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Abstract 
This paper describes a new layered brain architecture 
for simulated autonomous and semi-autonomous 
creatures that inhabit graphical worlds. The main 
feature of the brain is its division into distinct systems, 
which communicate through common access to an 
internal mental blackboard. The brain was designed to 
encourage experimentation with various systems and 
architectures. It has so far proven flexible enough to 
accommodate research advancing in a number of 
different directions by a small team of researchers. 

1.0 Introduction 
One approach to designing intelligent systems is to look to 
existing biological systems for clues and design principles. 
This paper describes C4, the latest in a series of brain 
architectures built on this principle by our group. This 
architecture is used for simulating the behavior of agents, or 
creatures, that inhabit a graphical world. These creatures are 
able to sense their environment, learn appropriate actions 
based on expectation of external reward and navigate their 
environment. C4 sets up a framework to support these and 
many other mental abilities. The content and structure of 
this framework are inspired by the abilities of real animals 
and attempt to deal with some of the constraints that they 
face. 

Some of the goals for the system were completely 
practical: it needed to support graphics with at least a 20Hz 
frame rate, input devices (mice and microphones as well as 
more exotic interfaces) and network rendering. It also 
needed to be scalable enough to support a reasonable 
number of autonomous creatures all sensing and reacting to 
each other and the world.  

But more importantly, the architecture needed to 
facilitate the construction and control of synthetic creatures. 
Intelligence is often seen as the confluent effect of many 
individually unintelligent components (as in [Minsky 1985]) 
and the architecture needed not only to support those 
components individually but also to allow them to coexist 

and communicate coherently within one brain. Therefore the 
primary goal was to build a system that facilitated:  

• Reactive behavior: it should be easy to design and 
implement the kind of reactive behavior that many 
previous works in the field of autonomous agents 
support. [Brooks 1991, Tu et al 1993, Blumberg 1995, 
Perlin 1996, Yoon 2000]; 

• Learning: creatures should adapt their behavior based 
on reward and punishment feedback from the world; 

• Extensibility: The architecture should be easily 
extensible in order to support research in various 
different directions by different researchers. 
The result is a highly modular architecture with few 

essential subsystems and many opportunities for expansion. 
The canonical brain includes an internal blackboard, 
Sensory and Perception Systems, Working Memory (a 
short-term memory model), and Action, Navigation and 
Motor Systems. 

We have implemented two significant projects to date 
with C4. One project is sheep|dog (Figure 1), an interactive 
installation piece in which a user plays the role of a 
shepherd who must interact through a series of vocal 
commands with Duncan, a virtual sheepdog, to herd a flock 
of sheep. This system demonstrated some of the basic 
reactive, perceptual and spatial abilities of the creatures built 
under C4. The other project is Clicker, in which the user 
trains Duncan to perform a variety of tricks using the same 
“clicker training” technique used to train real dogs.  

 
Figure 1: Duncan the Highland Terrier 



The paper proceeds as follows: Section 2.0 will outline 
the world model being used; section 3.0 will delve into the 
architecture of the brain itself, and the make-up and function 
of the various systems that comprise C4; section 4.0 will 
present the results of building C4 and the installations that 
use it; section 5.0 will present a discussion of various 
successful design elements of C4 and sections 6.0 and 7.0 
will describe some future and related work. 

2.0 World Model 
A formal abstraction exists between the agent and the world. 
The World model’s primary function is to maintain the list 
of creatures and objects and to act as an event blackboard 
for the posting and distribution of world events. It also 
coordinates network synchronization and manages 
rendering. 

World events take the form of DataRecords, perceptual 
nuggets that can be processed by a creature’s Sensory and 
Perception Systems. A DataRecord can represent anything 

from an acoustic pattern (Sheep|Dog allowed the user to 
“speak” to the dog through a microphone interface) to a 
visual or symbolic event. Whether a specific form of 
DataRecord can be interpreted depends entirely on the 
sensory and perceptual abilities of the sensing creature.  

In a single execution of the update loop, events are fed 
to each of the creatures and objects and each is prompted to 
update itself (this process can happen in parallel). Most 
creatures and objects will themselves produce events that 
the World will harvest and make available in the next 
timestep. Pre- and post-update tasks, including UI updating, 
network coordination and rendering, are also performed.  

