ICME2009
BLOCK-BASED COLOR CORRECTION ALGORITHM FOR MULTI-VIEW VIDEO CODING

Boxin Shi, Yangxi Li, Lin Liu, Chao Xu
Key Laboratory of Machine Perception (Ministry of Education)
Peking University, Beijing, China

Lectured by: Boxin Shi (shiboxin@cis.pku.edu.cn)
Outline

1. Problem
 - MVC
 - Color Correction
 - Existed works

2. Algorithm
 - Workflow
 - Colorization
 - Local-to-global

3. Result
 - Picture
 - Histogram
 - Table
Outline

1. Problem
 - MVC
 - Color Correction
 - Existed works

2. Algorithm
 - Workflow
 - Colorization
 - Local-to-global

3. Result
 - Picture
 - Histogram
 - Table
1. Problem
Multi-view Video Coding (MVC)

- New experience in video
- Challenge: huge data
- Similarity in different views
- Temporal VS. spatial motion compensation

1. Problem

Color variation among different views

- Unavoidable cause
 - scene illumination
 - camera calibration
 - jitter speed
- Bad effects to
 - visual quality
 - coding efficiency

1. Problem

Existed color correction methods

Outline

1. Problem
 - MVC
 - Color Correction
 - Existed works

2. Algorithm
 - Workflow
 - Colorization
 - Local-to-global

3. Result
 - Picture
 - Histogram
 - Table
2. Algorithm
Overall workflow

- Multiview video frames input
- Extract the luminance picture
- Macro-block search for correct color
- Colorize other areas
- Mix with global correction for details
- Corrected frames output
2. Algorithm

Colorization scheme

- **Scribble-based**
 - ✓ color blocks as scribbles
- **Y guides U/V**
 - ✓ similar intensity ~ similar color
- **Optimization** [6]

\[
\text{cost}(U) = \sum_{x=1}^{m} \sum_{y=1}^{n} \left(U(x, y) - \sum_{(x+\Delta x, y+\Delta y) \in N} w_N U(x + \Delta x, y + \Delta y) \right)^2
\]

\[
w_N = \exp \left(\frac{-(Y(x, y) - Y(x + \Delta x, y + \Delta y))^2}{2\sigma_N^2} \right)
\]

2. Algorithm

Global mixture

- Block scribble shortcomings
 - square is not enough
 - color bleeding
- Global refinement
 - detect wrongly colored pixels
 - color transfer [7]
 - \(l\alpha\beta \) color space

\[
l^*_T(x, y) = \frac{\sigma_R^l}{\sigma_T^l} (l_T(x, y) - \mu_T^l) + \mu_R^l
\]

Outline

1. Problem
 - MVC
 - Color Correction
 - Existed works

2. Algorithm
 - Workflow
 - Colorization
 - Local-to-global

3. Result
 - Picture
 - Histogram
 - Table
3. Result

Picture (Visual quality comparison)

- Unavoidable cause:
 - scene illumination
 - camera calibration
 - jitter speed

- Bad effects to:
 - visual quality
 - coding efficiency
3. Result

Histogram (YUV space)
3. Result

Table (ratio of best matching blocks in spatial prediction)

- Spatial motion compensation
- Ratio = No. of best matching blocks / total No.
- Partially reflect the correction effectiveness
- PSNR can be influence by various factors

Sequence/Frame	Uncorrected					Proposed method		
	ratio	gain	ratio	gain	ratio	gain	ratio	gain
flamenco2/32	9.16%	0%	16.32%	78.17%	14.40%	57.21%	17.07%	86.35%
flamenco2/256	22.15%	0%	21.98%	-0.77%	25.56%	15.40%	26.81%	21.04%
race1/0	53.88%	0%	55.49%	2.99%	50.30%	-6.64%	55.82%	3.60%
race1/48	24.79%	0%	34.01%	37.19%	33.85%	36.55%	35.62%	43.69%