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Abstract

Common sense knowledge can be efficiently collected from
non-experts over the web in a similar fashion to the Open
Mind family of distributed knowledge capture projects. We
describe the collection of common sense data through the
Open Mind Indoor Common Sense (OMICS) website. We
restrict the domain to indoor home and office environments
to obtain dense knowledge. The knowledge was collected
through sentence templates that were generated dynamically
based on previous user input. Entries were converted into
relations and saved into a database. We discuss the results
of this online collaborative effort and describe two applica-
tions of the collected data to indoor mobile robots. We dis-
cuss active desire selection based on current beliefs and com-
mands and a room-labeling application based on probability
estimates from the common sense knowledge base.

Introduction
The objective of this research is to enhance the intelligence
of mobile robots so that they can autonomously accomplish
tasks in a home or office environment. For these tasks, the
robots must posses some common sense including knowl-
edge about human desires, objects and their locations, and
causality. Since common sense does not require expert
knowledge, the data may be collected as part of a public
online collaborative effort over the Internet.

Distributed online knowledge acquisition projects, such
as those associated with the Open Mind Initiative (Stork
1999; 2000), have become quite popular. The Open Mind
Common Sense project, led by Push Singh at the MIT Media
Lab, has accumulated a corpus of 700,000 pieces of knowl-
edge from 14,000 users (as of January 2004) over the past
three years1. Other projects such as Open Mind Word Ex-
pert2 and Open Mind 1001 Questions3, have also been suc-
cessful.
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This paper describes the Open Mind Indoor Common
Sense (OMICS) project that became publicly available at the
beginning of August 20034. In the next section we describe
the knowledge base framework and templates used to cap-
ture data. We then report on our results and experiences with
working with online contributors. The next section of the
paper discusses two applications that use this data. We dis-
cuss inference based on anticipating the desires of the users.
We also describe a room-labeling application based on sim-
ulated object recognition and simulated room and object la-
bels given by a user. Finally, we discuss our conclusions and
future work.

Data Collection Methods
In this section we first describe the framework of the knowl-
edge base and the relations necessary to capture those types
of common sense most useful to an indoor robot. We then
describe how we built a website to capture this data in a
user-friendly manner and how we converted the data into
machine-understandable relations.

Knowledge Representation
The framework of this work is object-centric. Robot activ-
ities involve perceiving the environment and acting upon it.
What the robot knows about the environment must include
what objects are present and their state. The robot must ma-
nipulate these objects in such a way so as to put them in
some desired state to accomplish its goals. Hence, every-
thing that the robot knows about the world and can do in the
world is grounded in objects and their properties (or state).

The robot can observe properties of objects in its vicinity
and it can perform actions that change the properties of ob-
jects. In this system, a statement is a pair φ = (o, p) where
o is some object and p is an adjective describing the prop-
erty. Statements may be thought of as assertions about the
property of an object in the world or actions to be taken on
an object to achieve a particular effect (actions are referred
to by the effect they achieve.) For example, the statement
(cup-of-coffee, hot) can mean “a cup of coffee is hot” or rep-
resent the action “make a cup of coffee hot.” Using the same
notation allows us to make connections between beliefs, de-
sires, and intentions.

4http://openmind.hri-us.com
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Figure 1: A template sentence.

Our representation allows us to capture such common
sense knowledge as: (o1, p1) causes (o2, p2). For exam-
ple, the statement (fan, on) causes (room, cool). We also
wish to capture knowledge about human desires such as
(o1, p1) indicating the human desire (o2, p2). For example,
the perception (cup-of-coffee, cold) indicates that the desire
(cup-of-coffee, hot) be fulfilled.

At any given point in time, the robot observes a set of
statements that are true and can execute a set of statements.
Using the common sense knowledge about causality and de-
sires as previously described, the general problem is to de-
cide which statements to execute in order to achieve per-
ceived goals.

Indeed, this object-centric representation is limited. It
cannot express everything that first order logic with a large
array of predicates can represent. In addition to making in-
ference simpler, this “object-centric” representation makes
it much easier to collect data from sentence templates.

Activity Sentence Templates
We need some way to convert the common sense in the
minds of non-expert users into relations in a knowledge
base. Following the style of the Open Mind Common Sense
website, we decided to use sentence templates. Users are
prompted to fill in the blanks of sentences with words, as
shown in figure 1.