3.0 Brain Overview 
Figure 2 shows the layout of a typical creature’s brain. C4 is 
organized into a collection of discrete systems that 
communicate through an internal blackboard. Any part of 
the brain can write to or read from specific “slots” in this 
blackboard (differentiated by string labels). 

A detailed description of each system follows. 

3.1 Sensory System 
Physical intelligent systems (biological or otherwise) by 
necessity feature a set of well-defined sensors through 
which information about world-state and world-events pass. 
We protect the integrity of this world-agent division by 
making use of a Sensory System abstraction. 

The Sensory System is a filter through which all world-
events (represented by DataRecords) must pass. Unlike its 
physical equivalents, where any data that passes through is 
fair game, in C4 the Sensory System plays an active role in 
keeping the virtual creature’s virtual sensation honest. In a 
simulated world, there is potentially much more accessible 
information than the creature, limited by its sensory 
apparatus, should be able to sense. For example, though 
Duncan the sheepdog could be given the location of the 
sheep that is behind him, he shouldn’t be given it. While 
often the role of the Sensory System is to filter out data that 
can not be sensed, other times its role is to transform it.  For 
example, it converts visual location information into the 
local space of the sensing creature (Duncan receives all 
location information from the world in the coordinate frame 
of his left eye) or in attenuating the intensity of a sound or 
acoustic event proportionally to the square of the distance 
from the source. It is because the same piece of data will be 
viewed differently by each creature in the world (and 
because sometimes we want some creatures to be able to 
cheat and not others) that the individual creature’s Sensory 
System performs the event filtering rather than the world 
itself. 

Perceptual honesty is an important theme for our 
research, since we feel that more honest perception leads to 
more believable behavior. More importantly, creatures in 
the real world are able to make generally good decisions 
despite noisy, unreliable and occasionally entirely missing 
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Figure 2: The brain architecture 
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Figure 3: The Percept Tree. The Head Location Percept is derived 
from the root of the tree because, at present, all events have 
locality. Retinal location and shape only apply to visual events, just 
as an event can only be classified as an utterance or a specific 
utterance if it is an auditory event. 



data. This is the point of Brooks’ insistence on situatedness 
[Brooks 1991]. While we do not claim that our virtual world 
holds anything close to the complexity of a physical 
environment, the Sensory System allows us to begin to face 
some of the problems like noisy sensation and McCallum’s 
perceptual aliasing [McCallum 1995].  

3.2 Perception System 
Once the stimulus from the world has been “sensed” it can 
then be “perceived.” The distinction between sensing and 
perceiving is important. A creature may “sense” an acoustic 
event, but it is up to the Perception System to recognize and 
process the event as something that has meaning to the 
creature. Thus, it is within the Perception System that 
“meaning” is assigned to events in the world. 

The Perception System takes the form of a Percept Tree 
(Figure 3). A Percept is an atomic classification and data 
extraction unit that models some aspect of the sensory 
inputs passed in by the Sensory System. Given a 
DataRecord it returns both a match probability (the 
SheepShapePercept will return the probability that a 
DataRecord represents the experience of seeing a sheep) 
and, if the match is above a threshold, a piece of extracted 
data (such as body-space coordinates of the sheep). The 
details of how the confidence is computed and what exact 
data is extracted are left to the individual percept. The 
percept structure might encapsulate a neural net or it might 
encapsulate a simple “if … then …else” clause. This 
freedom of form is one of the keys to making the C4 
Perception System extensible, since the system makes no 
assumptions about what a percept will detect, what type of 
data it will extract or how it will be implemented. 

Percepts are organized hierarchically in terms of their 
specificity. For example, a ShapePercept will activate on the 
presence of any kind of shape whereas one of its children 
may activate only on a specific type of shape (e.g. a 
SheepShapePercept). The children of a percept will receive 
only the data that was extracted by its parent to process. 
This hierarchical structure is primarily an efficiency 
mechanism (no point in testing whether an event is the 
spoken word “sit” if it has already been determined that the 
event was not an acoustic one) and is very similar to 
previous hierarchy-of-sensors approaches. 

