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ABSTRACT 
In this paper, we present ten guiding principles for 
designing construction kits for kids, informed by our 
experiences over the past two decades: 

* Design for Designers 
* Low Floor and Wide Walls 
* Make Powerful Ideas Salient – Not Forced 
* Support Many Paths, Many Styles 
* Make it as Simple as Possible – and Maybe Even Simpler 
* Choose Black Boxes Carefully 
* A Little Bit of Programming Goes a Long Way 
* Figure Out What People Want – But Don’t Ask Directly 
* Invent Things That You Would Want to Use Yourself 
* Iterate, Iterate – then Iterate Again 

While these principles apply especially to the development 
of construction kits, we believe that they could be useful for 
everyone who designs new technologies for kids. 

 
INTRODUCTION 
Over the past 20 years, the two of us have worked together 
on the design of a variety of new technologies for kids. 
Most of our creations can be viewed as “construction kits” 
– that is, systems that engage kids in designing and creating 
things, sometimes on the screen, sometimes in the physical 
world, sometimes both. Kids around the world have used 
our construction kits to create their own animated stories, 
simulations, robotic constructions, interactive sculptures, 
scientific instruments, and multimedia presentations.  

In designing these construction kits, we have had several 
overarching goals: to help kids become more fluent and 
expressive with new technologies (and with “old” 
technologies too); to help them explore important concepts 
(often in the domains of mathematics, science, and 
engineering) through their expressive activities; and, most 
broadly, to help them become better learners. 

In this paper, we make a first attempt to articulate our 
“guiding principles” for designing construction kits for 
kids. These principles have emerged through our 
collaboration with a large number of colleagues, in the 
development of many different construction kits (including 
Lego/Logo [5], Microworlds, StarLogo [6], Programmable 
Bricks [7], and others). When we design new technologies, 

we do not explicitly refer to this list of principles, as if 
checking off items on an agenda. Rather, the principles are 
always sitting in the back of our minds, subtly (and 
sometimes not so subtly) informing each decision we make.  

These guiding principles are influenced (some might say 
biased) by our focus on construction kits. But we feel that 
the principles could be useful for everyone who designs 
new technologies for kids – and, perhaps, those who design 
for adults too. 

1. DESIGN FOR DESIGNERS 
Probably the most important unifying thread in all of our 
projects is our emphasis on “learning through designing.” 
Seymour Papert has served as our most important 
intellectual mentor, and we have been deeply influenced by 
his Constructionist approach to learning and education [3]. 
Like Papert, we believe that the best learning experiences, 
for most people, come when they are actively engaged in 
designing and creating things, especially things that are 
meaningful to them or others around them. 

If our goal is to engage kids in meaningful design 
experiences, then it makes sense for us to design for 
designers – that is, to design things that will enable kids to 
design things. We see the traditional LEGO construction kit 
as a model for what we are trying to achieve with new 
technologies. We provide kids with a simple set of parts (in 
the spirit of LEGO bricks) that they can use to design and 
create a diverse collection of constructions. But our new 
construction kits allow new types of creations: while kids 
use traditional LEGO bricks primarily for static, structural 
creations (such as houses and castles), they use our new 
building blocks for dynamic, interactive creations (such as 
animations in a virtual world or kinetic sculptures in the 
physical world).  

The analogy with LEGO kits also suggests an important 
counter-example. In recent years, a growing number of 
LEGO kits highlight a specific construction (such as a Star 
Wars spaceship or a Harry Potter castle), with many 
specialized pieces. Although it is possible to use these kits 
to create a variety of constructions, many kids build the 
model suggested on the package, or perhaps slight variants, 
and nothing more. This type of activity might qualify as 
“hands-on learning” or “learning-by-doing,” but it is not 
what we mean by “learning-through-designing.” Our goal is 



to develop technologies that not only engage kids in 
constructing things, but also encourage (and support) them 
to explore the ideas underlying their constructions. 

2. LOW FLOOR AND WIDE WALLS 
The Logo programming language is often described as 
having a low floor and high ceiling: it is easy for novices to 
get started (low floor) and possible for experts to work on 
increasingly sophisticated projects (high ceiling).  

