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Abstract

We consider Magnetoencephalographic (MEG) data in a signal detection
framework. Our data set consists of responses evoked by the voiced
syllables /bÒ/ and /dÒ/ and the corresponding voiceless syllables /pÒ/
and /tÒ/. The data yield well to principal component analysis (PCA),
with a reasonable subspace in the order of three components out of 37
channels. To discriminate between responses to the voiced and voiceless
versions of a consonant we form a feature vector by either matched
Æltering or wavelet packet decomposition and use a mixture-of-experts
model to classify the stimuli. Both choices of a feature vector lead to
a signiÆcant detection accuracy. Furthermore, we show how to estimate
the onset time of a stimulus from a continuous data stream.

1 INTRODUCTION

Magnetoencephalography (MEG) uses SQUID technology to measure the small magnetic
Æelds induced by electrical activity in the brain. Sensitive to roughly the same neural
activity as EEG/ERP, MEG offers some advantages in data analysis and source localiza-
tion. Although multi-sensor MEG systems recording magnetic Øux at kilohertz sampling
rates provide an incredibly rich source of data about brain activity, most current analysis
techniques make use of only a fraction of the data collected (see, e.g., Aulanko et al. 1993,



Fujimaki et al. 1995). The most common approach to the analysis of stimulus evoked
responses with MEG is to record 100 or more time-locked responses to the same stimulus,
average these responses, and then perform single dipole source analysis on the averaged
waves. While averaging serves to reduce noise and to remove ™background∫ activity un-
related to the stimulus, dipole modeling loses the statistics of the averaging and proves a
data-wasteful method of reducing the dimensionality of MEG data.

In this paper, we introduce a new way of looking at MEG data from a signal processing and
discrimination perspective. We show that it is possible to build a classiÆer system to dis-
criminate between different stimuli from the unaveraged data. Principal component analysis
is used to reduce the dimensionality of the data without loss of signiÆcant information.
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Figure 1: MEG data. a) All channels of one raw epoch. b) single-epoch-deÆned PCA
and c) average-response-deÆned PCA of the same data. Average responses to the four
different stimuli after d) single-epoch-deÆned PCA and e) average-response-deÆned PCA.
A single epoch and the average superimposed, in f) single-epoch-deÆned PCA and g)
average-response-deÆned PCA.



2 DATA

The data were collected as part of the experiment reported in Poeppel et al. 1996, where
detailed description of the stimuli and data collection techniques may be found. BrieØy, the
stimuliwere 4 synthesized 300ms syllables, /bÒ/, /pÒ/, /dÒ/, and /tÒ/. The voiced-voiceless
pairs /bÒ/-/pÒ/ and /dÒ/-/tÒ/ differ acoustically only in ™voicing onset time,∫ with the Ærst
member of each pair containing 20ms of ™aspiration∫ prior to the onset of the (voiced)
vocalic portion of the syllable and the second member containing 80ms of aspiration.

MEG recordings were taken in a magnetically shielded room using a 37-channel system
with SQUID-based Ærst-order gradiometer sensors. The sensor array was centered over
the left auditory cortex and the 4 stimuli were presented to the right ear 100 times each,
in pseudorandom order at a variable ISI of 1 to 1.5 seconds. 400 epochs of 600ms were
recorded, time-locked to stimulus onset, with a 100ms pre-stimulus interval. The sampling
rate was 1041.7 Hz with a bandwidth of 400 Hz.

3 ALGORITHMS

Our analysis of theMEGdata proceeds in three steps. In theÆrst we reduce the dimensional-
ity of the data from 37 to the order of three by principal component analysis (PCA) (see Oja
1983). The second step is concerned with analyzing the reduced data in a time-dependent
way with either matched Æltering or wavelet packet analysis. From this step we obtain a
low-dimensional feature vector which we use in step three to do the actual discrimination
with a local experts type model.

3.1 PCA

From Fig. 1 a) it is clear that the incoming signals are not independent. The PCA trans-
formation reduces this redundancy by Ænding the best orthogonal linear subspace1. This is
useful for compact visualization (Fig. 1 b) and c)) as well as for reduction of computational
effort in the subsequent manipulation of the data. The effect of noise on many algorithms
is also reduced as the signal is concentrated to the Ærst channels.

The transformation is deÆned by the eigenvectors of the covariance matrix of the data (see
Oja 1983). With the MEG data, we can deÆne the covariance matrix either by the usual
covariance over single epochs or by the covariance of the averaged responses to the stimuli.