Many percepts are plastic, using statistical models to 
characterize and refine their response properties. These 
percepts can not only modulate their “receptive fields” (the 
space of inputs to which they will respond positively), but, 
in concert with the Action System, can modify the topology 
of the tree itself, dynamically growing a hierarchy of 
children in a process called innovation. As will be described 
in section 3.5, the process of innovation is reward-driven, 
with only percepts that are believed to be correlated with 
increasing the reliability of an action in producing a 
desirable outcome being prompted to innovate.  

Both the confidence and the extracted data of every 
percept are cached in a PerceptMemory object. When a 

DataRecord enters the Perception System, a new 
PerceptMemory is created, and as the DataRecord is pushed 
through the Percept Tree, each percept that registers a 
positive match adds its respective data to the new 
PerceptMemory. Thus, given a sensory stimulus, the 
PerceptMemory represents all the creature can know about 
that stimulus. 

3.3 Working Memory 
Like other agent-control architectures (e.g.  [Rosenbloom et 
al. 1993]), C4 contains a Working Memory structure whose 
function mirrors that of the pyschological conception of 
Working Memory – an object-based memory that contains 
information about the immediate task or context. The 
ultimate goal of Working Memory is to provide a sensory 
history of objects in the world. It is on the basis of these 
histories that action-decisions will be made, internal credit 
for reward assigned, motor-movements modulated, etc. In 
C4, Working Memory is a repository for persistent 
PerceptMemory objects. Taken together, they constitute the 
creature’s “view” of the world. 

The PerceptMemory is itself a useful structure. By 
caching together the various perceptual impressions made 
by a world event (“the thing that was in front of me was also 
blue,” blueness and relative location being separate 
Percepts) they solve (or perhaps avoid) the infamous 
perceptual binding problem ([Treisman 1998]). They also 
allow us to submit complex queries to WorkingMemory: 
“which is the sheep that is nearest me?”  

PerceptMemory objects become even more useful when 
they incorporate a time dimension with the data they 
contain. On any one timestep, the PerceptMemory objects 
that come out of the Perception System will by necessity 
only contain information gathered in that timestep. 
However, as events often extend through time, it is possible 
to match PerceptMemory objects from previous timesteps. 
Thus a recent visual event may represent only the latest 
sighting of an object that we have been tracking for some 
time. In the case of visual events, matching is done on the 
basis of shape, or on the basis of location when shape is not 
enough to disambiguate incoming visual events (e.g. 
distinguishing between two sheep). Location matching is 
also used to combine perception information of different 
modalities, for example a visual event and an auditory one 
that originate from the same location. Assuming that a 
match is found, the data from the new PerceptMemory is 
added to the history being kept in the old one.  

The new confidence is also added to a history of 
confidences. On timesteps in which percept data is not 
observed, the confidence in the existing data is decayed. The 
rate of decay is in part determined by the percept. Roughly, 
the rate of decay should be proportional to the observed 
variability of the data. 



3.4 Prediction and Surprise 
The “view” that Working Memory provides of the world 
can be informed by more than just direct perception. Much 
like our own perception, where unobserved data is 
subconsciously “filled in” by low level predictions and 
assumptions, creatures implemented under C4 can be 
designed to act upon events that are likely to occur, or 
qualities that objects are likely to have. We believe that the 
ability to recognize temporal patterns and act on them is an 
essential component of common sense intelligence. 

Sometimes prediction is used not to predict the future 
but simply to maintain a coherent view of the present. The 
stream of sensory data coming from an object can easily be 
interrupted – for example, because the object is out of the 
creature’s visual field, or because it is occluded by another 
object. In these cases, prediction can allow a creature to 
maintain a reasonable estimate of where the object is, even 
though it is not being observed. 

The actual mechanisms of prediction can take many 
forms. Since PerceptMemory objects contain histories of 
percept data, it is possible, if the data are vector or scalar, to 
use function approximation techniques to extrapolate values. 
In more complex cases, periodic behaviors or percept-
activity correlations (the bell always rings before the food 
appears – classical conditioning, essentially) can be 
recognized and exploited. These prediction-mechanisms 
could conceivably extend to common sense knowledge 
about the world – if an object is suspended with no visible 
support, it might be predicted to fall. 