In our own work (especially in recent years), we have put 
less emphasis on high ceilings and more emphasis on what 
might be called “wide walls.” That is, we have tried to 
design technologies that support and suggest a wide range 
of different explorations. When kids use our Programmable 
LEGO Bricks, for instance, they can create anything from a 
robotic creature to a “smart” house to an interactive 
sculpture to a musical instrument. We want kids to work on 
projects that grow out of their own interests and passions – 
which means that our technologies need to support a wide 
range of different types of projects. 

When we evaluate the use of our construction kits, we 
consider diversity of outcomes as an indicator of success. If 
the creations from a class of students are all similar to one 
another, we feel that something has gone wrong. And if, 
after finishing one project, a student feels that s/he is 
“done” with the construction kit, again we feel as if we have 
failed.  

We see our construction kits as defining a space to explore, 
not a collection of specific activities. And our hope is that 
kids will continually surprise themselves (and surprise us 
too) as they explore the space of possibilities. When we 
created Programmable Bricks, we didn’t imagine that kids 
would use them to measure their speed on rollerblades, or 
to create a machine for polishing and buffing their 
fingernails. 

To support and encourage this diversity, we explicitly 
include elements and features that can be used in many 
different ways. The design challenge is to develop features 
that are specific enough so that kids can quickly understand 
how to use them (low floor), but general enough so that 
kids can continue to find new ways to use them (wide 
walls).  

3. MAKE POWERFUL IDEAS SALIENT – NOT FORCED 
In a paper [4] written 20 years after the publication of his 
landmark book Mindstorms: Children, Computers, and 
Powerful Ideas [2], Papert noted that educators had reacted 
to the book “as if it were about children and computers, as 
if the third term [powerful ideas] was there as a sound bite.” 
In fact, Papert had intended the idea of “powerful ideas” to 
be at the core of his book – and his work.  

What is a powerful idea? In Mindstorms, Papert describes 
powerful ideas as ideas that “can be used as tools to think 
with over a lifetime.” He points to the idea of “feedback” as 
an example: you can use it to understand many different 
types of phenomena in the world, not only in engineering, 

but also in biology and social sciences. Powerful ideas are 
ideas with leverage: they help you make sense of the world. 

In designing construction kits, one of our primary goals is 
to help kids explore and understand powerful ideas. We 
have found that trying to teach powerful ideas directly is 
not very effective. Rather, our strategy is to provide 
opportunities for kids to encounter and use powerful ideas 
as a natural part of design experiences. 

In developing StarLogo modeling software, for example, 
we designed the objects and commands so that kids 
naturally encounter the idea of “emergence” in the process 
of creating models. If they write rules for cars on a 
highway, they naturally observe how traffic jams emerge 
from the interactions among the cars. If they write rules for 
birds flying in the sky, they naturally observe how flocks 
emerge from interactions among the birds. 

We view StarLogo as a “microworld” for exploring the idea 
of emergence. Similarly, the original Logo turtle served as a 
microworld for exploring ideas of differential geometry, 
and Programmable Bricks serve as a microworld for 
exploring the idea of feedback. Creating new microworlds 
is not easy. In a successful microworld, different kids 
engage in different design activities (e.g., one creates a bird 
flock, another a traffic jam), but all encounter and use the 
same underlying ideas as a natural and integral part of the 
design process. That’s very different from traditional 
educational applications, in which all kids typically work on 
the same activity (e.g., solving a specific puzzle) to learn a 
particular idea. 

4. SUPPORT MANY PATHS, MANY STYLES 
When we were testing an early version of our LEGO/Logo 
technology, we worked with a fourth-grade class in which 
the students wanted to build an amusement park. One group 
of students decided to create a merry-go-round. They 
carefully drew up plans, built the mechanisms, then wrote a 
program to make the ride spin round-and-round whenever 
someone pressed a touch sensor. Within a couple hours, 
their merry-go-round was working.  

Another group of students decided to build a Ferris wheel. 
But before the ride was working, they put it aside and 
started building a refreshment stand next to the Ferris 
wheel. We were concerned: the refreshment stand did not 
have any motor or sensors or programming. We worried 
that the students would miss out on some of the powerful 
ideas underlying the LEGO/Logo activity. But we didn’t 
interfere. After finishing the refreshment stand, the group 
built a wall around the amusement park, created a parking 
lot, and added lots of little LEGO people walking into the 
park. Then, finally, they went back and finished their Ferris 
wheel.  

