
An Audio-Driven Perceptually Meaningful Timbre Synthesizer

Tristan Jehan, Bernd Schoner∗

MIT Media Laboratory
email: tristan@media.mit.edu, schoner@media.mit.edu

Abstract

A real-time synthesis engine that models and predicts the
timbre of acoustic instruments based on perceptual features
is presented. The timbre characteristics and the mapping
between control and timbre parameters are inferred from
recorded musical data. In the synthesis step, timbre data is
predicted based on new control data enabling applications
such as synthesis and cross-synthesis of acoustic instruments
and timbre morphing between instrument families. The sys-
tem is fully implemented in the Max/MSP environment.

1 Introduction

Timbre is generally defined as the quality of a sound that
distinguishes it from other sounds of the same pitch and loud-
ness. Based on the realization that timbre distinguishes one
instrument from the other, we present a novel approach to
control and synthesize the timbre and sound of different in-
struments. Perceptual parameters, namely pitch, loudness,
and brightness, are extracted from the audio stream of an
acoustic monophonic instrument and are used as input fea-
tures for the prediction of spectral data, i.e. the timbre char-
acteristics of a particular instrument.

In our approach to timbre modeling, we start by extract-
ing perceptual features and a sinusoidal representation from
the audio data. We then infer a mapping between perceptual
features and the spectral representation. During synthesis this
mapping is used to predict a harmonic structure of the timbre
from new control parameters (e.g. from a muted instrument).
The inference and prediction system was implemented using
Cluster-Weighted Modeling (CWM), a probabilistic toolkit
for nonlinear function approximation (Schoner et al., 1998;
Gershenfeld et al., 1999).

Unlike many other synthesis and modeling techniques,
e.g. physical modeling, our approach extracts essential per-
ceptual characteristics directly from the audio signal of a real
acoustic instrument, for example a Stradivarius violin. Hence
we are able to model instruments based on recordings of
the instrument without redesigning the model architecture.
Furthermore, we can exchange control and audio signals of

∗Current address: ThingMagic LLC, Cambridge, MA 02142

different instruments since the perceptual representation and
data structure is preserved across different instruments and
instrument families. This novel technique approach enables
several applications, including the cross-synthesis and mor-
phing of musical instruments.

The software environment has been entirely implemented
in Max/MSP. The library of novel Max objects includes ob-
jects that extract perceptual parameters as well as inference
and prediction objects using CWM (see Max/MSP Imple-
mentation). In particular we present a new Max/MSP exter-
nal that executes the full analysis functionality in real time
(analyzer∼).

2 Previous Work

There have been a variety of relevant attempts to use con-
nectionist models to synthesize and control the sound from
acoustic instruments.

Métois (1996) introduces the synthesis technique
Psymbesis (Pitch Synchronous Embedding Synthesis). He
defines a vector of perceptual control parameters including
pitch, loudness, and brightness and clusters normalized
sound periods in a low-dimensional space. For synthesis
Métois re-samples the periods at the desired pitch, and
adjusts them at the desired loudness.

Wessel et al. (1998) analyzed and parameterized a
database of sounds with respect to pitch, loudness, and bright-
ness and decomposed the sample sounds into frames of spec-
tral data. The perceptual parameters serve as inputs to a feed-
forward network, whereas the spectral parameters serve as
outputs. The network is trained to represent and predict a
specific instrument using an artificial neural network and a
memory-based network.

Schoner et al. (1998) used Cluster-Weighted Modeling to
predict a spectral sound representation given physical input to
the instrument. While the target data was similar to the data
used in (Wessel et al., 1998), the feature vector consisted of
actual physical gestures of the violin player. Special record-
ing hardware was needed to create the set of training data and
to replay the model.

This paper combines the efficiency of Cluster-Weighted
Modeling with spectral synthesis and the idea of perceptual
controls.

Perceptual
Features
Analysis

Spectral
Details
Analysis

Cluster-
Weighted
Modeling

0 20 40 60 80 100 120 140 160
460

480

500

520

540
Pitch

0 20 40 60 80 100 120 140 160
-1

-0.5

0

0.5

1
Loudness

0 20 40 60 80 100 120 140 160
1200

1300

1400

1500

1600
Brightness

Time in Frames

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-8

-6

-4

-2

0

2

4

Fre�uencies

L
o
g
 �m

��it
u
d
e
s

�na��sis - Pea� Pic�ing

Sound
3 components

2*L -1 components

L peaks

Perc. features

Figure 1: Timbre analysis and modeling using Cluster-
Weighted Modeling.