The occasional deviation of predictions from the actual 
state of the world – and the magnitude of that deviation – 
also provide a basis for surprise. Surprise is an excellent 
method for focusing perception, and a PerceptMemory 
which has just provided a surprising stimulus is an excellent 
candidate for the creature’s object of attention. [Kline 1999] 
includes an excellent discussion of expectation and surprise 
in synthetic characters. C4 does not currently make use of 
surprise. 

3.5 Action System 
Given a set of PerceptMemory objects that detail the 
perceived state of the world, the creature must decide what 
action(s) it is appropriate to perform. Many types of 
decision-making processes are possible here, however, this 
section will discuss the action system that we have 
implemented in C4.  

3.5.1 ActionTuples 
Any Action-representation must address a number of 
fundamental questions, namely: 

• What do I do? 
• When do I do it? 
• What do I do it to? 
• How long do I do it for? 
• What is it worth? 

Our representation of action, the ActionTuple, directly 
addresses these five questions through its five 
subcomponents: 
Primitive Action(s) (what do I do?): A piece of code that 

actually executes the action in question. An 
ActionTuple’s set of primitive actions typically modify 
the contents of the blackboard. These postings in turn act 
as messages to other parts of the system. For example, the 
MOTOR_DESIRED posting holds the name of a physical 
behavior requested of the Motor or Navigation Systems.  

TriggerContext (when do I do it?): A piece of code that 
returns a scalar value representing the relevance of an 
ActionTuple given the current state of Working Memory. 
Triggers are typically references to percepts in the Percept 
Tree (a trigger that points to the “Sheep Shape” percept 
will return a high relevance given any PerceptMemory 
that has a high “Sheep Shape” confidence). However, the 
TriggerContext is general enough that more complex 
trigger-conditions can be hand-crafted. As we will see, 
Percept-based triggers are useful because they can be 
automatically generated through the learning process. 

ObjectContext (what do I do it to?): A piece of code that 
chooses a target for the action. Again, it is often defined 
in terms of percepts (“perform the action on something 
that is sheep-shaped AND blue”). When an ActionTuple 
is active, the ObjectContext posts the PerceptMemory 
chosen into the OBJECT_OF_ATTENTION posting of 
the internal blackboard, thereby making it available to the 
rest of the system. The ObjectContext is an optional 
component, since not all actions are necessarily targeted. 

DoUntilContext (how long do I do it for?): A piece of code 
that returns a scalar representing the continuing relevance 
of an ActionTuple while it is active. This could take the 
form of a timer, which drops to zero after a specific 
period of time, or some code that looks for more 
complicated ending conditions in Working Memory. 

Intrinsic Value (what is it worth?): ActionTuples are 
ascribed an intrinsic value, which is an indicator of how 
generally “good” the ActionTuple is. This is similar to the 
Q-value in Q-learning (see [Ballard 1997]). This value 
can be used to bias the Action-Selection process and can 
be modified through learning (see below). 

3.5.2 Action-Selection 
The intrinsic value and the relevance (as determined by the 
Trigger or the DoUntil contexts) can be combined into a 
single evaluated value corresponding to the amount of 
reward expected to result from performing an action. 
ActionTuples can then compete for expression on the basis 
of this evaluated value. 

ActionTuples are grouped into ActionGroups that are 
responsible for deciding at each moment which single 
ActionTuple will execute. Each ActionGroup can have a 
unique Action-Selection scheme, but the most common 
scheme is described below. 



When ActionTuples are added to an ActionGroup they 
may be placed on either the Startle or the Default tuple list. 
The Startle list contains high priority ActionTuples that 
compete deterministically, i.e. the one with the highest non-
zero evaluated-value wins. If no ActionTuple on the Startle 
list is relevant, the ActionTuples on the Default list are 
allowed to compete probabilistically for expression on the 
basis of their e-values.  

If an ActionTuple is active, it is generally allowed to 
stay active until its DoUntil condition is met. When it is 
met, the selection process takes place again. There are two 
cases in which an active ActionTuple can be interrupted: if a 
StartleTuple becomes relevant (or more relevant than the 
current one, if the current one is also a startle) or if the 
world changes significantly. This change is measured in 
terms of the evaluated values of inactive tuples: if an 
inactive ActionTuple’s evaluated value has more than 
doubled recently, then another probabilistic tuple selection 
takes place between that tuple and the current one. 