Once a user logs on with their account, they are presented
with a random activity. After a random number of entries
for a particular activity, the system prompts them with a new
activity. Users may also manually switch between the activ-
ities.

Different activities capture different types of knowledge.
Below is a summary of some of the activities:

Objects In this activity, the user is asked to identify the
types of objects commonly found in a home or office. The
user may be prompted to type in an object name that comes
to mind or simply label an image of an object. It is important
to allow a user to simply type in any indoor object that comes
to mind because we want to include all relevant objects in the
database even if we do not have their picture.

Image labeling can link multiple labels to the same object
(e.g. the labels “sofa” and “couch” might be both associated
with “h0141.gif”). The images themselves can be used for
training the object recognition system of the robot. When
the website became public, the database initially contained
a set of over 400 images of indoor objects selected by hand

Figure 2: A word sense disambiguation form.

from a collection of stock photography.

Statements In the ‘statements’ activity, the user is
prompted with a question such as, “You often want a fan
to be .” This activity pairs objects with properties in
the knowledge base. The objects that appear in these sen-
tence templates come from the objects entered by users in
the other activities such as the ‘objects’ activity.

Uses This activity associates objects with their uses. For
example, the user might be prompted with the form, “A
hanger is used to .” Again the objects come from
user input.

Causes This activity captures causality. For exam-
ple, a form might ask, “A computer is off when
a is .” If the user enters a new object or a
new object-property pair, it will be entered into the object or
statement table. The object and property that makes up the
first part of the sentence is formed dynamically by selecting
a random object from the knowledge base.

Desires This activity helps the robot determine what needs
to be done in various situations. A template form might
ask, “You might want a fan to be blowing if you notice that
your has become .”

Locations This activity associates objects with the rooms
where they are typically found. For example, the user might
be prompted with, “A room where you generally find a din-
ner table is the .”

Proximity This activity associates objects with each other
based on proximity. A sample form would be, “You gener-
ally find a frying pan in the same room as a .”

Senses This activity disambiguates the intended sense of
various objects entered into the database by other users. Fig-
ure 2 shows a sample form. The objects to disambiguate are
selected from previous user entries and the senses are from
WordNet (Miller 1995).

People This one describes the activities of people in a
home or office (e.g. People eat food when they are hungry).
The template form is, “People when they .”



Paraphrase This activity tries to capture multiple ways of
interacting with the robot in natural language to accomplish
a task. A sample template is “Another way to say heat the
food in the microwave is .”

Tasks This activity tries to capture the steps required to
accomplish a task like making coffee, answering the phone
etc. We prompt the user with 7 short natural language steps
to accomplish the task. A sample template is “The task water
indoor plants involves the steps: .”

Generalization This activity tries to generalize upon pre-
vious entries in the knowledge base. Instead of having to
individually specify that bananas, oranges, apples, etc. are
commonly found in the kitchen, it would be useful to know
that all kinds of fruit are found in the kitchen. If we know
that fruit is found in the kitchen, we can use the WordNet
hierarchy to infer that all of the hyponyms of fruit are found
in the kitchen. An example of a prompt for this activity is
the following: “Are all types of writing implement (a gener-
alization of ‘marker’) commonly found in the study?”

Freeform This activity allows users to type in any form of
common sense knowledge that might not be captured by any
of the other activities. Although it is quite difficult to convert
freeform sentences into useful relations, it provides us with
a sense of the types of knowledge the general public would
like an indoor robot to understand. Analysis of freeform
sentences will later lead to the creation of new activities.

Data Quality Review
It is important that there be some way of ensuring data qual-
ity since the data (such as names of objects and their proper-
ties) are used to generate new sentence templates. Sentence
templates containing misspelled objects or objects that do
not appear in a home or office environment would propagate
errors in the knowledge base.

The completed sentence templates are stored in the
database as raw sentences pending administrator review (see
figure 3). It generally takes an administrator roughly half
a minute to scan through a page with fifteen submissions.
Once an administrator approves a set of entries, they are
parsed into relations immediately. There is currently no
need for part-of-speech tagging or lemmatization (as with
the Open Mind Common Sense project) since the sentence
templates are structured and designed in such a way that they
implicitly cue the user as to what part-of-speech and tense
they should use.