3 Analysis, Modeling and Synthesis

Our approach to timbre modeling is based on the follow-
ing assumptions:

1. We assume that the timbre of a musical signal is char-
acterized by the instantaneous power spectrum of its
sound output.

2. We assume that any given monophonic sound is fully
described by the perceptual parameters pitch, loudness,
and brightness and by the timbre of the instrument.

We conclude that a unique spectral representation of a
sound can be inferred given perceptual sound data and a tim-
bre model. We estimate both perceptual and spectral repre-
sentations from recorded data and then predict the latter given
the former.

We analyze the sound recordings frame by frame using a
short-term Fourier transform (STFT) with overlapping frames
of 24ms at intervals of 12ms. Long windows (e.g. 2048-4096
points at 44.1KHz) with large zero-padded FFTs can be used
since latency is not an issue here.

A spectral peak-picking algorithm combined with instan-
taneous frequency estimation (see next paragraph) finds the
partial peaks from one analysis frame to the next, resulting in
L (= 10 to 40) sinusoidal functions. The number of stored
harmonics L usually determines the sound quality and model
complexity. Since pitch is considered an input to the system,
the spectral vector contains 2L − 1 components ordered as
[A0, M1, A1, M2, A2, . . . , ML, AL] where Ai is the logarith-
mic magnitude of the i-th harmonic and M i is a multiplier of
the fundamental frequency F0, i.e. pitch. F0 relates to the
frequency Fi of the i-th harmonic (Mi = Fi/F0).

For pitch tracking we first perform a rough estimation us-
ing the Cepstrum transformation (Noll, 1967) and then op-
erate on the harmonic peaks of the STFT. Because the am-
biguity associated with the extraction of a bin versus a peak
frequency may be much bigger than a semitone, especially
in the lower range of the spectrum, we use the instantaneous

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

Frequencies

Lo
g

A
m

pl
itu

de
s

Analysis - Peak Picking

Figure 2: Spectrum of a violin (24ms frame of data). The
stars indicate the harmonic peaks of the spectrum as found by
the peak tracking algorithm.

frequencies1 of the selected bins to obtain a much higher res-
olution with little extra computation (Métois, 1996).

Given the spectral decomposition, we extract pitch as the
frequency of the fundamental component. In order to extract
the instantaneous loudness of the signal, the power-spectrum
bins are weighted by coefficients from the Fletcher-Munson
curves which simulate the frequency response of the ear. The
spectral centroid of the signal is used as an estimator for the
brightness of the sound (Wessel, 1979). In a second pass
through the data, estimation errors are detected and elimi-
nated. Frames that are considered “bad” are dropped. The
peaks of the spectrum are used as an harmonic representation
of the audio signal and as target data for our predictive model.

In the synthesis step we start with a new stream of audio
input data. This time, the perceptual control features are ex-
tracted in real time from the audio stream. They are used as
input to the nonlinear predictor function which outputs a vec-
tor of spectral data in real time. The output vector is used for
an additive synthesis engine that modulates sinusoidal com-
ponents and superimposes them in the time domain, resulting
in the deterministic component of the signal. In the next sec-
tion, we show how a stochastic noise process will be added to
create a more accurate timbre representation.

We observe that the timbre of any particular instrument
or instrument family is contained in the predictor model (see

1
Given the non-windoweddiscrete Fourier transform X(k) =

∑n−1

n=0
s(n)e−jwnk with w = 2π

N
the estimate for bin k’s instantaneous frequency is:

Finst(k) = Fs

(
k

N
+

1

2π
Arg

[
A

B

])
(1)

A = X(k) −
1

2
[X(k − 1) + X(k + 1)]

B = X(k) −
1

2

[
e

jw
X(k − 1) + e

−jw
X(k + 1)

]

400

450

500

550

600
Pitch, Loudness, and Brightness

F
re

qu
en

cy
 in

 H
z

-6

-4

-2

0

2

lo
g(

A
m

pl
itu

de
)

0 1 2 3 4 5 6
1200

1400

1600

1800

F
re

qu
en

cy
 in

 H
z

Time (Seconds)

Figure 3: Typical perceptual-feature curves for a female
singing voice.

section Cluster-Weighted Modeling), whereas the musical in-
tent is contained in the parameterization of the perceptual
control data.