The difference between the two deÆnitions is illustrated by Fig. 1 b)±e): in the data
transformed by the PCAdeÆned by the single epochs, the response is split between channels
2 and 3 whereas the average-deÆned PCA reduces the amount of noise by concentrating
the response in the Ærst channels, and therefore seems preferable. However, if the response
varies from epoch to epoch (e.g. if the response to /dÒ/ were to depend on some other
variable such as the phase of the background brain waves), the covariance matrix of the
single epochs should be used as otherwise information might be lost.

3.2 MATCHED FILTERING

It is well known that time-correlating noisy signals with the known `true signal' leads to
efÆcient estimators and detectors of linear time signals (matched Æltering, see e.g. Brown
and Hwang 1992). We calculate the convolutions of the data with the time-reversed average
responses to the stimuli. These convolved signals peak whenever a stimulus occurs so the

1We considered ICA for this task but the data seem too noisy as well as low-dimensional for it to
help much more than the average-deÆned PCA.



onset time of the stimulus can be estimated. Alternatively, the values of the convolved
signals at a known onset time can be used as a feature vector for discriminating between
different stimuli.

Because matched Æltering is linear, it should perform equally well with both the raw and
the PCA transformed data. However, in practice the data set is large and performing the
computation only on the largest principal components improves the efÆciency markedly.

3.3 WAVELET PACKETS

The windowed training signals are expanded in an orthonormal wavelet packet basis that
assigns coefÆcients in a time-frequency grid (see e.g. Coifman and Saito 1994). The
transform is based on the repeated application of a quadrature mirror Ælter (Daubechies 6
was used in this work) followed by a downsampling step so that at each transform level the
coefÆcients represent the time domain behavior of a particular frequency band.

In the Ærst approach a low-dimensional orthonormal subset of coefÆcients is chosen to
maximize the square distance discrimination measure DSD :

DSD � � ≈wi1 � ≈wi2�2���wi1�wi2�; �1�

where ≈wic denotes the averaged coefÆcient i of stimulus class c, and �wic
is the standard

deviation of coefÆcients wic.

In the second approach we select a optimal complete orthonormal basis from the time
frequency grid. The discriminant power of the squared and normalized coefÆcients is
evaluated in terms of the symmetrized relative entropy (Kullback-Leibler distance) between
either two stimuli (for discrimination) or a `stimulus' and a `non-stimulus' window (for
onset detection). The algorithm for selecting the basis is described in detail in Coifman
and Wickerhauser (1992). The expansion and basis selection is done for all selected PCA
channels.

3.4 CLUSTER-WEIGHTED DETECTION

We use Gaussian-weighted local experts in a Cluster-WeightedModeling framework (Ger-
shenfeld et al 1997) to discriminate between stimulus classes based on the feature vectors
obtained in the previous sections. As opposed to conventional density approximation tech-
niques, each local expert represents a probabilitydistribution in the joint input-outputspace.
The likelihood of a class Ci given a particular feature vector x is

p�Cijx� �
X

j

p�CijEj�p�Ejjx� �2�

where Ej is the expert j and

p�Ejjx� �
p�xjEj�p�Ej�P
k p�xjEk�p�Ek�

� �3�

The domain of each expert is characterized by the probability distribution p�Ejjx� which
in this work is Gaussian. The model is trained by the Expectation Maximization algorithm
(Gershenfeld et al.).

For comparison a statistical discriminator based on the Kullback-Leibler distance is tested.
The complete set of normalized coefÆcients of new data is compared in probability to
the averaged energy distribution of the different reference stimuli. The data is classiÆed
according to the best match.

4 RESULTS
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Figure 2: Two dimensions of the feature vector for the bÒ/dÒ discrimination: a) A/WP b)
A/MF. The small letters refer to the actual sample points; the large letters are the centers
of the local experts. The letter T refers to the voiceless and D to the voiced version of the
consonant.

4.1 VOICED/VOICELESS DISCRIMINATION

We applied the above methods to the data described in section 2. Two different windows
with different offsets were tested, both 256 samples long. The offset for the second window
is beyond the acoustic difference between the stimuli, which ensures that we are detecting
based on brain activity and not simply a MEG recording of the actual stimulus.