Data Collection Results
To advertise the Open Mind Indoor Common Sense website,
a message was sent to the Open Mind Initiative mailing list
on August 5th. With no other direct advertising, within three
weeks we had 190 users and 18,000 submissions with about
17,000 of them accepted. As of March 2004 we have over
400 users with 29,000 submissions with over 26,000 of them
accepted.

We have had two weekly contests (lasting four weeks
each) in August 2003 and February 2004 where the top con-
tributor was awarded an Open Mind t-shirt. Other Open

Figure 3: The review form used for administrators to com-
mit, uncommit, or reject entries.

Mind projects have used similar contests to help motivate
submissions. Winners were listed on the front page of the
site.

Observations
The OMICS site was publicly announced on August 5th and
the first t-shirt prize was awarded August 6th. A signifi-
cant portion of the entries were submitted within two days
of the announcement. Prizes were also awarded on August
12, August 19, and August 26. In general, submissions were
greater close to contest deadlines.

The quality of the data was actually quite good. About
10% of the submissions were rejected. Entries that were
rejected tended to fall within one of the following categories:

• Misspelling: e.g. “A room where you generally find a
exercise bike is the bym.”

• Unclear or loose statements: e.g. “People cry when they
can’t get it.”

• Outside the scope of home and office environments: e.g.
“A trap is set when a predator is hunting.”

• Nonsense: e.g. “You generally want a green light to be
addressed to you.”

• Inappropriate: e.g. suggestive or obscene

The ‘causes’ activity had the highest rejection rate. De-
ciding how one object affects another object proved to be
difficult for some users. Interestingly, almost all word sense
activities were answered correctly. Even users that entered



Activity Count
Objects 5804

Uses 3517
Locations 3400
Statements 3394
Proximity 2547
Freeform 1696
People 1667
Desires 1792
Causes 1558
Senses 2349

Generalization 718
Paraphrase 351

Tasks 120
Images 55

Figure 4: The number of submissions for each activity.

rogue data in other activities generally entered the correct
sense of the words in the ‘sense’ activity.

Users that appeared to have hostile intentions, indicated
by sentence completions that were of a crude or sexual na-
ture, also submitted useful data. Surprisingly, a few users
that might be classified as malicious were among the top
contributors of good data.

Figure 4 shows the ranking of the various activities and
the number of submissions. Not surprisingly, users spent
significantly more time on the ‘objects’ activity. This is
probably because the ‘objects’ activity requires the least
amount of thought and because it was the only activity that
involved images. Although users were allowed to submit
their own images of indoor objects, very few users actually
did. The second contest in February 2004, with more em-
phasis on Generalization, Paraphrase, and Tasks activities
had much fewer submissions (about 2000). Fewer submis-
sions may be due to higher degree of difficulty, thought, and
typing required for submissions.

Feedback
Although we have received little feedback on the OMICS
website, comments thus far have been largely positive. One
of the weekly winners entered data with her seven-year-old
son. She had the following to say about the site:

As a teacher I think it is really great and put my son on
it with me here at home—It was a great mom and kid
project for several days. My little one who is 5 will be
working on it too this week. It really forces us to do
some critical thinking—the relationships and location
section were great for him as were the free questions
that he could come up with on his own.

Some users were concerned about their spelling errors and
the spelling errors that were part of their sentence templates.
Most grievous spelling errors were filtered out by the ad-
ministrators, but some minor spelling errors were allowed
into the database. Other users were concerned that the data
they entered already existed in the database. One user com-
mented:

(coke-can, warm)

(coke-can, chilled)(coke-can, refrigerated)
causes

indicates
desire

observed by robot

action taken by robot

Figure 5: Example of using the OMICS knowledge base for
active desire selection.

I still don’t really know what to put in the freeform cat-
egory, or what needs to be worked through to be the
most help in the project (I’m guessing something like
computer & mouse gets overused, while other objects
go ignored?).
The general tone of the e-mails we received were positive

and indicated a desire by the users to see the project succeed
in making robots more intelligent.