4 Noise Analysis/Synthesis

We seek to improve the sound quality of the additive syn-
thesis approach by modeling the residual nondeterministic
components of the sound in addition to the deterministic har-
monic components (Serra, 1997; Rodet, 1997). While the
harmonic structure is usually described as a sum of sinusoidal
functions, there are several approaches to model the residue
or noise spectrum (Goodwin, 1996). Here we present a novel
approach to noise modeling by means of a polynomial expan-
sion.

In general, the power spectrum of the non-harmonic com-
ponents of the signal reflects its noise characteristics. Sub-
tracting the power spectrum of the deterministic harmonic
components from the power spectrum of the mixed signal we
extract the residual spectrum for each time frame. We then
approximate the shape of the power spectrum of the residue
by means of a superposition of polynomial basis functions:

f(x) =
K∑

k=0

akfk(x) (2)

where fk(x) are all polynomial function of x up to a given
polynomial order. The input vector x consists of the usual
perceptual parameters as well as a noise/signal ratio (noisi-
ness) estimator. In addition, x contains the frequency f of a
particular point in the spectrum.

We use up to 30 basis functions and coefficients. The co-
efficients are determined by means of a simple matrix inver-

sion generating the best solution in the least square sense:

a = B−1 · c (3)

[B]ij = 〈fi(x) · fj(x)〉
[c]j = 〈y · fj(x)〉

where 〈·〉 is the inner product.
In the synthesis step, white noise is multiplied with the

reconstructed noise function in the spectral domain. After
scrambling the perceptually irrelevant phase information the
colored noise is transformed back into the time domain using
an inverse FFT. The method is particularly successful with
breath noise that appears in the residue of instruments like the
flute. The accuracy of the noise model scales with the number
of basis functions used and can be adjusted during synthesis.
Computational speed is generally not an issue when executed
on a state of the art PC or Macintosh computer.

7

8

9

10

11

12

13

14

N
or

m
al

iz
ed

 L
og

(A
m

pl
itu

de
)

Polynomial Approximation

0 5000 10000 15000 20000
Frequency

N
or

m
al

iz
ed

 L
og

(A
m

pl
itu

de
)

7

8

9

10

11

12

13

14

6

6

Figure 4: Typical noise spectrum of the violin (24ms FFT)
approximated with a polynomial function (25 basis functions)
at the onset of a new note (top) and at decay (bottom). The
vertical line shows brightness and the horizontal line shows
loudness.

Our parameterization of sound is comparable to Serra’s
Spectral Modeling Synthesis implementation (Serra, 1997).
However, our system removes the temporal axis to dynam-
ically control musical features by generating new envelope
functions in real time.

5 Cluster-Weighted Modeling

We approximate the nonlinear mapping from the feature
vector to the harmonic target vector using the general in-
ference framework, Cluster-Weighted Modeling. CWM is a
framework for supervised learning based on probability den-
sity estimation of a joint set of input feature and output target
data. It is similar to mixture-of-experts type architectures and
can be interpreted as a flexible and transparent technique to
approximate an arbitrary function. CWM describes local data
features with simple polynomial models, but uses a fully non-
linear weighting mechanism to build overall powerful nonlin-
ear models. Hence CWM combines the efficient estimation
algorithm of generalized linear models with the expressive
power of fully nonlinear network architecture.

The model architecture has been described in detail in dif-
ferent places (Schoner et al., 1998; Gershenfeld et al., 1999).
Here we only indicate the predictor function y(x):

y(x) =
∑K

k=1 f(x,ak) p(x|ck) p(ck)∑K
k=1 p(x|ck) p(ck)

(4)

We observe that the predicted y is a superposition of the
local polynomial functions, where the weight of each contri-
bution depends on the posterior probability that an input point
was generated by a particular function. The denominator as-
sures that the sum over the weights of all contributions equals
unity.

-1.5 -1 -0.5 0 0.5 1 1.5 2

-3

-2

-1

0

1

2

Normalized Pitch

N
or

m
al

iz
ed

 L
ou

dn
es

s

Cluster Allocation

Figure 5: Example with 4622 Stradivarius data points (6
notes) and allocated clusters in a two-dimensional input
space. The vertical and horizontal lines represent the weight
and variances of each cluster.