In C4’s canonical Action System, there are two main 
ActionGroups. These are (in order of execution): 
• AttentionGroup: Chooses the creature’s focus of attention 

(e.g. things that are large, things that are moving fast, 
etc.). This decision will often be overridden by later-
executed actions. 

• Primary ActionGroup: The ActionGroup whose actions 
determine large-scale body motion. 

3.5.3 Learning in the Action System 
Learning is an important focus of our research, particularly 
the kind of learning that is observed in animals. The Action 
System implements three types of learning that together 
allow creatures to be trained in a manner similar to that used 
to train real dogs ( [Wilkes, personal communication]). 
Credit Assignment: When a new ActionTuple with a high 

intrinsic value is activated (for example, the startle tuple 
“eat”, which can only be run in the presence of food) we 
wish to give credit to the action that led to that tuple being 
activated. This back-propagation of value scheme is very 
similar to that seen in temporal difference learning 
[Sutton 1998]. However, unlike classical temporal 
difference learning, it is not always the tuple that actually 
ran that is given credit – it can be a tuple with a similar 
primitive action list with a more specific trigger that was 
relevant at the time. This choice is based on a 
combination of reliability and novelty metrics (the length 
of the paper precludes going into too much detail). 
Whichever tuple is ultimately given credit, some 
percentage of the intrinsic value of the newly-activated 
tuple is added to the intrinsic value of the credited tuple. 

State-space discovery: When Duncan the sheepdog is 
rewarded for sitting in response to the utterance “sit”, 
there are two conclusions he can make: first, that sitting in 
response to “sit” is a good idea; second, the specific 
acoustic pattern that was reacted to must be a good 
example of the utterance “sit.” Since the “sit” classifier 

(in the form of a percept in the Perception System) is 
actually represented by an example-based statistical 
model, we can use reward information to update that 
model. When Duncan receives a large amount of reward 
for responding to an utterance, that utterance is added 
back into the statistical model that recognized it in the 
first place. Thus at the same time as Duncan learns the 
value of actions, he refines his conception of the 
appropriate context for those actions. 

Innovation: Most ActionTuple triggers are direct references 
to percepts in the percept tree. When they are, the triggers 
keep statistics about the reliability of the percept’s 
children in predicting reward. The hope is that one of the 
children of the current trigger is actually a better 
predictor. For example, sitting in response to “Any 
Utterance” (assume “Any Utterance” is a percept with 
several children) may be quite a good thing, but 
sometimes fails entirely to procure reward. By examining 
the reliability statistics, however, we may discover that 
sitting in response to a “sit utterance” (assume a “sit 
utterance” percept is a child of “Any utterance”) is far 
better and more reliable. If this is the case, the 
ActionTuple in question will create a copy of itself, 
replacing its trigger with a new trigger that references the 
“sit utterance” percept. This new ActionTuple will be 
added as a “child” to the old one, and will supercede its 
parent when both are relevant in an action selection 
round. This approach was inspired, in part, by [Drescher 
1991] who proposed a very similar scheme for exploring 
what are essentially state-action pairs. 

Innovation can also be prompted in the percept tree. 
Some forms of statistical models allow hierarchical 
classifications to be grown (for example, hierarchical 
clustering algorithms). If an ActionTuple that references 
such a classifier decides to innovate, it prompts the 
classifier also to innovate. How this mechanism works 
ultimately depends on the kind of model the percept 
contains (clustering algorithms can isolate subclusters and 
spawn new percepts to represent them). Thus reward 
feedback can also drive the growth of the percept tree. 

Both state-space discovery and innovation illustrate the 
intimate coupling between perception and action selection. 
The creature only bothers to refine senses that ultimately 
allow it to make better decisions about what to do. 

3.6 Navigation System 
The deceptively simple act of “eating the food” involves a 
host of problems: the creature must be near the food, be 
oriented toward it and if approaching it is necessary, must 
avoid physical obstacles on the way. The Navigation 
System allows such spatial competencies to be included 
implicitly in the Action System’s high-level behaviors. 