Data Applications
The data collected from the Open Mind family of projects
have been applied to a wide variety of problems. Open Mind
Word Expert has been applied to word sense disambigua-
tion (Liu, Lieberman, & Selker 2003) and Open Mind Com-
mon Sense has been applied to textual affect sensing (Liu &
Singh 2003). In this section, we describe two ways in which
the data collected as part of OMICS is being used.

Active Desire Selection
Our knowledge base can be used for common sense and
practical reasoning using Belief-Desires-Intentions (BDI)
theory. BDI was originally developed by Bratman (1987)
and is founded upon established theory of rational action in
humans.

Given causality relations, observations, and human com-
mands, the robot can use the desires relations from the
OMICS knowledge base to deduce active desires (goals).
These desires can then be used in action selection using the
Belief-Desire-Intention (BDI) architecture (Rao & Georgeff
1995; Wooldridge 1999).

Figure 5 shows an example of active desire selection.
Here the robot observes from its sensors that a coke can
is warm. From the desires relations, the robot knows that
(coke-can, warm) →d (coke-can, chilled), and hence that it
should pursue an action that causes (coke-can, chilled). The
robot, however, does not know how to directly cause (coke-
can, chilled), so it looks into its list of causality implica-
tions. The robot sees that (coke-can, refrigerated) → (coke-
can, chilled). Thus it can infer that by refrigerating the warm
coke-can, it can be chilled, and therefore the robot can add
that desire to its list of active desires.

Topological Map with Room Labeling
Space can be labeled using terms that people typically use
such as Large Conference Room, Small Conference Room,



couch

living room

dinning room
kitchen

“This is the
master bedroom”

piano couch

coffee table

dinning table
sink

“This is the bed”

Figure 6: Room labeling showing input of simulated room
and object labels at specific locations.

and Library. Information on the extent and connectivity of
these regions can be used to generate a topological map with
spatial labeling for providing natural interaction. This map
can be used to plan a path to a specific room based on the
current task.

We simulated data for a laser scanner to provide extent
and connectivity 2D map information. Dots in figure 6 rep-
resent individual laser scan readings from a merged map
generated during environment exploration. Humans provide
a running description of the immediate surroundings as the
robot explores a new home or office. These labels can be
room types (e.g., This is a kitchen or This is the living room),
or about objects (e.g., This is a chair or This is a computer).
In addition, the robot might use an object recognition sys-
tem to recognize objects with a confidence value given by
the recognition system.

These simulated objects and room labels with associated
probabilities (from a speech/object recognition system) and
the 2D map are input to our system. We then use probability
estimates given by statistical analysis of object location data
from our knowledge base to label different rooms and open
areas. We ran simulations to output topologically labeled
maps of indoor home and office environments with different
inputs.

In related work, Myers and Konolige (1992) generated
and modified map layouts to reflect sentential information
and common sense constraints for example:

• individuals own offices

• galleries or walkways are not owned by individuals

• reception is located at the entrance to the office

As shown in figure 6, we are given the walls and labels
such as This is the bed and some objects recognized in the
environment or pointed to by a user like sink, dining table,
coffee table, piano and couch with an associated probability
value. From this information, sensory data D, and the Open
Mind Indoor Common Sense database we may compute the
location probabilities.

These numbers can be used to compute the probability of
the most likely room using Bayes’ formula. Figure 7 shows
the output of our algorithm. For example we have deter-
mined that based on available information, the most likely
room label for the top-left room is the kitchen.

living room

dinning  room

kitchen

master bedroom

Figure 7: Room labeling showing output of our algorithm
with most likely room labels and locations.

P (sink|D) = 0.70 (from object recognition)
P (microwave|D) = 0.90 (from speech recognition)
P (sink|kitchen) = 0.13 (estimated from OMICS)
P (microwave|kitchen) = 0.11 (estimated from OMICS)
P (sink|bedroom) = 0.003 (estimated from OMICS)
P (microwave|bedroom) = 0.002 (estimated from OMICS)

Further work will involve using laser data instead of sim-
ulated 2D maps. This data can also be extracted from cam-
eras by building a sparse map of the unknown environment.
Simulated place and object labels supplied by the user will
be replaced by real data from a speech recognition system.
Simulated object labels will be replaced by an object recog-
nition system with associated confidence values.