The model parameters are found in an iterative search
based on the Expectation-Maximization algorithm (EM). A
detailed description of the search updates is available in
(Schoner et al., 1998) and (Gershenfeld et al., 1999).

6 Max/MSP Implementation

The analysis, prediction, and synthesis system has been
completely implemented in the Max/MSP environment (Puck-
ette, 1988; Zicarelli, 1998) and runs in real time. The new li-
brary of Max objects includes the following utility functions:

1. CWM-model infers a CWM model from training data.
The function reads in multi-dimensional feature and
target data from two independent data files. It then op-
timizes the coefficients of the probabilistic network to
best fit the nonlinear function that maps the input vec-
tor to the output vector. After convergence, the object
creates a third text file that contains the model data in-
cluding a description of the specific architecture, i.e.
the dimensionality of the problem and the coefficients
of the network. The object takes the arguments my-
ModelName, numberOfClusters, NumberOfIterations,
and polynomialOrder. The object is generic and can be
used to model other nonlinear systems.

2. CWM-predict reads in the text file containing the
model data at start-up. Given a list containing the el-
ements of the feature vector, the object continuously
predicts output lists, which in our application contain a
spectral parameterization of the predicted sound. The
object takes only one argument: myModelName.

3. analyzer∼ estimates the following series of percep-
tual features: pitch, loudness, brightness, noisiness, on-
sets, and Bark scale decomposition. The user chooses
the type of window (Rectangular, Bartlett, Welch, Han-
ning, Hamming, or Blackman), the window size N (de-
fault: 1024 points), the percentage of window overlap
(default: 50%), and the FFT size (default: 1024 points).
Pitch and onset estimations are based on the MSP ex-
tension fiddle∼ (Puckette and Apel, 1998). Loud-
ness is estimated by weighting the frequency bins k
of the power spectrum by the coefficients Wk obtained
from the interpolation of the Fletcher-Munson curves:

loudness =

N
2 +1∑
k=2

(
Wk · |ak|2

)
(5)

where ak is the linear amplitude of frequency bin k up
to bin N/2 + 1. N/2 + 1 corresponds to the frequency
Fs/2. Note that the lowest bin is discarded to avoid
unwanted bias from the DC component.

The spectral centroid of a frame (Wessel, 1979) mea-
sures brightness:

centroid =
∑N

2 +1

k=2 fk · ak∑N
2 +1

k=2 ak

(6)

where fk is the frequency in Hz of frequency bin k.

The Spectral Flatness Measure (SFM) determines if the
actual frame is more noise-like or tone-like. It is de-
fined as the ratio of the geometric to the arithmetic
mean of the energy per critical band Eb, expressed in
dB:

SFMdB = 10 log 10

(∏bt

b=1 Eb

) 1
bt

1
bt

∑bt

b=1 Eb

 (7)

where bt is the total number of critical bands on the sig-
nal. In analyzer∼, we first decompose the spectrum
into a Bark scale, which gives 25 bands at 44.1 KHz
(see below).

The SFM value is used to calculate the noisiness or
“tonality factor” (Johnston, 1988) as follows:

α = min
(

SFMdB

SFMdBmax
, 1
)

(8)

with SFMdBmax = −60dB. The closer α is to zero,
the noisier the frame is.

The Bark scale is an auditory filter bank (Smith and
Abel, 1999) with the number of bands depending on
the sampling rate: 25 bands at 44.1 KHz. It is estimated
from the FFT using the approximation function (Sporer
and Brandenburg, 1995):

b = 13 tan−1

(
0.76 ∗ f

1000

)
+ 3.5 tan−1

((
f

7500

)2
)

where f is the frequency in Hertz and b is the mapped
frequency in Barks.

analyzer∼ uses a specifically optimized real-FFT.
As phase is irrelevant in our application, we can per-
form the FFT twice as fast by considering only the real
components of the FFT. We exploit the symmetry of
the transform and split the audio data set in half. One
data set takes the even-indexed numbers and the other
the odd-indexed numbers, thereby forming two real ar-
rays of half the size. The second real array is treated as
a complex array.