The Navigation System typically functions by 
overriding the motor commands passed down by the Action 
System. In some cases this command is for an explicit 
Navigation task, such as “APPROACH.” In other cases, the 



command is directed to the Motor System but with extra 
approach and orientation conditions specified which the 
Navigation System must work to satisfy. In either case, the 
original decision of the Action System is overridden with a 
more immediately appropriate motor command. If the 
Action System requests an “APPROACH”, the Navigation 
System might decide that the best way to implement that 
request is through a “GALLOP”. If the Action System 
requests a “BEG” but the Navigation System is instructed to 
orient the creature first, that command might be replaced 
with a “TURN”. The “BEG” will continue to be overridden 
until the orientation condition is satisfied. 

The Navigation System allows a convenient level of 
representation in the Action System, because it relieves the 
Action System of the burden of implementing the decisions 
it makes. “Approaching” may indeed precede each “eating”, 
but behaviorally, both should be part of a single “eating” act 
– especially from the point of view of any learning that 
takes place. Ultimately, the majority of animal behaviors 
follow the “approach, orient and do” model, and the 
Navigation System allows these behaviors to be represented 
with high-level atoms. 

3.7 Motor System 
Ultimately, the primary output of a virtual creature is 
motion, whether it be motion for the purposes of 
locomotion, gesticulation or expressivity. This lowest level 
– the level of joint-angle control of the transform hierarchy 
that represents the body of the creature – is controlled by the 
Motor System. This system takes its inputs from 
MOTOR_DESIRED and MOTOR_ADVERB entries of the 
internal blackboard.  

The design of the Motor System was inspired by the 
work of Rose et al [Rose 1999]. The system is organized as 
a Verb Graph in which the nodes represent hand-made 
animations (Verbs) and the edges represent allowed 
transitions between Verbs. The Verb Graph in this way 
represents some of the basic physical and continuity 
constraints of having a body. Multiple labeled examples of 
the same Verb may be provided that span an Adverb space. 
If multiple examples are provided, the Motor System does 
multi-target interpolation at runtime based on blend 
coefficients provided externally by the MOTOR_ADVERB 
entry of the blackboard. For example, examples of left-, 
straight- and right-walks are used to create a continuous 
space of directional walks.  

Layering as discussed in [Perlin et al. 1996] is also 
supported by the Motor System. Layering allows multiple 
non-conflicting animations to be played concurrently (for 
example, walking and waving hand). Duncan the sheepdog 
has a number of layers corresponding to body-pose, head-
layer  (for look-ats), tail-layer etc. 

Space limitations preclude a full discussion of recent 
research in motor control, which has centered around an 
extension of the Verb Graph system called a Pose-Graph. 
Pose-Graphs allow source animation files to be decomposed 

into atomic animation-chunks which can then be connected 
into a directed graph through a “pose-space”. Creatures can 
then use this graph to explore new animations, potentially 
adding these new animations to its existing list of motor 
skills. This system can also be used to demonstrate simple 
and complex shaping, a  training technique through which 
motor skills are perfected through successive 
approximations, and luring, in which a trainer can lure a 
creature into a certain pose and then reward that pose. For a 
complete discussion of the Pose-Graph motor system and its 
integration into learning, see [Downie 2001]. 

4.0 Results 
Sheep|dog was created to demonstrate some of the basic 
abilities of the creatures implemented under C4. The project 
showed creatures acting and reacting to each other and the 
world. It also employed some of the group’s acoustic pattern 
recognition research to allow Duncan to classify user 
utterances as one of six possible commands. This 
classification could be trained through a “one-shot learning” 
interface so that a new user could achieve a high recognition 
rate after a very short (about 15 seconds) training routine. 

The project also served as a stress test for the system’s 
engineering. It featured two creatures with full brains 
(Duncan and the shepherd) and six sheep (flocking 
according to Reynolds’ BOIDS algorithm [Reynolds 1987]) 
and a number of world-obstacles, all running scaled-down 
versions of C4. The project also featured distributed 
rendering, with two clones running subsets of the system 
rendering the same world from different views. 