These two groups represent two very different styles of 
playing, designing, and thinking. Sherry Turkle [12, 13] has 
described these styles as “hard” (the first group) and “soft” 



(the second). In another classification [11], the two styles 
are described as “patterners” and “dramatists.”  

In designing new technologies, we put a high priority on 
supporting users with all different styles – hards as well as 
softs, patterners as well as dramatists. We pay special 
attention to make sure that our technologies are accessible 
and appealing to the softs (and dramatists), since we feel 
that math and science activities have traditionally been 
biased in favor of the hards (and patterners), and we want to 
work affirmatively to close the gap.  

5. MAKE IT AS SIMPLE AS POSSIBLE – AND MAYBE 
EVEN SIMPLER 
In some ways, this guideline seems obvious. Who wants 
needless complication? But there is no doubt that 
technology-based products have become more and more 
complex. One reason is “creeping featurism”: advances in 
technology make it possible to add new features, so each 
new generation of products has more and more features.  

We yearn for a return to the clean simplicity of the 
Macintosh of the 1980s. We see a role for complexity: we 
make use of ever-more complex technologies, and we want 
to help users accomplish complex tasks. But we want the 
user experience to be simple. We try to develop systems 
that offer the simplest ways to do the most complex things.  

We have found that reducing the number of features often 
improves the user experience. What initially seems like a 
constraint or limitation can, in fact, foster new forms of 
creativity.  

In the mid-1990s, for example, we had developed a 
Programmable Brick that was roughly the size of a child’s 
juice box. It could control four motors and receive inputs 
from six sensors. For a sponsor event at the Media Lab, we 
wanted to create some interactive decorations for the tables. 
We didn’t need all of the capabilities of the Programmable 
Brick, so we quickly developed a smaller, scaled-down 
version, roughly the size of a matchbox car. It could control 
only two motors with inputs from only two sensors. We 
expected it to be a short-lived project; we “knew” that most 
users would want more motors and more sensors. But once 
we had developed the scaled-down version, which we 
called a Cricket, people kept finding more and more 
creative applications for it, in spite of (or perhaps because 
of?) its apparent limitations [9]. Over time, we shifted our 
research effort, making the Cricket the centerpiece of our 
new construction kits. Even though the original 
Programmable Brick was better suited for certain projects, 
the simplicity of the Cricket won out. 

6. CHOOSE BLACK BOXES CAREFULLY 
In designing a construction kit, one of the most important 
decisions is the choice of the basic building blocks of the 
kit. This choice determines, to a large extent, what ideas 
users can explore with the kit – and what ideas remain 
hidden from view.  

When kids build robotic devices with our Programmable 
Bricks, for instance, they learn about mechanisms and 
gearing, and they learn about feedback and control. But 
they generally don’t learn about the inner workings of 
motors. The motor remains a black box. If you wanted to 
help kids learn how motors work, you should design a 
construction kit with lower-level building blocks, so that 
kids could build their own motors. 

Similarly, the choice of the basic “building blocks” in a 
programming language determines what kids are likely 
learn as they use the language. When kids put together 
Logo commands like forward and right into instructions 
like repeat 4 [forward 50 right 90] (to make a square) or 
repeat 360 [forward 1 right 1] (to make a circle), they 
gain a better understanding of many important mathematical 
and geometric concepts. But the primitive command 
forward is still a black box. Each time the turtle moves, the 
computer must calculate new x and y positions from the 
original x and y positions using trigonometric calculations. 
These calculations are hidden from the user. If the goal of 
the construction kit were to help kids learn these types of 
trigonometric calculations, then the turtle would be a bad 
black box. But by hiding these calculations inside a black 
box, the turtle frees the user to experiment and explore 
other mathematical and geometric ideas. 