An optional phase argument delays the initial FFT. Sev-
eral objects may run together without having to com-
pute all parallel FFTs simultaneously since their occur-
rences are unsynchronized. The object was measured
to use less than 5% of CPU load on a 500 MHz Mac-
intosh G4 with a 4096-point FFT overlapping by 3584
points at 44.1 KHz.

4. Externals which extract each of the described
perceptual parameters individually are also avail-
able: pitch∼, loudness∼, brightness∼,
noisiness∼, and bark∼.

5. The MSP extension sinusoids∼ is used for real-
time additive synthesis (Freed and Jehan, 1999).

The full implementation requires modest amounts of com-
puting resources. A timbre-prediction model needs as little
as a few tens of kilobytes of text in storage. For combined
real-time timbre prediction and synthesis using three percep-
tual input features and thirty sinusoidal output components,
less than 15% of CPU time on a 500MHz Macintosh G4 is
required.

Whereas the real-time synthesis is fast, the offline model-
ing step is computationally intensive. Depending on the com-
plexity of the model, a few hours of computation at 100%
CPU load are needed for optimization of the model parame-
ters.

7 Applications

7.1 Timbre synthesis

Several full timbre models were created including models
of a male singing voice, two soprano female singing voices,
a Stradivarius violin, and woodwind instruments. Up to 20
minutes of sound data covering a range of possibilities of each
instrument were recorded, i.e. various pitches, dynamics, and
playing styles. For instance, we instructed the singers to sing
long glissandi, various volumes, sharp and soft attacks, vi-
bratos, etc. We also used the McGill University Master Sam-
ple library for woodwind instruments.

We are able to control timbre synthesis dynamically. The
technique allows for continuous changes in articulation and
musical phrasing, and for highly responsive sound output.
The output sound does not suffer from undesired artifacts due
to sample interpolation, sample looping, and pitch shift. The
sound quality scales nicely with the number of sinusoidal and
polynomial basis functions. The number of harmonics used
ranges from a few to up to 40 in different experiments. Be-
fore synthesis the user can dynamically change the control
data in order to modify the pitch (see pitch shifting), loudness
or brightness of the output sound.

Figure (6 - left) shows the reproduction of the first seven
harmonics predicted by a full female singing voice model
based on a new female singing voice input. The predicted
signal matches closely the original although the input data
was not part of the training data.

7.2 Cross-synthesis

Instead of driving an instrument model with control data
generated on the same instrument, we mix controls and tim-
bre models from different instruments. For example, a singer
controls the model of a Stradivarius model or alternatively,
the audio signal generated on an electric violin controls the

0

2

4

Morphing: Log(Amplitude) of Harmonic 0-6

-2

0

2

4

-2

0

2

4

-5

0

5

-6
-4
-2

0
2
4

-4

-2

0

2

0 1 2 3 4 5 6

-4

-2

0

2

Time (Seconds)

0

2

4

Voice to voice: Log(Amplitude) of Harmonic 0-6

H
ar

m
 0

-2

0

2

4

H
ar

m
 1

-2

0

2

4

H
ar

m
 2

-5

0

5

H
ar

m
 3

-6
-4
-2

0
2
4

H
ar

m
 4

-4

-2

0

2

H
ar

m
 5

0 1 2 3 4 5 6

-4

-2

0

2

Time (Seconds)

H
ar

m
 6

0

2

4

Voice to violin: Log(Amplitude) of Harmonic 0-6

-2

0

2

4

-2

0

2

4

-5

0

5

-6
-4
-2

0
2
4

-4

-2

0

2

0 1 2 3 4 5 6

-4

-2

0

2

Time (Seconds)

Figure 6: Three results of prediction using for each one the three perceptual inputs from the female singing voice of figure 3.
Each figure represents the first seven harmonics extracted from the recorded signal (plain line) and predicted signal using the
model (dashed line) - fundamental at the top, sixth harmonic at the bottom. left: The input drives a full female singing voice
model. right: The input drives a full Stradivarius violin model. middle: The input drives a linear morphing between the two
models (from voice to violin).

model of a female singing voice. The resulting sound out-
put imitates the timbre of the violin in the first case and the
singing voice in the second case, while it follows the musi-
cal intentions and control encoded in the perceptual control
signal.

We rescale the loudness and brightness functions of the
source to fall into the loudness and brightness range of the
target model. However, in order to really sound like the origi-
nal, the controller instrument needs to imitate the articulation
and vibrato of the original target. The pitch range accessi-
ble to the source instrument is essentially limited to the pitch
range of the recorded target instrument.

