Motor System uses the Verb

Graph structure to plan movements. The Action System
makes decisions using ActionTuples. Within the Action
System itself, different decision-making policies are
employed – Startle ActionTuples are treated differently
from Default ActionTuples. This variety, we feel,
contributes to the system’s robustness and generality. The
many kinds of problems that animals can solve entail many
kinds of solutions. In order to be a viable platform for
intelligence in all its multitude of forms, C4 needed to
support and encourage this heterogeneity.

In acting as the go-between for these disparate systems
and representations, the creature’s internal blackboard plays
an important role. This generic communication device
allows the easy reordering or omission of entire systems as
well as the overriding of the output of one system by
another in a way that would be very difficult if input and
output pairs were directly coupled.

5.2 Simulation- vs. Mental-Representations
C4 enforces a strict split between simulation representations
and mental representations. The former constitute the
“ground truth” of the Virtual World, and are used, for
example, in generating the graphics output. The latter are
the PerceptMemory objects. Forcing a creature to act strictly
on the contents of its own memory demands that it make
decisions not on the basis of the world’s state, but on the
basis of its view of that state.

By divorcing these two representations, many “second-
level” effects become possible, most of them arising from
situations in which the two representations fail to match, i.e.
mistakes. These effects include mistaken identity, surprise,
confusion and the ability to be teased. Paradoxically, these
“mistakes” can add greatly to a creature’s realism. They also
provide some insight into how real creatures commit and
recover from these kinds of errors.

5.3 Supersumption
Two architectural themes are seen throughout C4. The first,
reminiscent of Brooks’ subsumption, is when high-level
systems send control signals to low-level systems in order to
change their behavior (in this case “high-level” and “low-
level” are not intended to reflect “degree of sophistication”).
Another technique for control is when the decisions of high-
level systems, which have a good general idea of what to do,
are overridden by specialized low-level systems that have
specific knowledge of how to do it. We call this
supersumption.

This technique is seen in the Action System, when an
object of attention chosen by the Attention Group is
overridden by an object of attention chosen by the Primary
Action Group (since it controls overall action, it probably
has a more appropriate choice). It is seen again in the
Navigation System, where motor commands sent by the
Action System are overridden with more immediately
appropriate motor commands. In this case, the Motor
System does not know where its instructions come from and

the Action System need not concern itself with the details of
how its instructions are implemented.

5.4 Easy Behavior Design
Throughout C4, there is much machinery to make it easy for
creature designers to specify behavior. Believable behavior
involves many details: the creature’s gaze and physical
positioning must be controlled as appropriate for the active
behavior, the creature’s physical emotion-layers must reflect
an attitude toward the behavior or the behavior’s target, etc.
One strength of C4 is the system’s ability to handle many of
these details automatically through mechanisms like the
Attention System (which also directs eye gaze), the
Navigation System (which hides behavior implementation
details from the Action System and the designer) and layers
and adverbs in the Motor System. It remains for the designer
to fill in a few critical components of the behavior, such as
specifying triggers and ObjectContexts. The extensibility of
the system also makes it clear where and how a creature’s
brain needs to be expanded when new abilities are added.
(Perhaps the Perception System needs a percept to detect a
new type of world event, or perhaps the Motor System
needs a new motor skill.) Whatever the case, the system
conspires to make simple things simple and complex things
possible.

5.5 Building the entire system
No actual brain center ever functions in isolation, but
instead feeds and is fed by a myriad of other centers.
Intelligent behavior is the combination of all their effects.
C4, through its extensibility and easy reconfigurability
allows us to explore some of the basic interactions between
the various components of the brain. This is why building
the entire creature is critical.

6.0 Future work
C4 continues to be a work in progress. Work over the next
year will continue to emphasize behavioral adaptation and
motor learning. We are also exploring how to model
development (physical and mental) and social behavior.
Indeed, C4 is being used as the behavioral engine for a
simulated wolf pack. We are also integrating a model of
hippocampal spatial learning using landmark and path-
integration navigation that will soon give the creatures a
truer sense of space. Inspired by the work of Gallistel
[Gallistel 2000], we are continuing to formalize our ideas
about time, rate and conditioning.

7.0 Related Work
Our work borrows heavily from the impressive work that
has come before. Our ideas about super and subsumption
between layers follow from Brooks’ work (e.g., [Brooks
1991]) as does our emphasis on building the whole creature.
However, in contrast to Brooks’ work, our layers
communicate through Working Memory which seems to us