We faced a similar choice when we were developing the 
programming language for our Cricket programmable brick. 
We needed a new command for controlling the color of the 
LEDs that plug into the Cricket. At a low-level, the Cricket 
needs to provide the LED with three inputs for the red, 
green, and blue components of the color. So, at first, we 
provided users with a setcolor command with three numeric 
inputs, to give them direct control over the color. But kids 
found it difficult to use this command for the types of 
activities that they wanted to do. For example, they wanted 
the color of LED to change based on the current reading 
from a temperature sensor. If the temperature sensor 
reported a low value, they wanted the LED to turn blue; as 
the temperature increased, they wanted the color of the 
LED to move through the spectrum, turning red at high 
temperatures. It is very difficult to program this behavior 
using a three-input setcolor command. So we created a 
simpler setcolor command with just a single input that 
ranges from 0 to 100 (the same range as the readings from 
the temperature sensor). Kids could use this new command 
to program the desired behavior with the simple instruction 
forever [setcolor temperature].  

In short, we found that the best way to deal with three 
dimensions was to throw away two of them. (Make it as 
simple as possible – and then even simpler!) If our primary 
goal were to help kids learn about red-green-blue 
composition of light, the single-input setcolor command 
would be a bad choice. But we have found that the single-
input setcolor encourages and supports much great 
exploration of color effects than the three-input version. 



7. A LITTLE BIT OF PROGRAMMING GOES A LONG WAY 
Programming languages are the construction kits of the 
computational world. When kids learn to program, it 
extends the range of what they can design, create, and 
invent with the computer. Moreover, it provides them with 
experience in using and manipulating formal systems – 
experience that can be important in many other domains 
(from mathematics to grammar to law).  

But the history of introducing computer programming to 
kids is a mixed success. When personal computers first 
moved into schools in the early 1980s, programming (often 
with Logo or Basic) was one of the primary activities – and, 
indeed, one of the main rationales for buying the computers 
in the first place. Over the past 20 years, however, the role 
of programming has steadily diminished, even as computers 
have proliferated in schools. Many people now view 
computer programming as a narrow, technical activity, too 
difficult for the masses, appropriate only for the small 
segment of the population who choose it as a career path.  

We continue to believe in the value of everyone learning to 
program, but we are also well aware of the difficulties of 
learning to program. Many beginning programmers hit a 
plateau, able to write simple programs, but unable to go 
further. We have found that it is difficult to help kids get 
beyond this plateau. But, over the years, we have begun to 
realize that being “stuck” on the plateau is not such a big 
problem: kids can learn a great deal, and benefit a great 
deal, while they are on the plateau. We have shifted our 
efforts, trying to leverage what kids can do well, rather than 
worrying about what they can’t. Kids generally have little 
difficulty learning to use imperative (action-oriented) 
commands, simple control structures (like repeat), basic 
conditionals, and simple procedural abstraction. So we have 
been developing programming languages and contexts that 
enable kids to do a lot with those basic elements. 

We attribute the success of our Programmable Bricks to the 
fact that kids can accomplish a lot with a little. Kids can 
work on interesting design projects with very simple 
programs, controlling lights and motors, triggered by inputs 
from sensors. Our new Scratch programming language has 
similar qualities, enabling kids to manipulate rich media 
(sounds, music, animations) with simple combinations of 
commands. 

8. FIGURE OUT WHAT PEOPLE WANT – BUT DON’T 
ASK THEM DIRECTLY 
All good designers want to understand their users, in order 
to design products well-matched to the needs and interests 
of their users. Many design teams invest considerable time 
interviewing users or talking with focus groups, asking 
users for feedback and suggestions on features and 
capabilities. But is asking questions directly to users really 
the best way to understand what they want? 

We don’t think so. We have found that user suggestions are 
usually not very helpful. In some cases, users ask for 
impractical or infeasible features. When we were designing 

the first Programmable Bricks, for instance, elementary-
school students recommended that we design the Bricks so 
that they could fly. In other cases, users ask for only 
incremental changes, not aware of the possibilities of 
radical change. With early versions of Logo software in the 
1980s, users often suggested new ways for the turtle to 
draw – but they never suggested the addition of paint tools.  

Another problem is that users often ask for more flexibility 
than is really needed or desirable. When we showed an 
early version of our Scratch software to potential users, they 
suggested that all of the window panes in the interface 
should be movable and resizable. We implemented a new 
version with that type of flexibility, but users weren’t happy 
with that either. What we needed to do, it turns out, was to 
fine-tune the parameters (i.e., adjust the sizes of the panes), 
not provide full flexibility. Often, designs with well-chosen 
parameters are more successful than designs with fully-
adjustable parameters. We are all in favor of giving control 
to users – but only where control will really make a 
difference in their experiences.  