The learning algorithms being developed by our group 
were put to use in Clicker, in which a user can train Duncan 
using “clicker training” – an actual dog-training technique 
in which behaviors are “marked” (by a salient click sound) 
and then reinforced with food reward. In this simulation, 
Duncan can be trained to associate vocal commands with 
behaviors, and demonstrates a number of the phenomena 
that one sees in real dog training (i.e. Thorndike’s Law of 
Effect, shaping, resistance to extinction etc.). Given an 
initial repertoire of a dozen basic behaviors (e.g. “sit”, 
“shake”, “lie-down”, “beg”, “jump”, “go-out”) together with 
basic navigational and behavioral competencies we have 
been able to train him to respond to both symbolic gestures 
(i.e. game-pad button presses), and more significantly to 
arbitrary acoustic patterns (indeed one user trained Duncan 
to respond to commands in Gha, the language of Ghana). A 
dozen such tricks can be trained in real-time within the 
space of 15 minutes. We have also demonstrated simple 
shaping with both motor systems and complex shaping and 
luring with the Pose-Graph based motor system 

5.0 Discussion 

5.1 Heterogeneous Design 
Heterogeneity of decision-policy and representation is seen 
at multiple levels in C4. The Motor System uses the Verb 



Graph structure to plan movements. The Action System 
makes decisions using ActionTuples. Within the Action 
System itself, different decision-making policies are 
employed – Startle ActionTuples are treated differently 
from Default ActionTuples. This variety, we feel, 
contributes to the system’s robustness and generality. The 
many kinds of problems that animals can solve entail many 
kinds of solutions. In order to be a viable platform for 
intelligence in all its multitude of forms, C4 needed to 
support and encourage this heterogeneity. 

In acting as the go-between for these disparate systems 
and representations, the creature’s internal blackboard plays 
an important role. This generic communication device 
allows the easy reordering or omission of entire systems as 
well as the overriding of the output of one system by 
another in a way that would be very difficult if input and 
output pairs were directly coupled. 

5.2 Simulation- vs. Mental-Representations 
C4 enforces a strict split between simulation representations 
and mental representations. The former constitute the 
“ground truth” of the Virtual World, and are used, for 
example, in generating the graphics output. The latter are 
the PerceptMemory objects. Forcing a creature to act strictly 
on the contents of its own memory demands that it make 
decisions not on the basis of the world’s state, but on the 
basis of its view of that state. 

By divorcing these two representations, many “second-
level” effects become possible, most of them arising from 
situations in which the two representations fail to match, i.e. 
mistakes. These effects include mistaken identity, surprise, 
confusion and the ability to be teased. Paradoxically, these 
“mistakes” can add greatly to a creature’s realism. They also 
provide some insight into how real creatures commit and 
recover from these kinds of errors. 

5.3 Supersumption 
Two architectural themes are seen throughout C4. The first, 
reminiscent of Brooks’ subsumption, is when high-level 
systems send control signals to low-level systems in order to 
change their behavior (in this case “high-level” and “low-
level” are not intended to reflect “degree of sophistication”). 
Another technique for control is when the decisions of high-
level systems, which have a good general idea of what to do, 
are overridden by specialized low-level systems that have 
specific knowledge of how to do it. We call this 
supersumption. 

This technique is seen in the Action System, when an 
object of attention chosen by the Attention Group is 
overridden by an object of attention chosen by the Primary 
Action Group (since it controls overall action, it probably 
has a more appropriate choice). It is seen again in the 
Navigation System, where motor commands sent by the 
Action System are overridden with more immediately 
appropriate motor commands. In this case, the Motor 
System does not know where its instructions come from and 

the Action System need not concern itself with the details of 
how its instructions are implemented. 

5.4 Easy Behavior Design 
Throughout C4, there is much machinery to make it easy for 
creature designers to specify behavior. Believable behavior 
involves many details: the creature’s gaze and physical 
positioning must be controlled as appropriate for the active 
behavior, the creature’s physical emotion-layers must reflect 
an attitude toward the behavior or the behavior’s target, etc. 
One strength of C4 is the system’s ability to handle many of 
these details automatically through mechanisms like the 
Attention System (which also directs eye gaze), the 
Navigation System (which hides behavior implementation 
details from the Action System and the designer) and layers 
and adverbs in the Motor System. It remains for the designer 
to fill in a few critical components of the behavior, such as 
specifying triggers and ObjectContexts. The extensibility of 
the system also makes it clear where and how a creature’s 
brain needs to be expanded when new abilities are added. 
(Perhaps the Perception System needs a percept to detect a 
new type of world event, or perhaps the Motor System 
needs a new motor skill.) Whatever the case, the system 
conspires to make simple things simple and complex things 
possible. 