to be a more general approach and one which reflects our
belief that it is difficult to impose a strict layering in
practice. Our emphasis on the value of taking an
ethologically inspired approach follows from [Reynolds
1987, Tu 1994, Blumberg 1995, Yoon 2000], whose
behavior systems were inspired by the behavioral models of
ethologists such as Tindbergen and Lorenz. We go beyond
this work in our representation of action that admits “time
and rate” as first class objects, and in our integration of
learning. In addition, our approach to perception, from the
Percept Tree to PerceptMemory Objects, is a good deal
more sophisticated and powerful than that proposed in these
earlier systems. We also allow a “behavior designer” to
work at a higher level of abstraction and one which is more
familiar to most people. The tangible benefit of this
approach is that it is far easier to develop creatures using our
system than in our previous work. For example, the
creatures described in Yoon 2000 typically required 30-40
pages of source code to specify their behavior systems. By
contrast, Duncan is specified in less than 10 pages of source.
Finally, our action selection mechanism balances the
pragmatic need for both deterministic and probabilistic
choice of action. Our representation of action sits between
that typically used in reactive systems and that used in
planning systems. As such it borrows from the work of
Maes and Firby [Maes 1990, Firby 1992] and in its emphasis
on choosing a few good representations, from Minsky
[Minsky 1985]. However, by focusing on the 5 big
questions (when, to whom, what, for how long, and how
much is it worth), the ActionTuple goes beyond these
previous representations in providing a surprisingly
powerful and intuitive representation for action. Our system
also is novel in showing how learning may be integrated
into this representation. Our approach to learning borrows
ideas from traditional reinforcement learning [Ballard 1997
for a review], animal psychology [Gallistel 2000] and dog
training [Gary Wilkes, personal communication]. Our
approach to innovation is directly inspired by Drescher’s
seminal work [Drescher 1991]. While only touched on
briefly in this paper, our system is novel in its ability to
perform state-space discovery (i.e. learning new percepts),
behavioral adaptation (i.e. learning new ActionTuples), and
motor learning (i.e. learning new motor actions) in an
integrated framework. Through the use of heuristics such as
temporal proximity, simple statistics such as reliability and
novelty, and by using the consequences of actions to help
discriminate between good and bad examples from which to
build models of relevant state, our system provides an
interesting example of how learning may be successfully
and powerfully integrated into a larger behavioral
framework. While our system does not do “cognitive
modeling” as proposed by Funge [Funge 1999], the system
described could easily be integrated into Funge’s
architecture. Our motor system design borrows heavily from
the ideas of Rose [Rose 1999] and Perlin [Perlin 1996]. Our

contribution, particularly with respect to Rose, is to
demonstrate the usefulness of his approach.
Acknowledgements
Many thanks to everyone in the Synthetic Characters group who
worked hard on C4 and Sheep|Dog: Scott Eaton, Yuri Ivanov, Ben
Resner, Bill Tomlinson, Matt Berlin, Jesse Gray and Geoff Beatty.

References
[Ballard 1997] Ballard, D., An Introduction to Natural
Computation, MIT Press, Cambridge 1997.
[Blumberg et al. 1995] Blumberg, B.M., Gaylean, T., Multi-level
Direction of Autonomous Creatures for Real-Time Virtual
Environments, SIGGRAPH 95 Conference Proceedings, 1995.
[Brooks, 1991] Brooks, R., Intelligence Without Reason,
"Computers and Thought" IJCAI 1991.
[Downie 2001] Behavior, Animation and Music: The Music and
Movement of Synthetic Characters, Unpublished S.M. Thesis, MIT
Media Lab, 2001.
[Drescher 1991] Drescher, G.L. Made-Up Minds:A Constructivist
Approach to Artificial Intelligence, MIT Press, Cambridge 1991
[Firby 1992] Building Symbolic Primitives with Continuous
Control Routines. in: Proceedings of the First International
Conference on AI Planning Systems, College Park MD, June 1992,
pp 62-69.
[Funge et al. 1999] Funge, J., Tu, X., Terzopolous, D., Cognitive
Modeling: Knowledge, Reasoning and Planning for Intelligent
Characters, SIGGRAPH 99 Conference Proceedings, 1999.
[Gallistel et al. 2000] Gallistel, C. R., & Gibbon, J. Time, rate and
conditioning. Psychological Review, 107, pp 289-344.
[Kline 1999] Kline, C., Observation-based Expectation Generation
and Response for Behavior-based Artificial Creatures,
Unpublished S.M. Thesis, MIT Media Lab, 1999.
[Maes 1990] Maes, P. “Situated Agents can have Goals”, Robotics
and Autonomous Systems, Vol 6.
[McCallum 1995], McCallum, A. K. “Reinforcement Learning
with Selective Perception and Hidden State”, Ph.D. Thesis, CS
Department, University of Rochester, 1995.
[Minsky 1985] Minsky, M., Society of Mind, Simon & Schuster,
New York 1985.
[Perlin et al. 1996] Perlin, K., Goldberg, A., Improv: A System for
Scripting Interactive Actors in Virtual Worlds, SIGGRAPH 1996.
[Reynolds 1987] Reynolds, C. W., Flocks, Herds, and Schools: A
Distributed Behavioral Model, SIGGRAPH 87 Conference
Proceedings, 1987.
[Rose et al. 1999] Rose, C.F., Cohen, M., Bodenheimer, B., Verbs
and Adverbs: Multidimensional Motion Interpolation - IEEE
Computer Graphics And Applications, Vol 18, Number 5, 1999.
[Rosenbloom et al. 1993] Rosenbloom, P.S., Laird, J.E. & Newell,
A. (1993) The Soar Papers: Readings on Integrated
Intelligence.Cambridge, MA: MIT Press.
[Treisman 1998] Treisman, A. (1998). The binding problem. In L.
Squire & S. Kosslyn (Eds.), Findings and Current Opinion in
Cognitive Neuroscience. Cambridge: MIT Press, pp 31-38, OR,
Current Opinion in Neurobiology, 1996, 6, pp 171-178.
[Tu et al. 1993] Tu, X., Terzopoulos, D., Artificial Fishes: Physics,
Locomotion, Perception, Behavior, SIGGRAPH 1993.
[Yoon et al. 2000] Yoon, S., Blumberg, B.M., Schneider, G.E.,
Motivation-Driven Learning for Interactive Synthetic Characters,
Autonomous Agents 2000 Conference Proceedings, 2000.