Rather than asking users what they want, we have found it 
more productive to observe users interacting with our 
prototypes, and try to infer what they want (and don’t want) 
from their actions. Often, their actions speak louder than 
their words. It is usually easy to see when users get 
frustrated, even if they don’t articulate their frustration. 
When we observe users repeatedly making the same 
“mistake” with a prototype, we sometimes are able to revise 
the software so that it behaves in the way that users had 
expected. In early versions of our LogoBlocks graphical 
programming language, for example, users often tried to get 
rid of blocks by dragging them from the workspace back 
onto the palette. Initially, we did not want to allow this 
method for deleting blocks, since we worried that users 
would too often delete blocks by mistake. But after seeing 
users attempt this action repeatedly, we changed the 
software so that it behaved as users expected and wanted. 

9. INVENT THINGS THAT YOU WOULD WANT TO USE 
YOURSELF 
At first blush, this guideline might seem incredibly 
egocentric. And, indeed, there is a danger of over-
generalizing from your own personal tastes and interests. 
But we have found that we do a much better job as 
designers when we really enjoy using the systems that we 
are building. And we have found that it is, in fact, possible 
to design systems that are interesting and enjoyable for both 
kids and ourselves. 

We feel that this approach is, ultimately, more respectful to 
kids. Why should we impose on kids systems that we don’t 
enjoy using ourselves? For example, we are generally 
skeptical of educational software that, in an effort to 
encourage kids to reflect on their actions, requires that kids 
annotate each action that they take. We wouldn’t want to do 
that with the software that we use, so why should we require 
it of kids? 



There is an additional, perhaps less obvious, reason why we 
try to invent things that we enjoy using ourselves. The 
technologies that we develop can not succeed on their own. 
As kids use our technologies, they require support from 
teachers, parents, and mentors. We aim to build not only 
new technologies, but also communities of people who can 
help kids learn with those new technologies. And we have 
found that it is easiest to build those communities if 
everyone involved (adults as well as kids) enjoy using the 
technologies. In New York, for example, groups of MIT 
alumni have been volunteering their time to help kids at 
Computer Clubhouses [8] learn to use our Programmable 
Bricks. The MIT alumni are motivated, in part, by a desire 
to help youth in low-income communities. But there is no 
doubt that they are also motivated by their own desire to 
build robots. 

10. ITERATE, ITERATE – THEN ITERATE AGAIN 
In designing our construction kits, we put a high priority on 
“tinkerability” – we want to encourage kids to mess with 
the materials, to try out multiple alternatives, to shift 
directions in the middle of the process, to take things apart 
and create new versions. Kids learn new lessons with each 
iteration. 

Just as we want kids to iterate their designs, we apply the 
same principle to ourselves. In developing new 
technologies, we have found that we never get things quite 
right on the first try. We are constantly critiquing, adjusting, 
modifying, revising. The ability to develop rapid prototypes 
is critically important in this process. We find that 
storyboards are not enough; we want functioning 
prototypes. Initial prototypes don’t need to work perfectly, 
just well enough for us (and our users) to play with, to 
experiment with, to talk about.  

In his book Serious Play[10], Michael Schrage argues that 
prototypes are especially helpful as conversation starters, to 
catalyze discussions among designers and potential users. 
We agree. We find that our best conversations (and our best 
ideas) happen when we start to play with new prototypes – 
and observe users playing with the prototypes. Almost as 
soon as we start to play with (and talk about) one prototype, 
we start to think about building the next. 

This process requires both the right tools (to support rapid 
development of new prototypes) and the right mindset (to 
be willing to throw out a prototype soon after creating it). 
Too often, the software-development community seems to 
follow a paradigm of: plan ahead, design carefully, then 
implement once. We much prefer the paradigm proposed by 
our colleague John Maeda [1]: imagine, realize, critique, 
reflect, iterate. 

Of course, design principles should be subject to this same 
process. The ten principles discussed in this paper have 
already gone through multiple iterations – and we expect 
that we will continue to iterate them in the future.  
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