Figure (6 - right) shows an example of cross-synthesis be-
tween a female singing voice controller and a violin model.
Comparing this figure to figure (6 - left), we observe that
the predicted harmonics differ significantly from the mea-

sured harmonics of the voice. This indicates that violin and
singing-voice timbres are highly distinguishable although the
two sounds have the same relative values of pitch, loudness,
and brightness.

In order to extend the output pitch range, we interpolate
between different voice models, i.e. the model of a female
and a male voice. The interpolation (see section Morphing)
is strictly done in the frequency domain, which assures that
the resulting sound is artifact-free and does not sound like two
cross-faded voices.

7.3 Morphing

Because the parameterization structure is kept equal across
different instruments, we can interpolate between parameter-
izations and models. In the applications discussed above, the

electric violin controls either the sound of a modeled Stradi-
varius violin or the sound of a female singing voice. We can
choose to synthesize any timbre “in between” by running two
predictions simultaneously and creating two spectral frames,
one representing a violin spectrum and the other one repre-
senting a voice spectrum. We introduce a morphing parame-
ter α to weight the two spectra (0 < α < 1):

Ci(n) = C1,i(n) · α + C2,i(n) · (1 − α) (9)

where C1,i and C2,i are the output components i of model 1
and 2, and Ci are the resulting components i of the morphed
spectrum for time frame n. α is specified offline or is changed
dynamically. For example we can use a MIDI controller such
as a volume pedal or a bow sensor, to modify the percentage
of each timbre in real time.

Figure (6 - middle) shows an example of linear morphing
between a female singing voice and a Stradivarius violin, us-
ing a voice input. The signal at first matches the predicted
voice signal of example (6 - left) and in the end matches the
predicted violin predicted signal of example (6 - right).

7.4 Compression

The proposed methodology of timbre modeling and syn-
thesis can be used for efficient audio compression and trans-
mission.

Since the amount of input data for the sound model is very
small, i.e. about 1Kb/s, the control parameters can be easily
sent over the internet in real time. Remote real-time synthesis
through an Ethernet network was performed successfully by
transmitting the control data with OpenSound Control (OSC)
(Wright and Freed, 1997).

The system handles missing data robustly because the
client synthesizes the audio signal from scratch. Missing
frames can easily be replaced by previously received informa-
tion. The client continuously generates the time domain sig-
nal based on the data that was last received properly. Hence
there are no audible artifacts.

Figure (7 - left) shows the analysis server Max patch that
was used to analyze a streaming electric violin signal and to
send the resulting control data over the network. Figure (7
- right) shows the synthesis client Max patch that was used
to receive the control data and to synthesize a female singing
voice.

We are also experimenting with a five-string polyphonic
electric violin that is used to control different sound models
on each string. Such a system allows the musician to play
double-stops with a different sound for each note. Such com-
plex set-ups can either be handled on one machine or shared
by several machines.

Figure 7: left: Max analysis server patch, right: Max synthe-
sis client patch.

7.5 Discussion

Our approach preserves the perceptual parameters of the
audio signal and only transforms the spectral content of the
musical message. The response sounds surprisingly close to
the target instrument while preserving the musical intents of
the player. From the musician’s perspective, the playability
of the instrument is preserved and the instrument behaves in-
tuitively and predictably.

In the case of cross-synthesis, i.e. the control features of
the played instrument are used as inputs for the model of a dif-
ferent instrument, the resulting timbre may not always sound
exactly as expected. The perceptual control of one instrument
family may look very different from that of another family.
In particular the attack characteristics of an instrument vary
strongly across different instruments and the loudness curve
of instrument A may have a much sharper attack at the onset
of new notes than instrument B. This limitation is not nec-
essarily a problem because musicians usually agree that the
expressivity of controls is more important than the reproduc-
tion of the specific waveforms. In other words, the hybrid
(cross-synthesized) instrument may not behave exactly like
the original target sound but it provides the musician with an
expressive tool that expands his or her artistic space. Design-
ing new computer instruments and controllers, we should not
underestimate the familiarity and closeness of the skilled mu-
sician with his or her instrument, although he or she can adapt
to a new controller or feedback mechanism.