5.5 Building the entire system 
No actual brain center ever functions in isolation, but 
instead feeds and is fed by a myriad of other centers. 
Intelligent behavior is the combination of all their effects. 
C4, through its extensibility and easy reconfigurability 
allows us to explore some of the basic interactions between 
the various components of the brain. This is why building 
the entire creature is critical. 

6.0 Future work 
C4 continues to be a work in progress. Work over the next 
year will continue to emphasize behavioral adaptation and 
motor learning. We are also exploring how to model 
development (physical and mental) and social behavior.  
Indeed, C4 is being used as the behavioral engine for a 
simulated wolf pack. We are also integrating a model of 
hippocampal spatial learning using landmark and path-
integration navigation that will soon give the creatures a 
truer sense of space. Inspired by the work of Gallistel 
[Gallistel 2000], we are continuing to formalize our ideas 
about time, rate and conditioning. 

7.0 Related Work 
Our work borrows heavily from the impressive work that 
has come before. Our ideas about super and subsumption 
between layers follow from Brooks’ work (e.g., [Brooks 
1991]) as does our emphasis on building the whole creature. 
However, in contrast to Brooks’ work, our layers 
communicate through Working Memory which seems to us 



to be a more general approach and one which reflects our 
belief that it is difficult to impose a strict layering in 
practice. Our emphasis on the value of taking an 
ethologically inspired approach follows from [Reynolds 
1987, Tu 1994, Blumberg 1995, Yoon 2000], whose 
behavior systems were inspired by the behavioral models of 
ethologists such as Tindbergen and Lorenz. We go beyond 
this work in our representation of action that admits “time 
and rate” as first class objects, and in our integration of 
learning.  In addition, our approach to perception, from the 
Percept Tree to PerceptMemory Objects, is a good deal 
more sophisticated and powerful than that proposed in these 
earlier systems. We also allow a “behavior designer” to 
work at a higher level of abstraction and one which is more 
familiar to most people. The tangible benefit of this 
approach is that it is far easier to develop creatures using our 
system than in our previous work. For example, the 
creatures described in Yoon 2000 typically required 30-40 
pages of source code to specify their behavior systems. By 
contrast, Duncan is specified in less than 10 pages of source. 
Finally, our action selection mechanism balances the 
pragmatic need for both deterministic and probabilistic 
choice of action. Our representation of action sits between 
that typically used in reactive systems and that used in 
planning systems. As such it borrows from the work of 
Maes and Firby [Maes 1990, Firby 1992] and in its emphasis 
on choosing a few good representations, from Minsky 
[Minsky 1985]. However, by focusing on the 5 big 
questions (when, to whom, what, for how long, and how 
much is it worth), the ActionTuple goes beyond these 
previous representations in providing a surprisingly 
powerful and intuitive representation for action. Our system 
also is novel in showing how learning may be integrated 
into this representation. Our approach to learning borrows 
ideas from traditional reinforcement learning [Ballard 1997 
for a review], animal psychology [Gallistel 2000] and dog 
training [Gary Wilkes, personal communication]. Our 
approach to innovation is directly inspired by Drescher’s 
seminal work [Drescher 1991]. While only touched on 
briefly in this paper, our system is novel in its ability to 
perform state-space discovery (i.e. learning new percepts), 
behavioral adaptation (i.e. learning new ActionTuples), and 
motor learning (i.e. learning new motor actions) in an 
integrated framework. Through the use of heuristics such as 
temporal proximity, simple statistics such as reliability and 
novelty, and by using the consequences of actions to help 
discriminate between good and bad examples from which to 
build models of relevant state, our system provides an 
interesting example of how learning may be successfully 
and powerfully integrated into a larger behavioral 
framework. While our system does not do “cognitive 
modeling” as proposed by Funge [Funge 1999], the system 
described could easily be integrated into Funge’s 
architecture. Our motor system design borrows heavily from 
the ideas of Rose [Rose 1999] and Perlin [Perlin 1996]. Our 

contribution, particularly with respect to Rose, is to 
demonstrate the usefulness of his approach. 
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