As seen in Table 1, it is possible to get a statistically signiÆcant detection accuracy for
voiced/voiceless discrimination. The number of local experts Ne in the detector was
found by cross-validation. Figure 2 shows slices of example input spaces to the mixture
of experts classiÆer. We show the results for one speciÆc subject. The data taken from a
second subject led to nearly identical results. There were no signiÆcant differences between
matched Æltering and the wavelet packet decomposition methods, nor was there signiÆcant
difference between different quadrature mirror Ælters (Haar, CoiØet and Daubechies Ælter
were tested). Two coefÆcients were used to form the wavelet coefÆcient feature vector, as
using more coefÆcients didn't improve performance and led to overÆtting.

Discrimination between the two voiced consonants (/bÒ/-/dÒ/) or the two voiceless con-
sonants (/pÒ/-/tÒ/) was impossible with the available data. The results indicate that more
MEG channels are needed for discrimination in this case (see Fig. 1).

4.2 ONSET DETECTION

Fig. 3 shows the results of using a matched Ælter as well as Kullback-Leibler distance
estimator on some out-of-sample data. Due to the lack of an actual continuous data stream,
chained single epochs were used for this experiment. From these signals, the onset times
of stimuli can be estimated by some peak detection algorithm. It is clear that the Kullback-
Leibler distance is much more sensitive to noise. The periodic structure of the signal
between the onsets is mostly due to the periodicity of the background brain waves.

As a proof-of-principle experiment the local performance of the matched Ælter onset esti-



Table 1: Results for discriminating voiced/voiceless syllables. The last four columns are
the detection results, the numbers before/after the slash are the number of correct/incorrect
classiÆcations.

Window ClassiÆcation
Offset Training Testing

Syllables Method Ne
a (samples) C1 C2 C1 C2

bÒ/pÒ Ab/WPc 10 105 52/18 62/8 25/5 21/9
bÒ/pÒ Sd/WP 4 105 50/20 53/17 25/5 21/9
bÒ/pÒ A/KLe N/A 205 59/11 63/7 25/5 18/12
bÒ/pÒ A/MFf 15 205 52/18 56/14 19/11 25/5
dÒ/tÒ A/WP 4 205 45/25 51/19 19/11 20/10
dÒ/tÒ A/WP 2 105 50/20 49/21 21/9 22/8
dÒ/tÒ A/MF 15 205 57/13 65/5 21/9 25/5

aNumber of clusters (local experts)
bAverage-deÆned PCA
cWavelet packet coefÆcient and cluster-weighted detection
dSingle-epoch-deÆned PCA
eKullback-Leibler distance discrimination
fMatched Æltering discrimination and cluster-weighted detection
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Figure 3: Two example signals from the onset detection. a) matched Æltering b) Kullback-
Leibler distance

mator was estimated on 60 out-of-sample epochs (mixed /pÒ/-/bÒ/ stimuli) by taking the
onset time to be the local maximum within 100 samples of the true onset in either direction.
The estimator worked with an average bias of -0.6 and a standard deviation of 15.3 time
samples.

5 CONCLUSIONS AND FUTURE WORK

The fact that the nonlinear wavelet packet approaches and a simple matched Ælter work
equally well indicates that for the current case where the stimulus is always the same the
response is essentially linear. However, it is not clear whether this would be the case e.g. if
there were several different speakers for each stimulus. Also, given the relatively small
number of recording channels and the apparent subtlety of the contrastive response to the
test stimuli, more training samples will be required to fully test the non-linearmethods. We
are arranging to collect at least 400 sample responses to each of several stimuli similar to
the /dÒ/-/tÒ/ stimuli already employed. Continuously recorded data including responses to
these stimuli will be used to test the signal detection ability of the model derived from these
samples.

We are planning to develop an event-based maximum likelihoodmodel for interpreting the
data. Such a model would be able to attribute parts of the signal to ™uninteresting events∫



based on information in the other channels. It should then be possible to obtain a much
purer signal (e.g. canceling out the background brain waves and heartbeats) and thereby
further improve the accuracy of the onset estimation and stimulus discrimination.

Since MEG provides an extremely rich source of data on brain function, it is important
for cognitive neuroscience to develop analysis techniques for extracting signal from noise
and for identifying crucial features of evoked responses. For computational neuroscience,
the data provide a very good test case for a variety of neural algorithms, as they are time-
dependent, multidimensional, noisy, but regular. In this paper, we have only just begun the
task of mining MEG data.
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