8 Conclusions and Future Work

We have presented a perceptually meaningful acoustic
timbre synthesizer for non-discretely pitched acoustic ins-
truments such as the violin. The timbre is modeled based
on the spectral analysis of natural sound recordings using the
probabilistic inference framework Cluster-Weighted Model-
ing. The timbre and sound synthesizer is controlled by the

perceptual features pitch, loudness, and brightness which are
extracted from an arbitrary monophonic input audio stream.
The predictor model outputs the most likely set of spectral
parameters which are then used in an additive synthesis ap-
proach to generate an audio stream. The real-time system
is implemented efficiently in Max/MSP on a Macintosh plat-
form.

A noise model that is based on a polynomial expansion of
the noise spectrum enables a more accurate model and repre-
sentation of genuinely noisy instruments such as the flute or
the shakuhachi.

Future work will include algorithms that extract more per-
ceptual features. We will also extend the application with
models of very different instruments such as trombone and
flute.

9 Acknowledgements

The authors would like to thank Tod Machover, Neil
Gershenfeld, Joshua Bell, Hila Plittman, Tara Rosenberger,
Youngmoo Kim, Nyssim Lefford, Michael Broxton, Cyril
Drame, Ricardo Garcia, Catherine Vaucelle, Mary Farbood,
and CNMAT. This work was made possible by the Media
Lab’s Things That Think consortium and by Sega Corpora-
tion.

References
Freed, A. and Jehan, T. (1999). CNMAT Max/MSP externals

available at http://www.cnmat.berkeley.edu/max/.

Gershenfeld, N. A., Schoner, B., and Métois, E. (1999).
Cluster-weighted modeling for time series analysis. Nature,
379:329–332.

Goodwin, M. (1996). Residual modeling in music analy-
sis/synthesis. In Proceedings of ICASSP, volume 2, pages
1005–1008.

Johnston, J. D. (1988). Transform coding of audio signals using
perceptual noise criteria. IEEE on Selected Areas in Commu-
nications, 6:314–323.

Métois, E. (1996). Musical Sound Information. Musical Gestures
and Embedding Synthesis. PhD thesis, MIT Media Lab.

Noll, A. M. (1967). Cepstrum pitch determination. Journal of
Acoustic Society of America, 41(2):293–309.

Puckette, M. (1988). The patcher. In Proceedings International
Computer Music Conference, pages 420–429, Köln, Ger-
many.

Puckette, M. and Apel, T. (1998). Real-time audio analysis tools
for Pd and MSP. In Proceedings International Computer Mu-
sic Conference, pages 109–112, Ann Arbor, Michigan.

Rodet, X. (1997). Musical sound signal analysis/synthesis: Sinu-
soidal + residual and elementary waveform models. In IEEE
Time-Frequency and Time-Scale Workshop, Coventry, Great
Britain.

Schoner, B., Cooper, C., Douglas, C., and Gershenfeld, N.
(1998). Data-driven modeling and synthesis of acoustical
instruments. In Proceedings International Computer Music
Conference, pages 66–73, Ann Arbor, Michigan.

Serra, X. (1997). Musical sound modeling with sinusoids plus
noise. In Musical Signal Processing. Swets & Zeitlinger.

Smith, J. and Abel, J. (1999). Bark and ERB bilinear trans-
forms. IEEE Transactions on Speech and Audio Processing,
7(6):697–708.

Sporer, T. and Brandenburg, K. (1995). Constraints of filter banks
used for perceptual measurement. Journal of the Audio Engi-
neering Society, 43:107–115.

Wessel, D., Drame, C., and Wright, M. (1998). Removing
the time axis from spectral model analysis-based additive
synthesis: Neural networks versus memory-based machine
learning. In Proceedings International Computer Music Con-
ference, pages 62–65, Ann Arbor, Michigan.

Wessel, D. L. (1979). Timbre space as a musical control structure.
Computer Music Journal, 3(2):45–52. republished in Foun-
dations of Computer Music, Curtis Roads (Ed., MIT Press).

Wright, M. and Freed, A. (1997). OpenSound control: A new
protocol for communicating with sound synthesizers. In Pro-
ceedings International Computer Music Conference, pages
101–104, Thessaloniki, Greece.

Zicarelli, D. (1998). An extensible real-time signal processing en-
vironment for Max. In Proceedings International Computer
Music Conference, pages 463–466, Ann Arbor, Michigan.