Probability Estimation from common sense knowledge
base The robot’s sensory perceptions are combined with
the priors and conditional probabilities for object location
estimated from the common sense knowledge base to deter-
mine the most likely room label.

Given a set ω ∈ Ω of rooms, objects xi, and sensory
data D, the robot sensory perception provides P (xi|D), and
the location data in our knowledge base is used to estimate
P (xi) and P (xi|ω). The robot collects information about
the objects in the room, perhaps through speech recognition
(e.g. a human says “this is a chair”) or through an object
recognition system. These observations D induce a con-
ditional probability distribution P (xi|D) over the objects
xi ∈ X . We wish to combine these probability distribu-
tions with P (xi|ω) and P (xi) probability estimations from
our knowledge base to calculate the room that is most likely,
namely:

ω′ = arg max
ω∈Ω

P (ω|D)

Let x denote a vector indicating the presence or absence
of the objects xi. Assuming a generative Bayesian model
where ω influences x and x influences D, we calculate the
joint distribution:

P (ω,x, D) = P (ω)P (x|ω)P (D|x)

=
P (ω)P (x|ω)P (x|D)P (D)

P (x)

We use this to calculate the most likely room, ω′:
arg max

ω∈Ω
P (ω|D)



= arg max
ω∈Ω

∑

x

P (ω, x|D)

= arg max
ω∈Ω

∑

x

P (ω)P (x|ω)P (x|D)

P (x)

= arg max
ω∈Ω

P (ω)

∑

x1

P (x1|ω)P (x1|D)

P (x1)
· · ·

∑

xn

P (xn|ω)P (xn|D)

P (xn)

= arg max
ω∈Ω

ln P (ω) +

n∑

i=1

ln

∑

xi

P (xi|ω)P (xi|D)

P (xi)

Since the xi’s are binary valued, the computational com-
plexity is linear in the number of possible objects.

Our knowledge base contains a collection of tuples of ob-
jects and rooms. We estimate P (xi) by counting the num-
ber of times xi is mentioned in the database and dividing by
the number of entries in the database. We estimate P (xi|ω)
by counting the number of times the tuple (xi, ω) appears
and dividing by the number of tuples that mention ω, i.e.
P (xi|ω) = C(xi, ω)/C(ω). However, this assigns zero
probability to P (xi|ω) in cases where the database never
mentions the tuple (xi, ω). This is rectified by using Lid-
stone’s law to redistribute some of the probability mass as-
signed to the observed tuples to the unobserved tuples. Lid-
stone’s law uses a parameter λ < 1 to control how much
probability is distributed to unseen tuples. We then have

P (xi|ω) =
C(xi, ω) + λ

C(ω) + λn

Unseen instances are assigned probability λ/n, where n is
the number of objects.

Conclusions and Future Work
The Open Mind Indoor Common Sense project has success-
fully captured thousands of pieces of common sense knowl-
edge about home and office environments. Our contribu-
tions to common sense data collection include the restric-
tion of the domain to enhance the density of the knowledge,
dynamic prompting of data based on prior data in the knowl-
edge base, and object-centric data collection focusing on ob-
jects and their properties. We use comprehensive manual
data review to ensure the quality of the collected knowledge.

The indoor home and office focus of our data collection
and the structured activities have lead to a dense knowledge
base. This knowledge base was useful in determining ac-
tive desires from which actions could be selected. We com-
puted probability estimates from our common sense knowl-
edge base and used them in a Bayes formulation to compute
the most likely room label given room and object labels with
confidence levels. These labels were combined with a 2D
map to build topologically labeled maps.

Distributed knowledge capture results in messy knowl-
edge and one of the challenges is to convert this into a us-
able form. Further research will be required to clean up the
data using statistical probability estimation techniques. Re-
search is also required to represent, maintain and update this
knowledge on a real robot.

Although the robot can use the common sense knowledge
at a very high level to determine which desires to pursue, it is

not yet intelligent enough to actually select and execute the
mid-level actions that accomplish these desires. It remains to
be seen how common sense can be used in the actual execu-
tion of various tasks, such as cleaning a bathtub. One might
use the teleo-reactive program framework, as proposed by
Nils Nilsson (1992; 1994), to accomplish such basic tasks
as make a cup of coffee hot or pop some popcorn.
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